Adaptive versus non-adaptive quantum measurements for estimation and discrimination

H. Wiseman*, D. Berry*, S. Bartlett, A. Doherty, B. Booth, B. Higgins and G. Pryde

Centre for Quantum Dynamics, Griffith University, Brisbane
QISC, Macquarie University, Sydney → QIC, Waterloo, Canada
School of Physics, University of Sydney
School of Mathematics and Physics, University of Queensland
*Centre for Quantum Computer Technology, Australia

Griffith:
Centre for Quantum Dynamics

• Theory: Quantum information, measurement, control and foundations (HMW, David Pegg, Joan Vaccaro).
• Ion trap quantum computer laboratory (Dave Kielpinski)
• Quantum optical information laboratory (Geoff Pryde)
• Laser cooling and trapping of atoms (Robert Sang & DK)
• The Australian Attosecond Science Facility (DK & RS & Igor Litvinyuk)

Quantum Control

- **Control** is intervening in the world to (try to) optimize something, under given constraints.
- **Quantum control** is when working out how to do that requires some knowledge of quantum physics.
- e.g. Maximizing the creation of some molecular product, subject to a bound on laser intensity and modulation bandwidth.
- e.g. Minimizing the uncertainty in the estimate of a unitary-gate parameter, subject to a bound on the number of applications of the gate.
Part I — Phase Estimation

- The Rules of the Game
- The Standard Quantum Limit
- The Heisenberg Limit
- The Quantum Phase Estimation Algorithm
- Our 1st algorithm: Generalized QPEA [Nature 450, 393-6 (2007)]
- Experiment [Nature 450, 393-6 (2007) and arXiv:0809.3308v2]
- Conclusion
The Rules of the Game

1. We have a gate that performs the unitary operation $U = \exp(i\phi |1\rangle \langle 1|)$ on a specific sort of qubit, and an auxiliary gate $R(\theta) \equiv \exp(i\theta |0\rangle \langle 0|)$. e.g. (as in our experiment) the qubit could be a photon-polarization qubit, and an equivalent gate implemented by passing the photon through a HWP at angle $\phi/4$.

2. We have an indefinite supply of these qubits.

3. The parameter ϕ is initially completely unknown.

4. We are allowed at most N applications of the gate U.

5. We aim to minimize the variance in our best estimate ϕ_{est} of ϕ.

 Technically, we use a cyclic variance measure, $V_{\text{Holevo}} = \langle \exp[i(\phi - \phi_{\text{est}})] \rangle^{-2} - 1$.

We do not impose temporal or “spatial” (number of qubits) constraints.
The Standard Quantum Limit

N qubits, independently prepared in the state $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, independently measured in the X basis ($|\pm\rangle$), and with $\exp(i\phi |1\rangle \langle 1|)$ applied once on each. ϕ_{est} is inferred from the results of the measurement.

For even sampling, θ_{init} is random, and θ is incremented by π/N between one qubit and the next. Here $N = 4$:

\[
|+\rangle \xrightarrow{R(\theta)} |+\rangle \xrightarrow{U^1 \ X} |+\rangle \xrightarrow{R(\theta + \frac{\pi}{2}) \ U^1 \ X} |+\rangle \xrightarrow{R(\theta + \frac{3\pi}{4}) \ U^1 \ X} |+\rangle
\]

SQL = $V[\phi_{est}] \sim 1/N$ for $N \gg 1$.

The Heisenberg Limit (i)

Theoretically, the ultimate limit allowed by QM is much better:

\[\text{HL} = V[\phi_{\text{est}}] \sim \pi^2/N^2 \text{ for } N \gg 1. \]

This requires creating the optimal entangled state [Berry & HMW, PRL (2000)] and a measurement in the phase basis. Here \(N = 3 \):

This requires “spatial” resources \(O(N) \) but only constant time.

\(^1\)This is called the Heisenberg Limit because the scaling can be derived from the H.U.P. \(V[\phi]V[\hat{n}] \geq 1/2 \), where \(0 \leq \hat{n} \leq N \) is the operator such that the full unitary \(U_{\text{total}} = \exp(i\phi\hat{n}) \).
The Heisenberg Limit (ii)

Alternatively, we can use **binary encoding** where U acts on the kth qubit ($k = 0, 1, \cdots, K$) $P = 2^k$ times, which we represent by U^P.

Here $N = 2^{K+1} - 1 = 4 + 2 + 1 = 7$:

![Diagram](https://via.placeholder.com/150)

The QFT$^{-1}$ [Shor, 1994] takes the phase basis to the number (logical) basis so that ϕ_{est} is read-out from Z measurements ($r = [r]_0.[r]_1[r]_2 \cdots$).

