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reactions often take place in

• open systems; complex reaction dynamics with feedback

• heterogeneous media with compartmentalization of species

what effects do these features have on pattern formation?



reactive compartments, each supporting one step of an autocatalytic
mechanism, coupled by diffusion
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example: bistable system – Schlögl model

compartment 1 :
k1

A ⇀↽ X,
k−1

compartment 2 :
k2

B + 2X ⇀↽ 3X,
k−2

neither step is bistable but the combined effect of both steps leads to
bistability



general analysis: system with m chemically reactive species; overall
reaction mechanism consists of n elementary steps

m∑
k=1

να
k Xk

kα⇀↽
k−α

m∑
k=1

ν̄α
k Xk, (α = 1, . . . , n)

Xk, (k = 1, . . . , m) are m chemical species
να

k and ν̄α
k are stoichiometric coefficients for reaction step α

reaction-diffusion equations

∂c(r, t)

∂t
= D∇2c(r, t) + R(c(r, t)),

compartmentalized reaction rates on N domains

Rk(c(r, t)) =
N∑

i=1
R

{αi}
k (c(r, t))Θi(r).



formal solution

ck(r, t) =
∫ t

0

∫
G(r, t; r0, t0)Rk(c(r0, t0))d

sr0dt0 + c0
k+Iφ

k + DkIB
k

first term accounts for the reaction rates; c0
kis the solution of the

associated homogeneous problem ; last two terms account for the
initial and boundary conditions

G(r, t; r0, t0) – time-dependent Green function

tough to solve; focus on volume average over domain j

ck,j(t) =
1

Vj

∫
ck(r, t)Θj(r)d

sr



average over a domain and use a multipole expansion of the domain
contributions

R
{αi}
k (c(r, t))Θi(r) ≈

[∫
dsr R

{αi}
k (c(r, t))Θi(r)

]
δ(r − ri), (r ∈ Ωj)

to obtain

ck,j(t) =
N∑
i

∫ t

0
ωk,ji(t, t0)R

{αi}
k (ci(t0))dt0 + c0

k + Iφ
k,j + DkI

B
k,j

integrals describe the effect of the reactions within domain i on the
mean concentration in domain j

ωk,ji(t, t0) =
1

Vj

∫∫
Ωj

G(r, t; r0, t0)d
sr0 dsr δji +

∫
Ωj

G(r, t; ri, t0)d
sr (1 − δji)



Schlögl model steady state bifurcation diagram – no compartments

dc

dt
= k−2c

3 − k2bc2 + k−1c − k1a = 0

or in scaled variables αx3 − x2 + βx − 1 = 0 where

α =
k−2

k1a
(
k1a

k2b
)3/2, β =

k−1

k1a
(
k1a

k2b
)1/2.
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geometric effects on reaction dynamics

one-dimensional medium consisting of N reactive domains of length l
centered at positions xi

. . .

R
α1 R

αΝ

x1 x2
xN

R
α2

...

...

l

0 L

stable states – time-independent RD equation in 1d

D
∂2c(x)

∂x2
= −R(c(x))

type-1 domains (step 1): c1 = k1a/k−1

type-2 domains (step 2): c2 = k2b/k−2



general equations can be solved analytically for the two-domain and
periodic regular array Schlögl model

steady states are the solutions of αsx
3 − x2 + βsx − 1 = 0 where

αs = α

√√√√√ γ

γ + k−1

. βs = β

√√√√√ γ

γ + k−1

γ =


6D

3dl−2l2
, fixed-concentration BC

24dD
l(24d2+l2−8dl)

, zero-flux BC.

l is domain length and d is the distance between the domain centers



induce bistability by variations of D or l – regular arrangement of N
domains
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random distribution of two types of domain – mean field approximation

sum over all like domains to obtain coupled equations for their mean
concentrations

c1 = W11R
1(c1) + W12R

2(c2) + c0,

c2 = W22R
2(c2) + W21R

1(c1) + c0

where

W11 =
2

N

∑
i,j

wjiδαi,1δαj,1

W22 =
2

N

∑
i,j

wjiδαi,2δαj,2

W12 = W21 =
1

N

∑
i,j

wji(1 − δαi,αj
)



random distribution of domains – system parameters: L = 1000, N =
50, l = 10, 10 realizations
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solid line – mean field model solution of the compartmentalized RD
equations



Oscillatory and Chaotic Dynamics in Compartmentalized Geometries

Compartmentalized Willamowski-Rössler model

(1) A1 + U
k1⇀↽
k−1

2U , (2) U + V
k2⇀↽
k−2

2V , (3) A5 + V
k3⇀↽
k−3

A2 ,

(4) U + W
k4⇀↽
k−4

A3 , (5) A4 + W
k5⇀↽
k−5

2W

U V

W

1 2 3

4

5

S

LV

Lotka-Volterra (LV) and switch (S) steps in separate compartments



• LV domains – single stable focus; S domains – two stable nodes
separated by an unstable node

