Compartmentalized Reaction-Diffusion Systems

F. Chavez
R. Kapral

[^0]reactions often take place in

- open systems; complex reaction dynamics with feedback
- heterogeneous media with compartmentalization of species
what effects do these features have on pattern formation?
reactive compartments, each supporting one step of an autocatalytic mechanism, coupled by diffusion

example: bistable system - Schlögl model

$$
\begin{array}{lll}
\text { compartment 1: } & A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} & X, \\
\text { compartment 2: } & B+2 X & \underset{k_{-2}}{\rightleftharpoons} \\
& &
\end{array}
$$

neither step is bistable but the combined effect of both steps leads to bistability
general analysis: system with m chemically reactive species; overall reaction mechanism consists of n elementary steps

$$
\sum_{k=1}^{m} \nu_{k}^{\alpha} \boldsymbol{X}_{k} \stackrel{k_{\alpha}}{\stackrel{k_{-\alpha}}{ }} \sum_{k=1}^{m} \bar{\nu}_{k}^{\alpha} \boldsymbol{X}_{k}, \quad(\alpha=1, \ldots, n)
$$

$X_{k},(k=1, \ldots, m)$ are m chemical species
ν_{k}^{α} and $\bar{\nu}_{k}^{\alpha}$ are stoichiometric coefficients for reaction step α
reaction-diffusion equations

$$
\frac{\partial \mathrm{c}(\mathrm{r}, t)}{\partial t}=\mathrm{D} \nabla^{2} \mathrm{c}(\mathrm{r}, t)+R(\mathrm{c}(\mathrm{r}, t))
$$

compartmentalized reaction rates on N domains

$$
\mathcal{R}_{k}(\mathrm{c}(\mathrm{r}, t))=\sum_{i=1}^{N} \boldsymbol{R}_{k}^{\left\{\alpha_{i}\right\}}(\mathrm{c}(\mathrm{r}, t)) \Theta_{i}(\mathrm{r})
$$

formal solution

$$
c_{k}(\mathrm{r}, t)=\int_{0}^{t} \int G\left(\mathrm{r}, t ; \mathrm{r}_{0}, t_{0}\right) \mathcal{R}_{k}\left(\mathrm{c}\left(\mathrm{r}_{0}, t_{0}\right)\right) d^{s} \mathrm{r}_{0} d t_{0}+c_{k}^{0}+\mathcal{I}_{k}^{\phi}+D_{k} \mathcal{I}_{k}^{B}
$$

first term accounts for the reaction rates; c_{k}^{0} is the solution of the associated homogeneous problem ; last two terms account for the initial and boundary conditions
$G\left(\mathrm{r}, t ; \mathrm{r}_{0}, t_{0}\right)$ - time-dependent Green function
tough to solve; focus on volume average over domain j

$$
c_{k, j}(t)=\frac{1}{V_{j}} \int c_{k}(\mathrm{r}, t) \Theta_{j}(\mathrm{r}) d^{s} \mathrm{r}
$$

average over a domain and use a multipole expansion of the domain contributions

$$
R_{k}^{\left\{\alpha_{i}\right\}}(c(\mathrm{r}, t)) \Theta_{i}(\mathrm{r}) \approx\left[\int d^{s} \mathrm{r} R_{k}^{\left\{\alpha_{i}\right\}}(\mathrm{c}(\mathrm{r}, t)) \Theta_{i}(\mathrm{r})\right] \delta\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right), \quad\left(\mathrm{r} \in \Omega_{j}\right)
$$

to obtain

$$
c_{k, j}(t)=\sum_{i}^{N} \int_{0}^{t} \omega_{k, j i}\left(t, t_{0}\right) R_{k}^{\left\{\alpha_{i}\right\}}\left(\mathrm{c}_{i}\left(t_{0}\right)\right) d t_{0}+c_{k}^{0}+I_{k, j}^{\phi}+D_{k} I_{k, j}^{B}
$$

integrals describe the effect of the reactions within domain i on the mean concentration in domain j

$$
\omega_{k, j i}\left(t, t_{0}\right)=\frac{1}{V_{j}} \iint_{\Omega_{j}} G\left(\mathrm{r}, t ; \mathrm{r}_{0}, t_{0}\right) d^{s} \mathrm{r}_{0} d^{s} \mathrm{r} \delta_{j i}+\int_{\Omega_{j}} G\left(\mathrm{r}, t ; \mathrm{r}_{i}, t_{0}\right) d^{s} \mathrm{r}\left(1-\delta_{j i}\right)
$$

Schlögl model steady state bifurcation diagram - no compartments

$$
\frac{d c}{d t}=k_{-2} c^{3}-k_{2} b c^{2}+k_{-1} c-k_{1} a=0
$$

or in scaled variables $\alpha x^{3}-x^{2}+\beta x-1=0$ where

$$
\alpha=\frac{k_{-2}}{k_{1} a}\left(\frac{k_{1} a}{k_{2} b}\right)^{3 / 2}, \quad \beta=\frac{k_{-1}}{k_{1} a}\left(\frac{k_{1} a}{k_{2} b}\right)^{1 / 2} .
$$

geometric effects on reaction dynamics
one-dimensional medium consisting of N reactive domains of length l centered at positions x_{i}

