
SECULAR EVOLUTION OF

COUPLED PLANET–DISC SYSTEMS

Gordon Ogilvie

IoA / DAMTP, University of Cambridge

with Steve Lubow

Space Telescope Science Institute

KITP, UCSB

15th March 2004

Planet–disc systems 1



PLANET–DISC SYSTEMS

Protoplanetary system in intermediate phase

Disc partitioned into annuli

mp ∼ md � M?

Time-scales (e.g. for Jupiter):

• dynamical Ω−1 ∼ 101 yr

• secular M?

mp
Ω−1 ∼ 104 yr

• viscous / migration (?) r2

ν
∼ 107 yr

Neglect accretion and migration: how do e and i evolve?

Focus on i for illustrative purposes (safer ground!)
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EXISTING THEORIES

e and i of a gap-opening companion are both excited and

damped by resonant interactions with the disc

• Goldreich & Tremaine (1980)

– e is damped (delicate balance)

• Borderies, Goldreich & Tremaine (1984)

– i is excited (delicate balance)

• Goldreich & Sari (2003)

– e can be excited (ECR saturation: O & L 2003; Masset)

Can this be seen in planet-disc simulations?
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PHILOSOPHY

Direct numerical simulations:

• particle dynamics, gas dynamics, MHD

• fully nonlinear

• increasingly powerful and important

(Semi-) analytic approaches:

• interpretative framework

• isolate different physical aspects

• suggest targeted experiments

• historical connections

Continuum celestial mechanics

• e and i for a disc
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ECCENTRICITY AND INCLINATION IN A DISC

Generally, disturbances propagate through a gaseous disc

• inertia, pressure, buoyancy, self-gravitation, . . .

• damped by linear or nonlinear mechanisms, or turbulence

Warped accretion discs (1975–)

• case III (Keplerian, α <
∼H/r): Papaloizou & Lin (1995)

• propagates as a non-dispersive wave

• damped by viscosity (or MHD turbulence)

• self-gravitation important when Q ∼ 1

Eccentric accretion discs

• propagates as a dispersive wave

• damping / excitation very subtle (2D / 3D, relaxation, . . . )

• self-gravitation important when Q ∼ r/H !

Asymptotic nonlinear theories (O 2001, 2004)

• 3D→ 1D evolutionary equations

• test problems
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SUMMARY OF LAPLACE–LAGRANGE THEORY

Central star, mass M?

n planets, masses mi � M?, in nearly Keplerian orbits

m

*

1

m2

l1l2

M

Complex inclination variable

W = lx + ily, |W | � 1

Secular inclination dynamics

Ji

dWi

dt
= i

∑

j

Cij(Wj −Wi)

Ji = mir
2
i Ωi, Cij = GmimjK(ri, rj)

Linear dynamical system, analyse into normal modes
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PLANET–DISC SYSTEMS

Disc partitioned into annuli

Neglect accretion and migration: how does i evolve?

W (r, t)

Disc angular momentum equation

Σr2Ω
∂W

∂t
= external torque density +

1

2πr

∂G

∂r

Internal torque (cf. Papaloizou & Lin 1995)

∂G

∂t
+

(

κ2 − Ω2

Ω2

)

iΩ

2
G + αΩG =

π

2
ΣH2r3Ω3 ∂W

∂r
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Linear dynamical system

Planet i

Jpi

dWpi

dt
= i

∑

j

GmpimpjK(rpi, rpj)(Wpj −Wpi)

+i
∑

k

∫ bk

ak

GmpiΣkK(rpi, r)(Wdk −Wpi) 2πr dr

Disc k

Σkr2Ω
∂Wdk

∂t
=

1

2πr

∂G k

∂r

+i
∑

i

GmpiΣkK(r, rpi)(Wpi −Wdk)

+i
∑

l

∫ bl

al

GΣkΣ′

lK(r, r′)(W ′

dl −Wdk) 2πr′ dr′

Internal torque of disc k

∂G k

∂t
+

(

κ2 − Ω2

Ω2

)

iΩ

2
G k+αΩG k =

π

2
ΣkH2r3Ω3 ∂Wdk

∂r

Boundary conditions

G k(ak) = G k(bk) = 0
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Conservation laws

Horizontal angular momentum

d

dt

[

∑

i

JpiWpi +
∑

k

∫ bk

ak

Σkr2ΩWdk 2πr dr

]

= 0

Vertical angular momentum

d

dt
(−Lz) = −

∑

k

∫ bk

ak

2α|G k|
2

πΣkH2r3Ω2
dr

with angular momentum deficit

−Lz =
∑

i

1

2
Jpi|Wpi|

2

+
∑

k

∫ bk

ak

(

1

2
Σkr2Ω|Wdk|

2 +
|G k|

2

2π2ΣkH2r4Ω3

)

2πr dr

≥ 0

Note

cos i ≈ 1−
i2

2
= 1−

1

2
|W |2
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Mean-motion resonances

Many resonances expected in a continuous disc

Local growth of inclination corresponds to a resonant torque

(Borderies, Goldreich & Tremaine 1984; Lubow 1992)

Jp

dWp

dt
= · · ·+ 2πsres

Gm2
p

M?

Σr(Wp −W )

∣

∣

∣

∣

∣

r=rres

Σr2Ω
∂W

∂t
= · · ·+ sres

Gm2
p

M?

Σ(W −Wp)δ(r − rres)

AMD can either grow or decay:

d

dt
(−Lz) = −

∑

k

∫ bk

ak

2α|G k|
2

πΣkH2r3Ω2
dr

+
∑

res

2πsres

Gm2
p

M∗

Σr|W −Wp|
2

∣

∣

∣

∣

∣

r=rres
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Normal modes

Rigidly precessing patterns:

Wpi = Ŵpi eiωt, Wdk = Ŵdk(r) eiωt

Linear eigenvalue problem:

• integro-differential equations

• discretize and solve numerically

1 trivial mode

Wpi = Wdk = constant

Infinite number of non-trivial modes, damped by viscosity

Low-order modes:

• nearly rigid behaviour if mode period� sound travel time

• retrograde precession

• weakly damped
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e.g. Jupiter in a 100 AU disc
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e.g. Hot Jupiter (0.05 AU) in a 100 AU disc
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Resonance strengths

To be summed, weighted by Σr|W −Wp|
2

Borderies, Goldreich & Tremaine (1984) – planetary rings:

• neglect warping of rings

• inclination always grows

Lubow & Ogilvie (2001) – protoplanetary systems:

• compute global modes including warping and MMRs

• viscous damping typically prevails (α >
∼ 10−3)
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Typical time-dependent behaviour

Incline mobile planet with respect to flat disc

Inappropriate to measure di/dt; monitor AMD instead

Non-mobile planet: different (erroneous) results

Similar behaviour expected for e
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KEY POINTS / TOPICS FOR DISCUSSION

• e and i are shared properties of the planet–disc system

• AMD (including wave contribution) is a positive-definite

measure of the bending disturbance

• AMD is conserved in secular exchanges but grows or

decays as a result of competition between MMRs and

disc-based dissipation

• (B)GT calculations of de/dt, di/dt need to be revisited:

– damping / excitation in the disc

– modified weighting of resonant torques

• eccentricity dynamics of the disc is very subtle:

– 2D / 3D

– viscous / turbulent

– NSG / SG

– bias of polar grids?

• high resolution required to see ECR saturation and

eccentricity growth
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