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This i1s NOT an experimental talk and I recognize that | will be
asking some of you to think about old things in a new way!

The purpose of this talk is to describe a way of calculating the best
way of increasing the probability of transferring the state of a
Markov process to a desired end state. The details of what this means
will be given below but for now, here is some further motivation.

Suppose one has a system with states r,s,t and that with no

external influence the system will jump from one of these to another
with a certain transition rate a(r,s), a(s,t), etc. Suppose further that it
IS possible to provide control (e.g., an electromagnetic pulse) that
alters these rates: a(r,s) goes to a(r,s) +u b(r,s), etc. Suppose further
that there is a performance criterion that rewards the the system,
depending only on the final state. How do we select the the control
In such a way as to maximizes the the expected value of the
performance? Many of talks at this conference have this flavor.



Finding the path with the greatest yield: Each link represents possible
population transfer. It is traversed with some probability. The nodes

have populations.
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If you stick with me | will describe:

A particular, but completely general, sample path description
for continuous time Markov chains with some controllable
transition rates. Think control of atomic states. (But it also
service systems, buffer management, routing, ...)

The corresponding evolution of the probability law.

A differential equation for the minimum return function.
Some solved examples to show how it works. (These will not
directly involve attosecond pulses, however.)
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Related to examples with a suitable pedigree in physics!

The quantum theory of radiation involves spontaneous
emission (think A) and stimulated emission (think p(w)B).
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Reconsider

2 =u(t) e *Betz

now with u coming from a frequency dependent radiation
field. Observe that what ever sinwt does sin(wt + 7/w)
undoes. This is stimulated emission.

Think: Bohr orbits associated b—Q
with the hydrogen atom and their i
a

various energy levels.



If it was good enough for Einstein and Bohr it can’t be all bad!



A Motivational Example
Consider the three state system with z € {1,0,—1}

the transition probability description is

D1 —a—u a/2 0 D1
Dy | = at+u —a v Do
D3 | I 0 a/2 —a—v | | p3 |
Minimize

5fz2+u2+w9dt

O 5
Path term plus final state term = ﬁ 5



The general model involves a controllable evolution
equation for the various populations:

A definition of the performance measure

n=fﬂ c'p + o(w) dt + ¥ (z(T))

and a constraint describing the possible values of the con-
trol actions.

u(t) e

Caveat: The constraint on v must be expressed in
terms of the values it takes on-—not e.g.,bandwidth.



u(t) = (kg — K3)T2

Typical of the ky = —ky + 5ky + 5ks + 1
answers we get by = 5k1 — .5ky — .25(ky — ks)?
ks = .5(ky — .k3)

n" = k1(t)p1(0) + k2()p2(0) + k3(t)(¢)ps(0)

The performance
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Accumulated cost vs. time and the feedback control
gain vs. time (lower curve).



The next four slides are background to describe a particular

Kind of stochastic differential appropriate for finite state

Markov processes. This also plays a role in defining the difference
between closed loop and open loop control in the present context.



Basic Solution Concept

Let N be a Poisson counter of rate A(¢). That is N (%)
is a stochastic process, N(0) = 0, monotone increasing,

taking on values in the nonnegative integers such that
the time between jumps is exponential with

t
EN(t) = N(1) +/ A(o)do
We interpret differential equations of the form

dz+ = f(z)dt+ Y  gi()

as I1t0 equations. If f = 0 it can happen that x takes on
values in a finite set.



QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.



Differentiation rule:
dip(z) = (52, f(z))dt + 3 (¥(z + gi(z)) — ¥(z)) dN;

For example, for dr = —ztd + dN
dr® = —2z°dt + ((z + 1)* — z*)dN

Expectation rule: If EN;(t) = A;t then
iz =Ef(z) + X Egi(z)N

For the example
%Em =-€x+ A
L€z = —2Ex° + (26 + 1)



Setting up the special case used here

Based on a sample path representation of Markov process in terms

of Poisson counters with states, 0,1,2,...

N (1)

counter

EN(t) = [I A(o)do

States, e 1e , e

1

[]
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The State Space and the Ito Rule

Let z(t) € {e, €9, ...,€,} where

D
|

let G; be such that for the equation

dr = Z G,zdN,

0

This set called X below

z evolves in {ej, es, ..., e,}. Recall that with the Ito cal-
culus the solution of a Poisson counter driven equation
is defined such that z is continuous from the left and the
jump is calculated as if z were frozen until after the jump.



