aF

UFRJ INCT-1Q_
Quantum metrology of open
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Parameter estimation in classical and quantum physics

Initial State == Dynamical Process w=p Final State =P  Measurement =P Estimator

g

|. Prepare probe in suitable initial state
2. Send probe through process to be investigated

3. Choose suitable measurement
4. Associate each experimental result j with
estimation

— Merit quantifier

5X = \/< X (H-XP),
< est

X=X

true

X e < est>/ dX =1 — Unbiased estimator




Crameér, Rao, and Fisher

H Cramer C.R.Rao R.A. Fisher
Cramér-Rao bound for unbiased estimators:

(d ln[p(ﬁlX)]\
N

Fisher

information

5X>1/JVF(X,,), F(X)= jd&j p(E1X)

v — Number of repetitions of the experiment

p (c§ | X ) — probability density of getting an experimental result &

Fisher's theorem: Inequality can be saturated (i.e., it is possible to make
it an equality) when v — oo, by choosing an appropriate estimator Xegt.



Quantum parameter estimation

Initial State == Dynamical Process === Final State ==  Measurement == Estimator

Q

NEW POINTS TO CONSIDER

1. Precision in determination of parameter depends on the
distinguishability between quantum states corresponding to nearby
values of the parameter.

2. Measurement matters!

3. Is it possible to get better precision (for the same amount of
resources) by using special quantum states?

RESOURCES: Number of atoms in atomic
spectroscopy, number of photons in optical
interferometry, average energy of a harmonic
oscillator...




Example: Optical interferometry
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Standard limit: 60 = D) Ka‘aez59>‘ :exp(_‘a(l_eﬁe)‘ )
(Ignoring repetitions _ exp[_<n>(59)2} o 50~1/ ()

of the experiment)

Possible method to increase precision for the same average number
of photons: Use NOON states [D. Wineland et al., J. P. Dowling]

ly(N))=(IN,0)+]|0,N)) /2 = |y (N.0))=(IN,0)+ " |0,N)) /N2, ({(n)=N)

(w (N)|y (N.80))| =cos*(N60/2)=86~1/N | Heisenberg limit

Precision is better, for the same amount of resources (average
number of photons)



Quantum Fisher Information
p(E1X) =T p(X)E, ]|

i

|ack, =1

This corresponds to a given quantum measurement. Ultimate lower
bound for ((AX.)?): optimize over all quantum measurements

so that ' '
%(X) _ maX{Eg}F(X»{Eg }) Quantum Fisher Information

0X = \/<(AXeSt)2> > 1/\/V.7:Q (X) Ultimate precision limit
Asymptotically attainable when vy — oo

Bures' Fidelity: ®(p,,p,) (Tr\/ 0, p.py” ) Related to

X,.)]+0[(8x)"]

distance
between states!

= ®| p(X,.).p(X)|=1-(6X/2) FH| p(




Quantum Fisher information for pure states

Initial state of the probe: |1(0))
Final X-dependent state: |¢(X)) = U(X)|y(0)), U(X) unitary operator.

Then (Helstrom 1976):

Fo(X) = 4((AM))o, ((AH)?)o = (1(0)] |

- Proper framework to discuss
I:[(X) — idU;)((X) (}'(X) estimation of quantities like elapsed
time or harmonic oscillator phase

If U(X) = exp(i0X), Oindependent of X, then H = O

o0X > 1/2\/V<Aﬁ2>l — Should maximize the variance to
get better precision!




Optical interferometry

S
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7 = a'a — Generator of phase displacements

= Fol(0) = 4({(An)*)owhere ((An)?) is the photon-number variance in
the upper arm.

Standard limit: coherent states | Fo(6) = 4((An)?)g = 4(n) = 50 >

2y/(n)

Increasing the precision: maximize variance with NOON states:

ly(N))=(IN,0)+|0,N)) /2 = |y (N.0))=(|N,0)+ " |0,N)) / V2
<(Afl)2>0 = sz = 560 2%

Precision is better, for the same amount of resources.



Parameter estimation with decoherence

|y > ><
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X
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Loss of a single photon transforms NOON state into a separable statel

Y(N))

~|N,0) + 10, N)

V2

No simple analytical expression for Fisher information!
For small N, more robust states can be numerically calculated. Large N?

s I[N —1,0) or |0,N — 1)



Parameter estimation in open systems:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011);
Braz. J. Phys. 41, 229 (2011)

Given initial state and non-unitary evolution, define in S+E
|, ()= U, ,(x)ly)s 10),  (Purification)
Then

0] Ej.” ®1

T = max F(l:?(.S) ®i)£maXE(S,E> F(l:?(.S’E))E

Physical meaning of this bound: information
obtained about parameter when S+E is monitored

Least upper bound: Minimization over all
unitary evolutions in S+E - difficult problem

Bound is attainable - there is always a en, monitoring ela
PUI"ifiCG'l'iOﬂ such that @:% ormartion a ONIToring




Minimization procedure

week endi
PRL 109, 190404 (2012) PHYSICAL REVIEW LETTERS 9 NOVEMBER 2012

Quantum Metrological Limits via a Variational Approach

B.M. Escher,” L. Davidovich, N. Zagury, and R. L. de Matos Filho

Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro (RJ) Brazil
(Received 29 June 2012; published 9 November 2012)

There is always an unitary operator acting only on E
that connects two different purifications of Ps

Given | (I)S,E (x))= ﬁS,E(x) | l//>S | O>E'

d|®gs p(r))
7
dx

then any other purification can be written as:

W () =u, (x)Dg (X))

— Hg p(2)|®g 5(x)),

dal,(z) . “Control"

Define hp(x) =i

Minimize now C over all Hermitian operators hg(x) that act on E



Quantum limits for lossy optical interferometry
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N =1— no absorption

1N =0 — complete absorption

X

States with well-defined total photon number: | |¢g) =

N« /. = V60 =>1/N — Heisenberg limit

1-7n
n 1-n
N>—"—=00>
1-n 2./VNN

For N sufficiently large, 1/v N behavior is always reached!



