

ULTRAFAST LASER CONTROL

IONIZATION

Thomas Baumert

Fundamentals And Applications

H. Baumann: first permanent Laser Sculpture / since Documenta 6 1977 / Kassel

Institut fuer Physik der Universitaet Kassel, GERMANY

Ultrafast Laser Control

General Idea: steer photophysical system from initial state to final state with high selectivity and efficiency

by adapting (tailoring) light field to primary photophysical processes

Origine: coherent control of chemical reactions

Our experimental Reviews

TB, Helbing, Gerber, in "Advances: Chemical Reactions and their Control on the Femtosecond Time Scale" John Wiley & Sons, Inc. New York; **(1997)** 47-77.

Wollenhaupt, Engel, TB, Annu. Rev. Phys. Chem. **56** (2005) 25-56.

Brixner, Pfeifer, Gerber, Wollenhaupt, TB in "Femtosecond Laser Spectroscopy" Springer **(2005)** 225-266.

Key Technology: Tailoring Light Via Spectral fs Pulse Shaping

Review: Weiner: Rev. Sci. Instrum. 71(5), 1929-1960 (2000) Wollenhaupt, Assion, TB in "Springer Handbook of Lasers and Optics", ed. F. Träger, Springer (2007)

Examples of Polarization Shaping*

N I K A S S E L E R S I T Ä T

Phys. Rev. Lett. 92 (2004) 208301 in coop. T. Brixner and G. Gerber

Ultrafast Laser Control of Ionization

ANNALEN

DER

PHYSIK.

REGEÜSDER UND FORTORPÜRET DURCH

F. A. C. GREN, L. W. GILBERT, J. C. POGGENDORFF, G. UND E. WIEDEMANN,

VIERTE FOLGE.

BAND 17.

DER GANEEN BEIHE 323, BAND.

KURATORIUM: F. KOHLRAUSCH, M. PLANCK, G. QUINCKE, W. C. RÖNTGEN, E. WARBURG.

UNTER MITWIRKUNG

DER DEUTSCHEN PHYSIKALISCHEN GESELLSCHAFT

UND DESERVICES VON

M. PLANCK

REPATIONED FOR YON

PAUL DRUDE.

MIT FÜNF FIGURENTAFELN.

LEIPZIG, 1905.

6. Über einen die Erzeugung und Verwandlung Jes Lichtes betreffenden heuristischen Gesichtspunkt; von A. Einstein.

Ultrafast Laser Control of Ionization

Erzeugung und Verwandlung des Lichtes. 145

Abweichungen von der Stokesschen Regel sind nach der dargelegten Auffassung der Phänomene in folgenden Fällen denkbar:

1. wenn die Anzahl der gleichzeitig in Umwandlung begriffenen Energiequanten pro Volumeneinheit so groß ist, daß ein Energiequant des erzeugten Lichtes seine Energie von mehreren erzeugenden Energiequanten erhalten kann;

Deviations if more than one photon is involved !

- UNIKASSEL VERSITÄT I. Weak Field (perturbative) Coherent Control (K)

II. Strong Field (non perturbative) Coherent Control (K, K₂, Na)

III. Strong Field Incoherent Control (Dielectrics)

I. Weak Field (perturbative) Coherent Control (K)

Main Focus on Free Electron Interference

Young's Double Slit in Time Domaine

Pulse Characterization on ATI

Possible Route for Molecular Identification

3D Wave Packet Sculpturing and Tomography

Free Electron Interference: Experimental Setup

Free Electron Interference: Photoelectron Spectra

Opt. Com. 264 (2006) 285

Opt. Com. 264 (2006) 285

Polarization Shaped Laser Pulses, Multi Photon '' Transitions and Photoelectron Angular Distributions (K)

...Because of Many Interfering Pathways in REMPI

Experimental Setup

Velocity Map Imaging: Chandler, Houston, Bordas, Helm, Eppink, Parker, Vrakkinga Barbara May 2009

APB 95 (2009) 245

No Abel Inversion for Polarization Shaped Interaction: Tomographic Reconstruction of Sculptured 3D Electron Distributions

Tomographic Reconstruction of Sculptured 3D Electron Distributions (here: elliptically polarized light)

APB Rapid Com 95 (2009) 647

SUMMARY

I. Weak Field (perturbative) Coherent Control (K)

Young's Double Slit in Time Domaine

Pulse Characterization on ATI

Polarization Shaping + PADs: (i) Possible Route for Molecular Identification

(ii) 3D Wave Packet Sculpturing and Tomography

II. Strong Field (non perturbative) Coherent Control (K, K₂, Na)

Main Focus on Neutral States Dynamics

Unravel Physical Mechanisms Driving Strong Field Control with Shaped Laser Pulses

Resonant Processes Dominate Control Scenarios for (ultra) Broad Spectra

Strong Field Schemes are Efficient

Ultrafast Control of Coherent Electronic Excitation in Atoms and Molecules

Control of Multiple States by a Single Chirped Pulse

Parameterizations of Strong Field Control (Landscapes)