We consider finite state Markov process with states
e1,€s, ..., e,. I'he evolution is via

dz = ) GizdN,

It must be that (G; has a special form such as that sug-
gested by

0 0 0 .. O
0 —1 0 .. 1

Gi=|0 0 0 .. 0
0 0 0 .. O
0 1 0 .. -1




Let NV be a Poisson counter of rate A(t). That is N()
is a stochastic process, N(0) = 0, monotone increasing,
taking on values in the nonnegative integers such that
the time between jumps is exponential with

EN(t) = N(1) + /th(a)dg

We interpret differential equations of the form

dz + )  G;zdN,

j=1

as It0 equations and so they define equations in X. Note
also that
p = Ex(t)



The rates of some of the counters are under our con-
trol as in

A = 5‘\1 + Ui\

The affine dependence of the rates on « is an assumption
but not as restrictive as you might think.
In this way

Leads to



The Evolution of the Minimum Return Function £k z(0)

d I .1 I
Lk e =ETa+ KT ) Gyo

Recall z(t) € {e1,€2,...,€n} SO

dN
_tj +clz+utu

(u+ ffz) (u+ flz) =v'ut+ 20 frz+ (ff2)° =

u'u 4+ 2u' T + (Z fior)=vu+2u flz+ fz

where we use the notation

K
b

i

Linear and quadratic
functions of x are
Interchangeable on X!



Now bring in the kTz + Y k* B;z terms and write

1
ERT (t)a|” = / -+ 5 k” B d
provided that

k=—ATk —c+ I]L(BTE?)'E

This uses the special choice of state representation to
express the linear term as a quadratic and also the choice
of k£ to complete the square.



Returning to the more general situation,

dz = ) GzdN;

TI'hen ‘
dk"z = k"zdt + ) k" GizdN;

So
T
kT:EE = / k1 xdt + Z k' G;zdN;
0

Use this to write

T
n=—EKT () (t)|, + /D (" +u? + K7x) di+ / Y " K GizdN,



Theorem 1: Let G;, and N; be as described with the
rates of the N; being A\jo + ) pi;u;. The Ajp and p;; may
be time varying but are assumed to be bounded. Assume
that z satisfies the It6 equation

dr = Z GEaTdNE . .J..’l"(t) - {51, €y uaey En}

i=1

Define A and B, as

A= Z Gidio ; Bi = ZM;‘G;;
j=1

and let 4 be the constraint set defined above.



There exists a unique solution of the equation

u(x)eU

k= —ATk—c+ min (Z‘u kTBfEﬂLﬁf’( )) ;if(tf) = Y5

on the interval [0, 7] and the control law

u(z) = arg min (i w;k' B;x + ﬁﬁ’(“z))
i=1

u(z)eA
minimizes

n=¢€ f (O (t) + d(w) do + E(z(T)))



If there 1s no running cost on u then typically the
equation for k£ might take the form

k= —ATk — c+sgn(BTk); ; x(t;) =



If the matrices A and B,; and also the cost c are time
invariant, it may be easier to conceptualize this not as

- 1
T T13.2 . _
k=—A k—c+12 (B k)*; k(T)=0

but rather to let time run backwards and write

k=ATk+c ZILZ(BE&)-E;;;(U):U

This plays the role played by the Riccati equation in other
settings but this is typically not a Riccati equation.

There are three kinds of more technical conditions to
go further, involving, irreducibility, controllability and
non negativiety.



Recall

Optimal Control of a Markov chain whose rates can ma-
nipulated

o [ o 1 5 0 0 0 0
ps 5 0 —.5 0 5 0

P1
P2
P3




Cost Functional k(t) has a Affine Large t Behavior

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.



Why might you might care? Well, the solution of the equation for k
provides a rule for selecting the feedback signal that provides the
maximal state transfer (possibly with constraints or penalty on

the path and/or control). The user does not need to (and, in fact, can
not) define the intermediate states; the optimal control does this. In
this sense it does the design for you. It would seem to have the most
potential for use on systems that have many intermediate states and
many possible paths.



Conclusions: | did what I said | would do

Finding the path with the greatest yield: Each link represents possible
population transfer. It is traversed with some probability. The nodes

have populations.
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