$\mathbf{R}^{\alpha_{1}} \quad \mathbf{R}^{\alpha_{2}} \quad \ldots \quad \mathbf{R}^{\alpha_{N}}$
stable states - time-independent RD equation in 1d

$$
D \frac{\partial^{2} c(x)}{\partial x^{2}}=-\mathcal{R}(c(x))
$$

type-1 domains (step 1): $c_{1}=k_{1} a / k_{-1}$ type-2 domains (step 2): $c_{2}=k_{2} b / k_{-2}$
general equations can be solved analytically for the two-domain and periodic regular array Schlögl model
steady states are the solutions of $\alpha_{s} x^{3}-x^{2}+\beta_{s} x-1=0$ where

$$
\begin{gathered}
\alpha_{s}=\alpha \sqrt{\frac{\gamma}{\gamma+k_{-1}}} \cdot \quad \beta_{s}=\beta \sqrt{\frac{\gamma}{\gamma+k_{-1}}} \\
\gamma= \begin{cases}\frac{6 D}{3 d l-2 l^{2}}, & \text { fixed-concentration BC } \\
\frac{24 d D}{l\left(24 d^{2}+l^{2}-8 d l\right)}, & \text { zero-flux BC. }\end{cases}
\end{gathered}
$$

l is domain length and d is the distance between the domain centers
induce bistability by variations of D or l - regular arrangement of N domains

$$
\begin{aligned}
& \alpha_{s}=\alpha_{s}\left(k_{i}, a, b, \gamma\right) \quad \beta_{s}=\beta_{s}\left(k_{i}, a, b, \gamma\right) . \\
& \gamma=24 d D / l\left(24 d^{2}+l^{2}-8 d l\right)
\end{aligned}
$$

random distribution of two types of domain - mean field approximation sum over all like domains to obtain coupled equations for their mean concentrations

$$
\begin{aligned}
& c_{1}=W_{11} R^{1}\left(c_{1}\right)+W_{12} R^{2}\left(c_{2}\right)+c_{0}, \\
& c_{2}=W_{22} R^{2}\left(c_{2}\right)+W_{21} R^{1}\left(c_{1}\right)+c_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
W_{11} & =\frac{2}{N} \sum_{i, j} w_{j i} \delta_{\alpha_{i}, 1} \delta_{\alpha_{j}, 1} \\
W_{22} & =\frac{2}{N} \sum_{i, j} w_{j i} \delta_{\alpha_{i}, 2} \delta_{\alpha_{j}, 2} \\
W_{12}=W_{21} & =\frac{1}{N} \sum_{i, j} w_{j i}\left(1-\delta_{\alpha_{i}, \alpha_{j}}\right)
\end{aligned}
$$

random distribution of domains - system parameters: $L=1000, N=$ $50, l=10,10$ realizations

solid line - mean field model solution of the compartmentalized RD equations

Oscillatory and Chaotic Dynamics in Compartmentalized Geometries Compartmentalized Willamowski-Rössler model
(1) $A_{1}+U \underset{k_{-1}}{\stackrel{k_{1}}{\stackrel{ }{2}}} 2 U$,
(2) $U+V \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftharpoons}} 2 V$,
(3) $A_{5}+V \underset{k_{-3}}{\stackrel{k_{3}}{\Longrightarrow}} A_{2}$,
(4) $U+W \xlongequal[k_{-4}]{\stackrel{k_{4}}{{ }_{-4}}} A_{3}$,
(5) $A_{4}+W \xlongequal[k_{-5}]{\stackrel{k_{5}}{=}} 2 W$

Lotka-Volterra (LV) and switch (S) steps in separate compartments

- LV domains - single stable focus; S domains - two stable nodes separated by an unstable node

1d medium of length L with alternating $L V$ and S domains; domain length $l=L / 2$, center-to-center inter-domain distance $d=L / 2 ; D_{u}=$ $D_{v}=D_{w}=D$; periodic BC
scaled time and length units, $t \rightarrow t / \tau$ and $x \rightarrow x / \sqrt{D \tau}$; then with $\tau=1$, $\mathrm{D}=\mathrm{I}$
diffusion length $\ell_{D}=\sqrt{D t_{c}} \rightarrow \sqrt{t_{c} / \tau}$, where t_{c} is characteristic time scale taken to be the period of one oscillation which lies in the range $1.5 \geq t_{c} / \tau \geq 5$ and thus $1.2 \geq \ell_{D} \geq 2.2$
globally averaged concentration fields projected onto the uv-plane for $k_{-2}=0.11$ and different values of L

