Beyond Oligarchy:

The Final Chapter of Planet Formation

Yoram Lithwick
Peter Goldreich
Re'em Sari

Observations

Questions

- When does oligarchy end, and what happens next?
- What sets the spacing between the planets?
- Why are their orbits circular and coplanar?
- How long did it take them to form?

Oligarchy

Big bodies:

- have comparable masses
- are spaced by a few Hill radii
(From Kokubo \& Ida ‘98)

Accretion
 During Oligarchy

Accretion Rate:

$$
\frac{1}{M} \frac{d M}{d t} \sim(\underbrace{\frac{v_{\mathrm{esc}}}{u}})^{2}(\underbrace{\frac{\sigma \Omega}{\rho R}})
$$

gravitational geometric 100 Myr for Earth focusing \quad accretion $\Rightarrow\left\{\begin{array}{l}\text { I Gyr for Jupiter's core }\end{array}\right.$ factor rate Iooo Gyr for Neptune

Heating and Cooling During Oligarchy

Heating = Cooling

On small bodies: $\frac{\Sigma \Omega}{\rho R}\left(\frac{v_{\mathrm{esc}}}{u}\right)^{4} \sim \frac{\sigma \Omega}{\rho s} \quad \Rightarrow u \sim v_{\mathrm{esc}}\left(\frac{\Sigma}{\sigma} \frac{s}{R}\right)^{1 / 4}$
Very small $s \Rightarrow$ very small $u \Rightarrow$ very fast accretion

Heating and Cooling During Oligarchy

Heating = Cooling
On big bodies: $\frac{\Sigma \Omega}{\rho R}\left(\frac{v_{\mathrm{esc}}}{v}\right)^{4} \sim \frac{\sigma \Omega}{\rho R}\left(\frac{v_{\mathrm{esc}}}{u}\right)^{4} \Rightarrow v \sim u\left(\frac{\Sigma}{\sigma}\right)^{1 / 4}$

Heating and Cooling During Oligarchy

Heating = Cooling
On big bodies: $\frac{\Sigma \Omega}{\rho R}\left(\frac{v_{\text {esc }}}{v}\right)^{4} \underset{>}{>} \frac{\sigma \Omega}{\rho R}\left(\frac{v_{\text {esc }}}{\chi^{T} \mathrm{~V}}\right)^{4}$

Beyond Oligarchy: Unrestrained Heating

When $\Sigma>\sigma$, heating of big bodies exceeds cooling \Rightarrow heating runs away

Beyond Oligarchy: Unrestrained Heating

When $\Sigma>\sigma$, heating of big bodies exceeds cooling \Rightarrow heating runs away

For Uranus and Neptune $v_{\text {escape }}>v_{\text {orbital, }}$ so

- Some big bodies ejected to Oort cloud or beyond in time $\frac{1}{10} \Omega^{-1}\left(\frac{M_{\odot}}{M_{\text {Neptune }}}\right)^{2} \sim$ I Gyr

Remaining big bodies cooled by small bodies

- Continue until no large-scale chaos \Rightarrow no heating
- Remaining small bodies probably not accreted

For Venus, Earth, and Mars $v_{\text {escape }}<v_{\text {orbital }}$, so

- Ejection is impossible
- Remaining big bodies collide and coalesce in time $\left(\frac{\sigma \Omega}{\rho R}\right)^{-1} \sim$ 100 Myr
- Continue until no large-scale chaos. Residual small bodies can cool planets.

Answers

When does oligarchy end, and what happens next?

When $\Sigma=\sigma$, heating runs away

Answers

What sets the spacing between planets?

Stability \Rightarrow no large-scale chaos

Answers

Why are their orbits circular and coplanar?

Small bodies damp velocities

Answers

How long did it take them to form?

- In inner Solar System: ~ 100 Myr
- In outer Solar System: «100 Myr, but to eject neighbours: I Gyr

The End