Ultrafast Control of Coherent Electronic Excitation (K)

Annu. Rev. Phys. Chem 56 (2005) 25 Selective Population Of Dressed States (SPODS)

Strong Field Control via SPODS Requires Temporal Phase Variations*

continuous

discontinuous

 $\varphi(\omega) = A \sin[(\omega - \omega_0)T + \phi]$

Rapid Adiabatic Passage

Photon Locking

Relative temporal phase between subpulses is controlled with attosecond precision

*"Real" Electric Fields extend weak field control schemes (Silberberg PRL (2005))^{anta Barbara May 2009}

CPL 419 (2006) 184

J N I K A S S E L V E R S I T Ä T

Ultrafast Control of Coherent Electronic Excitation in Molecules: K₂

THEORY: CPL 419 (2006) 184 J. Photochem. Photobiol. A 180 (2006) 248 Santa Barbara May 2009

Preliminary Experimental Result on K₂: Control Via Phase And Intensity

Intensity and phase act in same manner: Phys. Rev. A 68 (2003)

Robust Photon Locking via Generalized θ-Step (K)

$$\tilde{\mathcal{E}}_{mod}(\omega) = \tilde{\mathcal{E}}(\omega)e^{-i\frac{\theta}{2}\sigma(\omega-\delta\omega)}$$

Coherent Strong Field Control of Multiple States in Na by a Single Chirped Femtosecond Laser Pulse

NJP (2009) submitted in cooperation with N. Vitanov

Suggested Strong Field Parameterization for Adaptive Control Experiments

based on complementary physical mechanisms (RAP vs. PL):

$$arphi(\omega)=arphi_2 \,\,(\omega-\omega_0)^2 \,\,+\,\,A\,\,\sin[T\,\,(\omega-\omega_0)+\phi]\,$$
 and Intensity

- both are two sides of same coin (SPODS)
- tested experimentally and theoretically on Strong Field Control Landscapes

J. Phys. B **41** (2008) 074007

SUMMARY

II. Strong Field (non perturbative) Coherent Control (K, K₂, Na)

- **Ultrafast Control of Coherent Electronic**
- **Excitation with attosecond Precision in Atoms**

and Molecules

Control of Multiple States by a Single Chirped Pulse

Physical Meaningful Parameterizations of Strong Field Control (Landscapes)

III. Strong Field Incoherent Control (Dielectrics)

Direct Nanoscale Laser Processing Of Dielectrics

UNIKASSEL VERSITÄT SPM Microscopy

Appl. Phys. Lett 78 (2005)

fs-LIBS

Wavelength (nm)

spectral

Appl. Phys. B 77 (2003)

Nanostructures

Appl. Phys. A **92** (2008) NA = 0.5; $1/e^2$ diameter: 1.4 µm; $1/e^2$ length: 9.1 µm

3000,0

й 2000,I

1000.0

Plasma dynamics

Appl. Phys. Lett 88 (2006)

Basic Ionization Processes in Dielectrics to Reach Critical Electron Energy / Density for Ablation

R S I T Ä T Control of Basic Ionization Processes viaTemporally Asymmetric Femtosecond Pulses

 $\phi(\omega) = \frac{\phi_3}{3!} \cdot (\omega - \omega_0)^3$

Generation of seed electrons well **below damage threshold** for short pulse ablation i.e. **strong spatial confinement**

Crosscorrelation of tailored pulses on target, $\phi_3 = 600\ 000\ \text{fs}^3$

I K A S S E L

NIKASSEL ERSIT **Reduction In Structure Size Via Pulseshaping**

77 nJ; $2\sigma = 50$ fs

71 nJ: $2\sigma = 960$ fs

110 nJ: $2\sigma = 960$ fs

SAME FOCUS CONDITIONS SAME FLUENCE SAME SPECTRUM

order of magnitude below diffraction limit!

Opt. Express 15 (2007); Appl. Phys. A 92 (2008)

Nanostructure size robust to variations in laser fluence

Opt. Express 15 (2007); Appl. Phys. A 92 (2008) in coop. with B. Rethfeld

calculated with multiple rate equation: B. Rethfeld PRL 92, 187401 (2004).

SUMMARY

III. Strong Field Incoherent Control (Dielectrics)

Control of

MPI

vs. Heating and Avalanche

(via temporally asymmetric pulse shapes)

Leads to Structures in fused silica One Order of Magnitude Below Diffraction Limit

that are robust to variations in laser intensity

- UNIKASSEL VERSITÄT I. Weak Field (perturbative) Coherent Control (K)

II. Strong Field (non perturbative) Coherent Control (K, K₂, Na)

III. Strong Field Incoherent Control (Dielectrics)

THANKS to the group...

E

NIKASSEL

RSITÄT

PD Dr. M. Wollenhaupt

M. Krug

Dr. A. Horn

M. Mildner

T. Bayer

C. Sarpe-Tudoran

L. Englert

J. Schneider

L. Haag

C. Gerbig

J. Köhler

A. Klumpp

T. Kalas

C. Lux

Deutsche Forschungsgemeinschaft