This uses only $O(\log N)$ spatial resources, but a time $O(N)$.
The Quantum Phase Estimation Algorithm (i)

As shown by Griffiths and Niu (PRL, 1996), the QFT$^{-1}$ can be achieved by local (single-qubit) measurement and feedback:

```
|0⟩ \rightarrow \text{Ent. State Prep.} \rightarrow \begin{array}{c}
|0⟩ \rightarrow U^4 \rightarrow X
\end{array}
```

Entangling operation on many qubits is hard. So we can try replacing the entangled state by independent qubits as in the SQL, yielding the QPEA:

```
|+⟩ \rightarrow \begin{array}{c}
R(θ) \rightarrow R(\frac{π}{4}) \rightarrow R(\frac{π}{2}) \rightarrow U^1 \rightarrow X
\end{array}
```

The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives \(K + 1 \) bits of \(\phi_{\text{est}}/\pi \), and \(N \sim 2^{K+1} \) we would expect

\[
\text{QPEA } V[\phi_{\text{est}}] \propto \left(\pi/2^{K+1}\right)^2 \propto \pi^2/N^2 = \text{HL}.
\]

But an exact calculation gives

\[
\text{QPEA } V[\phi_{\text{est}}] \sim 2/N \propto \text{SQL}.
\]

What went wrong?

Outliers. The distribution \(P(\phi_{\text{est}}) \) is sharply peaked around at \(\phi \), with

\[
\text{QPEA } (\text{HWHM})^2 \sim 2.81^2/N^2 \propto H L.
\]

But it has high wings, giving SQL scaling for the variance.
The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives $K + 1$ bits of ϕ_{est}/π, and $N \sim 2^{K+1}$ we would expect

\[\text{QPEA } V[\phi_{est}] \propto (\pi/2^{K+1})^2 \propto \pi^2/N^2 = \text{HL}.\]

But an exact calculation gives

\[\text{QPEA } V[\phi_{est}] \sim 2/N \propto \text{SQL}.\]

What went wrong?

Outliers. The distribution $P(\phi_{est})$ is sharply peaked around at ϕ, with

\[\text{QPEA } (\text{HWHM})^2 \sim 2.81^2/N^2 \propto \text{HL}.\]

But it has high wings, giving SQL scaling for the variance.
The Quantum Phase Estimation Algorithm (ii)

Since the QPEA gives $K + 1$ bits of ϕ_{est}/π, and $N \sim 2^{K+1}$ we would expect

$$\text{QPEA } V[\phi_{\text{est}}] \propto (\pi/2^{K+1})^2 \propto \pi^2/N^2 = \text{HL}.$$

But an exact calculation gives

$$\text{QPEA } V[\phi_{\text{est}}] \sim 2/N \propto \text{SQL}.$$

What went wrong?

Outliers. The distribution $P(\phi_{\text{est}})$ is sharply peaked around at ϕ, with

$$\text{QPEA } (\text{HWHM})^2 \sim 2.81^2/N^2 \text{ as in the HL.}$$

But it has high wings, giving SQL scaling for the variance.
Our 1st algorithm: Generalized QPEA

QPEA: the \(k \)th qubit \((k = 0, 1, \cdots K)\) passes the phase gate \(2^k\) times.

We generalize this by having, for each \(k \), \(M \) independent qubits which pass the gate \(2^k\) times, so that the total number of passes through the phase gate is

\[
N = M \times (2^{K+1} - 1).
\]

We use the algorithm of Berry and HMW (PRL 2000) to make the locally optimal adaptive measurement.

- For \(M = 1 \), this exactly reproduces the optimal QFT\(^{-1}\) of the QPEA.
- Numerically we find [Nature 450, 393-6 (2007)] \(M = 5 \) is best:

\[
M = 5 \text{ GQPEA } V[\phi\text{est}] \simeq (4.8/N)^2 \propto (\pi/N)^2 = HL.
\]
Our new algorithm: Non-Adaptive Multi-Pass

Previous work [Giovannetti, Lloyd, and Maccone, PRL ’06] has claimed one can more simply attain the Heisenberg Limit by using non-adaptive measurements and “large” M.

Actually this is impossible even if M is chosen depending on K.

Can we get to the HL with no feedback with a more general algorithm, with a function $M(K, k)$ that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K, k) = M_K + \mu(K - k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

$$NAMP \ V[\phi_{est}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = HL.$$
Our new algorithm: Non-Adaptive Multi-Pass

Previous work [Giovannetti, Lloyd, and Maccone, PRL ’06] has claimed one can more simply attain the Heisenberg Limit by using non-adaptive measurements and “large” M.

Actually this is impossible even if M is chosen depending on K.

