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1. Introduction

Today, I am going to talk about some of Joe’s 
profound contributions to our thinking about 
string theory vacua, and some recent work 

I’ve done on that subject.

But I’d like to begin by briefly describing Joe’s 
impact on my thinking about physics more 

generally.

Introduction
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can be obtained relatively simply using Fermi’s golden
rule (together with Maxwell’s equations) and I have in-
cluded these for readers who would like to see where
some of the properties are coming from.

The outline of this review is as follows. I begin with
a description of Fermi-liquid theory itself. This the-
ory tells us why one gets a very good description of a
metal by treating it as a gas of Fermi particles (i.e. that
obey Pauli’s exclusion principle) where the interactions
are weak and relatively unimportant. The reason is
that the particles one is really describing are not the
original electrons but electron-like quasiparticles that
emerge from the interacting gas of electrons. Despite its
recent failures which motivate the subject of non-Fermi
liquids, it is a remarkably successful theory at describ-
ing many metals including some, like UPt3, where the
interactions between the original electrons are very im-
portant. However, it is seen to fail in other materials
and these are not just exceptions to a general rule but
are some of the most interesting materials known. As
an example I discuss its failure in the metallic state of
the high temperature superconductors.

I then present four examples which, from a theo-
retical perspective, generate non-Fermi liquid metals.
These all show physical properties which can not be
understood in terms of weakly interacting electron-like
objects:

• Metals close to a quantum critical point. When a
phase transition happens at temperatures close to
absolute zero, the quasiparticles scatter so strongly
that they cease to behave in the way that Fermi-
liquid theory would predict.

• Metals in one dimension–the Luttinger liquid. In
one dimensional metals, electrons are unstable and
decay into two separate particles (spinons and
holons) that carry the electron’s spin and charge
respectively.

• Two-channel Kondo models. When two indepen-
dent electrons can scatter from a magnetic impu-
rity it leaves behind “half an electron”.

• Disordered Kondo models. Here the scattering
from disordered magnetic impurities is too strong
to allow the Fermi quasiparticles to form.

While some of these ideas have been used to try and un-
derstand the high temperature superconductors, I will
show that in many cases one can see the physics illus-
trated by these examples in other materials. I believe
that we are just seeing the tip of an iceberg of new types
of metal which will require a rather different starting
point from the simple electron picture to understand
their physical properties.

Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface
are filled with both a spin-up and a spin-down elec-
tron. A particle-hole excitation is made by promoting
an electron from a state below the Fermi surface to an
empty one above it.

2. Fermi-Liquid Theory: the electron quasi-
particle

The need for a Fermi-liquid theory dates from the
first applications of quantum mechanics to the metallic
state. There were two key problems. Classically each
electron should contribute 3kB/2 to the specific heat
capacity of a metal—far more than is actually seen ex-
perimentally. In addition, as soon as it was realized
that the electron had a magnetic moment, there was
the puzzle of the magnetic susceptibility which did not
show the expected Curie temperature dependence for
free moments: χ ∼ 1/T .

These puzzles were unraveled at a stroke when
Pauli (Pauli 1927, Sommerfeld 1928) (apparently
reluctantly—see Hermann et al. 1979) adopted Fermi
statistics for the electron and in particular enforced the
exclusion principle which now carries his name: No two
electrons can occupy the same quantum state. In the
absence of interactions one finds the lowest energy state
of a gas of free electrons by minimizing the kinetic en-
ergy subject to Pauli’s constraint. The resulting ground
state consists of a filled Fermi sea of occupied states
in momentum space with a sharp demarcation at the
Fermi energy ϵF and momentum pF = h̄kF (the Fermi
surface) between these states and the higher energy un-
occupied states above. The low energy excited states
are obtained simply by promoting electrons from just
below the Fermi surface to just above it (see Fig. 1).
They are uniquely labelled by the momentum and spin
quantum numbers of the now empty state below the
Fermi energy (a hole) and the newly filled state above
it. These are known as particle-hole excitations.