- well-mixed WR system has a period-1 limit cycle
- large L, system evolves to a stable fixed point determined by the stationary states of the independent LV and S domains
- limit cycle develops at $L=0.777$, as L decreases size of limit cycle grows until it resembles that of the well-mixed WR system
$k_{-2}=0.072$: well-mixed WR system has a chaotic attractor - system size L again plays role of bifurcation parameter

development of a chaotic attractor in the compartmentalized WR system; (a)-(d): $L=0.283,0.258,0.2309$ and 0.179
boundary conditions have important effects - integral representation

$$
c_{k, j}(t)=I_{k, j}^{\phi}+D_{k} I_{k, j}^{B}+\sum_{i=1}^{N} \int_{0}^{t} \omega_{k, j i}\left(t, t_{0}\right) R_{k}^{\left\{\alpha_{i}\right\}}\left(\mathrm{c}_{i}\left(t_{0}\right)\right) d t_{0}
$$

infinite system with zero concentrations at $x= \pm \infty$ - Green function is given by

$$
G\left(x, x_{0} ; t, t_{0}\right)=\frac{e^{-\frac{\left(x-x_{0}\right)^{2}}{4\left(t-t_{0}\right)}}}{2 \sqrt{\pi\left(t-t_{0}\right)}}
$$

prefactors are

$$
\begin{aligned}
\omega_{i i}\left(t, t_{0}\right) & =\frac{2}{l} \sqrt{\frac{t-t_{0}}{\pi}}\left[e^{-l^{2} / 4\left(t-t_{0}\right)}-1\right]+\operatorname{erf}\left(l / 2 \sqrt{t-t_{0}}\right) \\
\omega_{i j}\left(t, t_{0}\right) & =\frac{1}{2}\left[\operatorname{erf}\left(\frac{2 d_{i j}+l}{4 \sqrt{t-t_{0}}}\right)-\operatorname{erf}\left(\frac{2 d_{i j}-l}{4 \sqrt{t-t_{0}}},\right)\right]
\end{aligned}
$$

prefactors $\omega_{i i}$ and $\omega_{i j}$ as a function of z; off-diagonal term: (dotted line) $a=2$, (solid line) $a=1$

$z=l / \sqrt{4\left(t-t_{0}\right)} ; a_{i j}$ is the distance between domains in units of the domain length $\ell, d_{i j}=a_{i j} l$

- self contributions from reactive domains are always much larger than the contributions from the neighboring domain when $t_{0} \rightarrow t$, except for very small l; all prefactors tend to zero and boundaries dominate
- strong boundary effects preclude the appearance of oscillations when the reactive domains are strongly coupled
random distributions: N domains randomly chosen to be of types LV and S; if domains overlapped, overlapping regions assumed to support full WR mechanism; $k_{-2}=0.072$ in the chaotic regime

space-time plots for $N=26$ and $L=200$ (left) and $L=115.47$ (right); bottom - globally averaged u fields versus $t-$ low $<\rho_{C}>=0.053$

Further decrease of L leads to a region of global oscillations when $L \approx \ell_{D}$

space-time plots for $N=26$ for small $L: L=2.82$ (left) and $L=2.39$ (right); (bottom) phase plane plots of the globally averaged u and v
higher average density of overlapping domains $<\rho_{C}>=0.43$; the medium contains larger clusters of C domains and clusters close to each other tend to synchronize

space-time plots for $N=80: L=200$ (left) and $L=0.70$ (right)
global attractors for one realization for different L
globally averaged dynamics shows a partial period doubling cascade and a chaotic attractor corresponding to the dynamics in the right panel of previous figure

phase plane plots of the globally averaged u and v fields for $N=80$ and $L=2.0$ (upper left), 1.41 (upper right), 1.15 (lower left) and 0.70 (lower right).
two-dimensional media

top left: One realization of the random configuration of LV, S and C domains. The domain type is color coded by shades of gray; the darkest shades correspond to inactive areas of the medium and the lightest to C-type overlapping domains. The other panels are instantaneous configurations of the u field for $L=112$ (top right), 35.42 (bottom left) and $L=11.20$ (bottom right)
magnitude of u is proportional to the intensity of gray shade
comments

- compartmentalization can influence nature of chemical dynamics and patterns
- applications to chemical patterns on catalytic surface; inhomogeneous reactor beds; reations in heterogeneous media
- extensions - derivation of effective reaction-diffusion equations for heterogeneous media
biological systems

features of biochemical reactions in cells

- open systems; complex reaction dynamics with feedback
- heterogeneous media with compartmentalization of species
- some species present in very small numbers, sometimes one or a few molecules
- transport by simple diffusion, protein or other motors, etc.

[^0]: F. Chavez and R. Kapral, Phys. Rev. E, 63, 016211 (2000)
 F. Chavez and R. Kapral, Phys. Rev. E, 65, 056203 (2002)