Can we get to the HL with no feedback with a more general algorithm, with a function $M(K, k)$ that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K, k) = M_K + \mu(K - k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

$$NAMP \ V[\phi_{est}] \sim (6.4/N)^2 \propto (\pi/N)^2 = HL.$$
Our new algorithm: Non-Adaptive Multi-Pass

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using non-adaptive measurements and “large” M.

Actually this is impossible even if M is chosen depending on K.

Can we get to the HL with no feedback with a more general algorithm, with a function $M(K, k)$ that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K, k) = M_K + \mu(K - k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

$$\text{NAMP } V[\phi_{\text{est}}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.$$
Our new algorithm: Non-Adaptive Multi-Pass

Previous work [Giovannetti, Lloyd, and Maccone, PRL '06] has claimed one can more simply attain the Heisenberg Limit by using non-adaptive measurements and "large" M.

Actually this is impossible even if M is chosen depending on K.

Can we get to the HL with no feedback with a more general algorithm, with a function $M(K, k)$ that assigns more qubits to smaller k-values (which use exponentially fewer resources)?

Yes, for some functions of the form $M(K, k) = M_K + \mu(K - k)$.

Numerically we find the best results are for $M_K = 2$ and $\mu = 3$ [arXiv:0809.3308v2]

\[
\text{NAMP } V[\phi_{est}] \simeq (6.4/N)^2 \propto (\pi/N)^2 = \text{HL}.
\]
The Experimental Apparatus

Variance × N

Number of resources, N

SQL, experimental data
SQL, numeric calculation
QPEA, experimental data
QPEA, analytic calculation
NAMP, experimental data
NAMP, numeric calculation
GQPEA $M = 6$, experimental data
GQPEA $M = 6$, numeric calculation
Heisenberg limit, analytic calculation
Conclusions (Part I)

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i \ket{1} \bra{1} \phi)$, with N gate applications, is

$$V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$$

To attain this exactly, while not using exponential “space”, requires

– preparing an entangled state of $O(\log N)$ qubits.
– multiple passes through the gate of any given qubit.
– control of individual qubits based on prior results.

• We have shown analytically, numerically, and experimentally that HL-scaling can be attained with only

– multiple passes through the gate of any given qubit.

• Future directions: not using exponential time.
Conclusions (Part I)

- The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i |1\rangle \langle 1| \phi)$, with N gate applications, is

$$V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$$

To attain this exactly, while not using exponential “space”, requires

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.

- We have shown analytically, numerically, and experimentally that HL-scaling can be attained with only
 - multiple passes through the gate of any given qubit.

- Future directions: not using exponential time.
Conclusions (Part I)

- The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i \left| 1 \right\rangle \left\langle 1 | \phi \right)$, with N gate applications, is

$$V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$$

To attain this **exactly**, while not using *exponential* “space”, requires

- preparing an entangled state of $O(\log N)$ qubits.
- multiple passes through the gate of any given qubit.
- control of individual qubits based on prior results.

- We have shown **analytically, numerically, and experimentally** that **HL-scaling** can be attained with **only**

 - multiple passes through the gate of any given qubit.

- Future directions: not using *exponential time.*
Conclusions (Part I)

• The absolute quantum limit to estimating the phase ϕ of a qubit gate $\exp(i \ket{1} \bra{1} \phi)$, with N gate applications, is

$$V[\phi_{\text{est}}] \sim (\pi/N)^2 = \text{HL},$$

To attain this exactly, while not using exponential "space", requires

– preparing an entangled state of $O(\log N)$ qubits.
– multiple passes through the gate of any given qubit.
– control of individual qubits based on prior results.

• We have shown analytically, numerically, and experimentally that
 $$\text{HL-scaling}$$
 can be attained with only

– multiple passes through the gate of any given qubit.

• Future directions: entangled states to avoid exponential time.
Part II — State Discrimination

- The Rules of the Game (and a Primer)
- Potential Strategies, including SQL and Helstrom Limit
- Pure State Case: Theory (Acín et al.) and Experiment (us)
- Mixed State Case: Theory and Experiment (us)
- Conclusion
The Rules of the Game (and a Primer)

1. We are given N qubits either in state $\rho_+^\otimes N$ or in state $\rho_-^\otimes N$, where

$$\rho_{\pm} = \frac{1}{2} \left(I + r \cos \theta \hat{\sigma}_x \pm r \sin \theta \hat{\sigma}_z \right),$$

with prior probabilities \wp_0 and $1 - \wp_0$ (we always assume $\wp_0 = 0.5$).

2. We have to decide which state it is, and the cost function (to be minimized) is the probability of error $C(N)$.

For the case $N = 1$, the optimal strategy is to make the Helstrom measurement (1976) by measuring

$$\hat{H}(1, \wp_0) \equiv \wp_0 \rho_+ - (1 - \wp_0) \rho_-$$

and depending on whether the outcome is positive or negative, declare $+$ or $-$.
Potential Strategies

1. **Majority Vote (SQL):** Measure $\hat{H}(1, \frac{1}{2})$ on each qubit and declare \pm depending on which outcome occurs more often.