Fo(N, 1)

How good is this bound?

0.95

Comparison between numerical

maximum value of 7, and upper
bound ¢ as a function of 7, for

N =10 (blue), N =20 (red), N = 30
(green), and N = 40 (black).



QUANTUM SPEED LIMIT

THE UNCERTAINTY RELATION BETWEEN ENERGY
AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

By L. MANDELSTAM * and Ig. TAMM
Lebedev Physical Institute, Academy of Sciences of the USSR

(Received February 22, 1945)

A uncertainty relation between energy and time having a simple physical meaning is
ri8<>1('iously deduced from the principles of quantum mechanics. Some examples of its application
are discussed.

1. Along with the uncertainty relation An entirely different situation is met
between coordinate ¢ and momentum p one with in the case of the relation

considers in quantum mechanics also the
uncertainty relation between energy and time. AH - AT ~ h, (2)
The former relation in the form of the ;
inequality where AH is the standard of energy, AT —
h a certain time interval, and the sign ~ denotes
Ag-Ap= 5, (1) that the left-hand side is at least of the

order of the right-hand one.

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

Geometry of Quantum Evolution

J. Anandan '’
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingdom

Y. Aharonov '™
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208

Generalization to non-unitary processes? Evolved
state may not become orthogonal to initial onel

lgor Tamm



Quantum speed limit for physical processes

M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, PRL 110, 050402 (2013)

T —> Minimum time for attaining
fidelity ®,(0,7)between initial
. and final states
ures lengt Bures len
' e oy sar
of geodesic sath followed by state of Attainable bound

Uhlman (1992) 4 o' ctom

arccos /@ [5(0), ()] < /O JF

See also A. del Campo et al., PRL 110, 050403

Special case: Unitary evolution, time-independent Hamiltonian,
orthogonal states Mandelstam-Tamm

@5 [(0), (7)) = 0, Fo(t) = 4{(AH)*)/1° =|rV/((AH)?) > h/4




Quantum speed limit for physical processes:
Purification procedure

( dt

(Hamiltonian in the Heisenberg picture)

US,E(t): Evolution of the purified state corresponding to ps



Quantum speed limit for physical processes:
Dephasing channel

Dephasing channel:

0)[0)5 — e~ [\/P(£)[0)0)5 + v/1 = P(#)[0)[1) 5]
1)[0)s — e [/P{B)[1)0)r — VT = POIL[1) 5]

P(t):=(1+e7)/2 v(t) — Dephasing rate

Unitary evolution corresponding to the map:
Us p(t) = e wotZo=i0 2V

©(t) = arccos / P(t)
More general unitary evolution: Us 5(t) = g (t)Us & (t)

Minimize Cq(t) over all possible evolutions iz (t). Co(t) depends only
on

hdi(t) . Set hp(t) ) XE) 4 BV E) 4 () 2F)
he(t) = -

- (t
i dt g (t) a(t), 8(t), v(t) — Variational parameters




Quantum speed limit for physical processes:
Dephasing channel

Special case: wy =0

D < %\/(AZ% arccos|exp(—vy7/2)| = v7 > Insec (29/\/<A22>>

(AZ?) = (0 = Eigenstate of Z: no evolution

Maximum distance between states: \/ (AZ2)7 /4

Pure states with (AZ?) = 1 = Bound is saturated

Interpretation:

Evolution is along geodesic of Bloch sphere: i

(10) +11))/v2 = (|0){0] + [1){1])/2




Quantum speed limit for physical processes:
Dephasing channel

N-qubit system, each interacting with its own dephasing reservoir
Try hi(t) =Y X" + 80V + (0 2"]

Lower bound scales as ZT ~ 1/N. Attained for
,qu YT T 1/\/N
GHZ states (1/2)(]0...0) +¢e'?|1...1))

N 0.1 e =8 7 /N = wo /Y
. . 1 +e Y77 cos 2N woT f AN
®5(p(0), p(t)] = 5 > I Op = 1%
0.001 3

r=400 N

Separable states: 107 ¢ \

Lower bound scalesas 7 ~ 1/vV N for _ / \
' ' ' N

’Y\/N < wpand as T ~ 1/N for 7\/N >>w/10() 10* 106 108
Product state, qubits initially in state dashed lines

(10) + ‘1>)/\/§:> bp = QLN (1 4 e 7 COSQon)N



Summary

*General framework for estimation of parameters in
noisy systems, based on expression of quantum
Fisher information for purified evolution (extended
space), and on "control” of environment, so as to
minimize the quantum Fisher information of S+E .

* Allows analytical calculation of very good bounds on
the limits of estimation.

*Bounds obtained for optical interferometry, atomic
spectroscopy, minimum evolution time of open
systems, and force estimation.
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