This resolves these early puzzles since only a small
fraction of the total number of electrons can take part

A simple free electron theory (“particles in a box”)
describes some properties of typical metals well:

Easily get electronic specific
heat ~T, etc.

Thursday, September 18, 14



The first work of Joe’s that I encountered 
was at TASI 1992.  2d gravity was all 

the rage then, and Joe had done central 
work on the subject.

But he talked instead about non-Fermi liquids. 
He joked that if he could solve high Tc, he 
would get a fancy chair (like Weinberg’s). 



High Tc remained unsolved, but Joe did get his 
well deserved fancy chair, and more.

Years later, by about 2013, I was mature enough 
to start appreciating this subject, and did some 

work of my own on non-Fermi liquids. Joe’s 
thinking was a central guide.  (By then, he had 

moved on to the paradoxes of black hole 
physics).

A more systematic way of thinking about this is using a 
parameter like N to control the importance of the various 

diagrams.

* Singlet boson with N fermions at large N -- fermions 
win and Hertz is  “morally right” over some energy range.

* But likewise, large N matrix boson with single N-plet
of fermions and Hertz is wrong.  We’ll see what happens.
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As for all of us, another guiding piece of  
Polchinski-ology was the discovery of D-branes.

These first changed my work and life in 1995, 
and have played a starring role since. 

I could go on and on (his take on the RG, on 
singularities, on holography, on …).



But let me transition at this point to my talk proper, 
and discuss Joe’s work on string compactification. 

II.  The string landscape

Joe wrote many technical papers on string 
compactification.
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His crucial insight with Bousso is very simple.



With fluxes contributing incommensurately to the 
energy, one can tune the cosmological constant.

The extra dimensions are a complicated place:



Under mild assumptions, Bousso-Polchinski 
argued that starting with a bare negative c.c. 

and considering a model with ~100s of distinct 
cycles threaded by flux, one could fine tune 

the vacuum energy to attain very small positive 
values.  In their toy model.

Their toy model neglected the problem of 
treating the moduli.  



Putting that aside for a moment, their work gave 
us a qualitative picture of the Universe on large scales 
governed by eternal inflation + bubble nucleation….

…in keeping with the same (admittedly, imprecise) 
pictures coming out of studies of inflationary theory.



But: turning on fluxes in string theory backreacts on 
moduli, and unless one is careful, one either:

— decompactifies 
— ends up in AdS

Many of us focused on this in the KITP 
workshop “Avatars of M theory” in 2001.

Result for me: work with 
Giddings, Polchinski; 
Pearson, Verlinde; + 

initiation of collaboration 
with Trivedi



One starting point was IIb string theory  
compactification on orientifold of a  

Calabi-Yau manifold.

W =

Z
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Tree level supergravity: “no-scale structure” 
(includes O-planes; crucial!)

result: (highly) warped flux vacua, V = 0

III. String compactifications with flux



The picture after GKP was a low-energy 
effective theory of the volume modulus.

Dynamics on branes could lead to further 
interesting dynamics.

One very interesting variant:



theory including 
anti-D3 branes

— in non-compact confining throat of  
Klebanov, Strassler:

(gsp ⌧ 1)

Probe approximation justified. Metastable 
SUSY breaking with a compact moduli  

space of Goldstones!



I note that the potential looks heuristically like:

Small corrections (p/M) cannot remove all ground states 
here; they can tilt the hat selecting one or more at worst.

(This kind of argument goes way back, and is certainly 
not new in this setting!)



In the compact tree-level GKP solutions, the anti-D3  
would lead to rapid decompactification! 

But of course no-scale structure is not exact.

In a compact setting, things change:



With Kallosh-Linde-Trivedi, we thought to use 
these effects (or their analogues in strong 

dynamics) to stabilize the volume.

This work — and work of Silverstein, and of 
Balasubramanian-Berglund-Conlon-Quevedo, and 

of Denef-Douglas, and of others — supports  
the modern picture of the string landscape.



Some comments:

— The details of any of these constructions 
are historical accidents, and can be varied.