2. **Globally Optimal Meas† (Helstrom L.):** Measure $\hat{H}(N, \frac{1}{2}) \propto \rho_+^\otimes N - \rho_-^\otimes N$ and declare on the basis of the sign of the outcome.

3. **Globally Optimal Local Meas†:** Use *Dynamic Programming* to determine the optimal observable $\hat{O}_n(N)$ for the nth qubit, based on prior results.

4. **Locally Optimal Local Meas†:** Measure $\hat{H}(1, \frac{1}{2})$ on the first qubit, update prior to φ_1 using Bayes’ theorem, then measure $\hat{H}(1, \varphi_1)$ on the second qubit, update prior to φ_2 and so on

5. **Fully Biased Meas†:** Measure $\hat{H}(1, 1)$ [$\hat{H}(1, 0)$] on every qubit, and update the prior using Bayes’ theorem. For the pure state case ($r = 1$) this means a “+” [“-”] is declared if and only if the ‘vote’ is unanimous.
Pure State Case (Theory)

If $\rho_{\pm} \rightarrow |\phi_{\pm}\rangle$, we have a simple problem. **Theory** by Acín et al., 2005:

- **Majority Vote (SQL):** $C(N) = c^N$, where $c \equiv \cos 2\theta = |\langle \phi_+ | \phi_- \rangle|$.

- **Fully Biased (Unanimity Vote):** $C(1) > c$, but $\lim_{N \to \infty} C(N) \propto c^{2N}$.

Pure State Case (Experiment)

Higgins, Booth, Doherty, Bartlett, HMW, Pryde (unpub.).

Parameters: \(\theta = 15^\circ, \ r > 0.9999. \)
Mixed State Case (Theory & Experiment)

For systems with non-zero noise \((= 1 - r) \), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:
Mixed State Case (Theory & Experiment)

For systems with non-zero noise \((= 1 - r)\), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:
Mixed State Case (Theory & Experiment)

For systems with non-zero noise \((= 1 - r)\), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10\% noise:

Experiment:
Mixed State Case (Theory & Experiment)

For systems with non-zero noise ($= 1 - r$), the problem is much more complicated — analytical results possible only for MV and GO.

All schemes are now different, and FB and LOL can be worse than SQL.

Theory for 10% noise:

Experiment:
Mixed State Case — Asymptotic Theory

Look at $L = \lim_{N \to \infty} \left(\frac{\partial}{\partial N} \right) \log C(N)$. In practice $N \sim 200$ is sufficient.

To calculate accurately with DP, we need small grid spacing S for $\{\varphi\}$. We fit the data to $L(S) = a - b|\log S|^{-1.22}$, then extrapolate to $L(0) = a$.

![Projected Asymptotic Scaling Power Of C_N](chart.png)
Conclusions (Part II)

1. For mixed states, the optimal local (single qubit) state discrimination scheme can only be achieved by applying dynamic programming, a technique from optimal stochastic control theory.

2. In $N \gg 1$ limit, the different schemes behave very differently in different regimes of purity:

<table>
<thead>
<tr>
<th>Measurement Scheme</th>
<th>How Pure are the States?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100% Pure</td>
</tr>
<tr>
<td>Majority Vote Meas†</td>
<td>SQL</td>
</tr>
<tr>
<td>Fully Biased Meas†</td>
<td>\sim Helstrom Limit</td>
</tr>
<tr>
<td>Locally Optimal Local Meas†</td>
<td>Helstrom Limit</td>
</tr>
<tr>
<td>Globally Optimal Local Meas†</td>
<td>Helstrom Limit</td>
</tr>
<tr>
<td>Optimal Global Meas†</td>
<td>Helstrom Limit</td>
</tr>
</tbody>
</table>

Conclusions (Global)

Adaptive local measurements always give better performance than non-adaptive local measurements.

However, in terms of asymptotic \((N \gg 1)\) scaling of the performance:

1. in phase estimation and pure state discrimination,
 - adaptation is sufficient to achieve the Heisenberg/Helstrom Limit.
 - adaptation is not necessary for the Heisenberg/Helstrom Limit.

2. in almost-pure state discrimination
 - adaptation is not sufficient to achieve the Helstrom Limit.
 - adaptation is sufficient (and perhaps necessary) to beat the SQL.
Numerical Results: Variances for all M

Our adaptive scheme achieves HL scaling for $M \geq 4$...

Numerical Results: Selected Variances

... with an overhead as small as ≈ 2.3 for $M = 5$.