1d medium of length L with alternating LV and S domains; domain
length l = L/2, center-to-center inter-domain distance d = L/2; Du =
Dv = Dw = D; periodic BC

scaled time and length units, t → t/τ and x → x/
√

Dτ ; then with τ = 1,
D = I

diffusion length `D =
√

Dtc →
√
tc/τ , where tc is characteristic time

scale taken to be the period of one oscillation which lies in the range
1.5 ≥ tc/τ ≥ 5 and thus 1.2 ≥ `D ≥ 2.2



globally averaged concentration fields projected onto the uv-plane for
k−2 = 0.11 and different values of L
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• well-mixed WR system has a period-1 limit cycle
• large L, system evolves to a stable fixed point determined by the
stationary states of the independent LV and S domains
• limit cycle develops at L = 0.777, as L decreases size of limit cycle
grows until it resembles that of the well-mixed WR system



k−2 = 0.072: well-mixed WR system has a chaotic attractor – system
size L again plays role of bifurcation parameter

0 20 40 60u

d

0

20

40

60

v

aa b

0

20

40

60

0 20 40 60

v

u

c

development of a chaotic attractor in the compartmentalized WR sys-
tem; (a)-(d): L = 0.283, 0.258, 0.2309 and 0.179



boundary conditions have important effects – integral representation

ck,j(t) = Iφ
k,j + DkI

B
k,j +

N∑
i=1

∫ t

0
ωk,ji(t, t0)R

{αi}
k (ci(t0))dt0

infinite system with zero concentrations at x = ±∞ – Green function
is given by

G(x, x0; t, t0) =
e− (x−x0)2

4(t−t0)

2
√
π(t − t0)

prefactors are

ωii(t, t0) =
2

l

√√√√√t − t0

π

[
e−l2/4(t−t0) − 1

]
+ erf

(
l/2

√
t − t0

)
,

ωij(t, t0) =
1

2

erf
 2dij + l

4
√

t − t0

 − erf

 2dij − l

4
√

t − t0

,






prefactors ωii and ωij as a function of z; off-diagonal term: (dotted
line) a = 2, (solid line) a = 1
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z = l/
√
4(t − t0); aij is the distance between domains in units of the

domain length `, dij = aijl

• self contributions from reactive domains are always much larger than
the contributions from the neighboring domain when t0 → t, except for
very small l; all prefactors tend to zero and boundaries dominate

• strong boundary effects preclude the appearance of oscillations when
the reactive domains are strongly coupled



random distributions: N domains randomly chosen to be of types LV
and S; if domains overlapped, overlapping regions assumed to support
full WR mechanism; k−2 = 0.072 in the chaotic regime
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space-time plots for N = 26 and L = 200 (left ) and L = 115.47 (right);
bottom – globally averaged u fields versus t – low < ρC >= 0.053



Further decrease of L leads to a region of global oscillations when
L ≈ `D
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space-time plots for N = 26 for small L: L = 2.82 (left) and L = 2.39
(right); (bottom) phase plane plots of the globally averaged u and v



higher average density of overlapping domains < ρC >= 0.43; the
medium contains larger clusters of C domains and clusters close to
each other tend to synchronize
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space-time plots for N = 80: L = 200 (left) and L = 0.70 (right)



global attractors for one realization for different L

globally averaged dynamics shows a partial period doubling cascade
and a chaotic attractor corresponding to the dynamics in the right
panel of previous figure
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phase plane plots of the globally averaged u and v fields for N = 80
and L = 2.0 (upper left) , 1.41 (upper right), 1.15 (lower left) and 0.70
(lower right).



two-dimensional media

top left: One realization of the random configuration of LV, S and C
domains. The domain type is color coded by shades of gray; the darkest
shades correspond to inactive areas of the medium and the lightest
to C-type overlapping domains. The other panels are instantaneous
configurations of the u field for L = 112 (top right), 35.42 (bottom left)
and L = 11.20 (bottom right)

magnitude of u is proportional to the intensity of gray shade



comments

• compartmentalization can influence nature of chemical dynamics
and patterns

• applications to chemical patterns on catalytic surface; inhomoge-
neous reactor beds; reations in heterogeneous media

• extensions – derivation of effective reaction-diffusion equations for
heterogeneous media



biological systems

features of biochemical reactions in cells

• open systems; complex reaction dynamics with feedback

• heterogeneous media with compartmentalization of species

• some species present in very small numbers, sometimes one or a
few molecules

• transport by simple diffusion, protein or other motors, etc.