— Criticisms and responses:

i) anti-brane backreaction

“Effective field theory is a powerful tool for analyzing 
brane back-reaction…In the end, the original 
KKLT result has stood up well.  As far as we 

can see, none of the putative           vacua has  
been eliminated. Indeed…perhaps  

there are           vacua!”
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Joe, arXiv:1509.05710



Most recent analysis of Van Riet et al in a  
complementary regime               :(gsp > 1)

“…we recover the results of KPV.”
(arXiv:1812.01067)

ii) …but are you allowed to incorporate 
non-perturbative effects when you don’t 

know the exact K?

Answer: check shift in results by using �K

(as stated in 2003 paper; see our note arXiv:1808.08971)

;
small shift @ small values of flux W.



iii) anti-D3 backreaction redux, now on D7s:

Paper in question gives scalings inconsistent 
with Randall-Sundrum warped scalings, 
holographic interpretations, and other 

macroscopic consistency tests.  Out of sense of  
duty, clarifying this now with McAllister + Zimet.

(Moritz,Retoaza,Westphal)

I certainly believe we could improve our understanding 
of the dS constructions.  But quoting Joe:

“There are some objections to the use of effective 
field theory at all, but it is not clear why it should fail 
in this particular context.  In some cases it simply 

seems that the result is undesired.”



IV.  Progress in string compactification

I personally think that to better understand the landscape, 
we should systematically improve our understanding 
of the mathematical physics of string vacua.  We’ve 
taken small steps in this direction in the past couple 

of years.

A.  What is the Calabi-Yau metric?

On M with vanishing first Chern class, 
there is a Ricci flat Kahler metric for 

 each choice of the Kahler class. 



We do not have any idea how to determine the 
metric on a generic compact Calabi-Yau.  But 

we have recently proposed an analytical technique 
to get metrics on smooth K3 surfaces.

y

2 = x

3 + xf8(z) + g12(z)

Particularly nice class:  elliptic K3s:

To describe our idea, we take a detour.

S.K.,  
Arnav Tripathy, 

Max Zimet



The moduli space of a 4d N=2 theory has Higgs 
and Coulomb branches.

Gaiotto-Moore-Neitzke considered theory on a circle:



The Coulomb branch becomes a hyperKahler manifold, 
and GMN are able to determine it.  Roughly, their idea 

is to show that the only corrections to the metric  
obtained from reduction come from BPS states 

running around the circle.

A particularly interesting 4d N=2 theory can be obtained 
as follows.  Consider the E8xE8 little string:



Compactifying this on a two-torus yields a 4d N=2 theory 
with a compact Coulomb branch.

Related by dualities to D3 brane probing F-theory on 
elliptic K3.  Coulomb branch is a sphere with marked points; 

on circle compactification, get a K3 surface!



The K3 metric in the large complex structure 
“semi-flat” limit is given by

The world-line instantons correct this to give smooth 
Ricci flat metrics on K3.   Approximations keeping the 

lightest BPS states are analogous to an ansatz of 
Mark Gross and PMH Wilson; but the BPS states 

of the little string systematically correct that.
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B.  Can we learn global facts about flux vacua?

Close relative: can we learn 
global facts about attractor 
black holes on a Calabi-Yau

Z =
R
Q ^ ⌦

To find attractor points, you extremize:

Q 2 H3(M,Z)



There are some remarkable facts about the solution 
to this problem for 4d N=4 string vacua.

They follow from Kudla-Millson theory in arithmetic 
algebraic geometry.

The simplest result I can mention:  the attractor black 
holes on            are governed by a mock modular 

form discovered by Zagier.
K3⇥ T 2

Z(q) =
X

N

HN qN

HN = class numbers

c.f. 
Moore; 

S.K., Tripathy; 
Benjamin, SK, 

Ono, Rolen



The class numbers count the number of U-duality 
inequivalent attractor black holes with entropy  

(squared) given by the discriminant N.

This is a shadow of a deeper result that attractors 
and flux vacua in N=4 models are automorphic; 

the loci in moduli space where they live are 
components of a (homology-valued) automorphic 

form.

Extensions to Calabi-Yau threefolds, if possible, 
would give us global information about full sets of 

(tree level) flux vacua and attractors.


