

	Earth-Moon	Pluto-Charon
M _{SAT} / M _{Plan}	0.012	$0.12 \pm 0.008*$
L _{TOT} /L _*	0.35	>1
		*from Olkin et al. 20

- 1. Impact generation of satellites should be common in late stage accretion
 - Large collisions between similarly sized objects
 - Random impact orientation \rightarrow many oblique impacts: 50% of collisions have b > 0.7
- 2. Terrestrial planets, giant planet cores may have all had impact-generated satellites
- 3. Eventual fate determined by later events:

Later impacts, tidal evolution, or runaway gas accretion

Galilean Satellite Origin

(e.g., Lunine & Stevenson 1982, Coradini et al. 1989; Makalkin et al. 1999; Canup & Ward 2002; Mosquiera & Estrada 2003a,b)

- Bate et al. (2003)
- Protosatellite disk of gas & solids
- Current satellite masses \rightarrow disk solids

~ 2×10^{-4} Jupiter masses

- Required solar composition mass: $100M_{SAT} \sim 2 \times 10^{-2}M_{T}$
- Standard approach: protosatellite disk contained ~ $.02M_J$ "Minimum mass sub-nebula" (MMSN) $\rightarrow Gas \ rich \ disk: \ \sigma_{GAS} \sim 10^5 \ g/cm^2$

Basic difficulties: MMSN disk is too hot, accretion too fast, satellite lifetimes against Type I decay too short

Alternative model: Slow-inflow accretion disk

(Canup & Ward 2002)

- Gas & solids delivered during final stages of Jovian accretion
- $\sim 10^{-2}M_J$ is minimum mass that was processed through satellite disk, but not necessarily in disk all at one time
- Gas maintains quasi steady-state; solids accrete and buildup in disk with time
- Result: prolonged satellite formation over >10⁵ years in a cool, "gas-starved" disk

Consistent with incompletely differentiated Callisto, icy outer satellites, satellite survival against Type I decay

Constraint on inflow rate, *F*: Effective disk temperature depends on *F₀* (g/sec), but is independent of disk viscosity, *v T*⁴_D ≈ 9Ω²/8σ_{SB} *v*σ_{GAS} , *σ*_{GAS}(*r*) ∝ *F*₀/*v* → *T*⁴_D ∝ *F*₀ Temperature constraint: Icy Ganymede/Callisto *T_D* ≤ 200 K → *F* < (1 Jupiter mass)/5 x 10⁶ years or *F* < few x 10⁻⁵ M_⊕ per year → Galilean satellites formed as gas accretion onto Jupiter was slowing down → Low disk gas surface densities

Satellite accretion model:

- Inflow for $r \le r_c$, with $F_{in}(r) \propto (1/r)^{\gamma}$
- Initial distribution of satellitesimals with $R_J < r < r_C$
- Mass of objects is increased to mimic accretion of small material delivered to disk by the inflow:

$$\frac{dM_{s}(r)}{dt} = F_{in}(r)2\pi r\Delta r \quad \text{with} \quad \Delta r \propto r(M_{s}/3M_{J})^{1/2}$$

- Track satellitesimal accretion with N-body model (*Duncan et al. 1998*)
- Analytically include gas disk interactions (*Papaloizou & Larwood 200*)

Inward Type I migration:

$$\tau_{I} = \frac{r}{dr/dt} \approx \frac{1}{\Omega} \left(\frac{M_{J}}{M_{S}} \right) \left(\frac{M_{J}}{r^{2} \sigma_{G}} \right) \left(\frac$$

Implications:

- 1. Regular satellites of gas giants formed during final slow accretion of gas and solids to planets
- Inward orbital migration of large satellites likely
 Differences in final satellite systems can result from similar conditions, depending on timing of stopping of inflow

Galilean-like system with 4 large satellites at 170,000 years; Saturnian-like system with single large satellite (ala Titan) at 300,000 years

Some key open issues:

- 1) Character of late inflow onto Jupiter/Saturn?
 - Flow dynamics within Hill sphere
 - Specific angular momentum on inflow
 - Metallicity
- 2) Disk viscosity: magnitude & character?
 - Turbulence due to inflow (e.g., Cassen & Moosman)
 - Torques from growing satellites (e.g., Goodman & Rafikov)
 - General turbulence associated with Keplerian disks (e.g., Klahr & Bodenheimer)