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Topics

• Superconducting qubits for control 
theorists

• Control tools

• Control tasks

• Application: Controlled-Z gates

• Closing the loop - control and tuneup
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Superconducting qubits 
for control theorists
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Superconducting artificial atoms

J. Clarke, FKW, Nature 2008

Linear LC-oscillator

Josephson junction:
nonlinear inductor
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Superconducting artificial atoms

J. Clarke, FKW, Nature 2008

Phase qubit, e.g.

Anharmonic
energy levels

Linear LC-oscillator

Josephson junction:
nonlinear inductor

4Tuesday, February 26, 2013



Circuit QED
Key element:
Superconducting 
resonator at
microwave 
frequencies

Bus, memory ...

E. Lucero, UCSB

A. Blais et al., PRA 2004
Schoelkopf and Girvin, Nature 2008
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Control implications
• Not a spin - higher levels

• Human made ... parameter 
uncertainty

• Cryogenic, heavily filtered setup

• Operated at microwave 
frequencies

• Strong inter-element coupling

• Aiming at unitary gates
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Achievements
• coherence times

•  single qubit gates 

• two- and three qubit gates 

• 3-qubit quantum algorithms

• error correction

• Bell states

• Nonclassical resonator states

� 50µs

� 5ns
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Control tools
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Challenge
Change performance index J in the end in response to uj

Avoid numerical gradients
Back-propagation: In step j optimize Ûback = Û†(tj , T )Ûgate
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GRAPE
Trotterize performance index

Φ = |Tr(U†
gateU(tf ))|2 =

��Tr(U†(tj , tN )Ugate)†U(tj , t1)
��2

=
����Tr

�
U†

j+1 . . . U†
NUgate

�†
Uj . . . U1

����
2

Time-pixel propagator

Ui = exp
�
−i∆t

�
Hd +

�
uk(ti)Hk

��

Analytical gradient - backward loop
∂Φ

∂uk(tj)
= δtRe

��
TrU†

j+1 . . . U
†
NUgateHkUj . . . U1

� �
TrU†

1 . . . U
†
j UgateUN . . . Uj+1

��

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S.J. Glaser, 
Journal of Magnetic Resonance 172, 296 (2005).
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BFGS
Replace gradient by Quasi-Newton method.
Approximate by Hessian

Minimized by search direction pk = −
�
∇2fk

�−1∇fk

Machnes et al., PRA 2011

f(xk + p) � f(xk) + pT∇f +
1

2
pT

�
∇2f

�
p
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Adapting to experiments
Include linear filters using transfer matrices

Filters, Wires, 
Antennae ...
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Motzoi et al., PRA 2011
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Adapting to experiments
Include linear filters using transfer matrices

Filters, Wires, 
Antennae ...

For linear systems: 

Include filter transfer matrix 
into GRAPE
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Control tasks
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Getting started: CNOT

Spörl et al., PRA 2007

Nakamura group,
Nature 2003

|n1, n2�Charge basis:
Ĥ =

�

n1,n2

Ech,,n1,n2(V1, V2)|n1, n2��n1, n2|+
EJ1

2

�

n

(|n��n+ 1|+ h.c.)⊗ 1̂ + (1 ↔ 2)

Logical basis: |σ1, σ2�

Ĥ =
�

i

Eciδni(t)Ẑi +
EJ,i

2
X̂i + Ec12Ẑ1Ẑ2
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Getting started: CNOT

Spörl et al., PRA 2007

Nakamura group,
Nature 2003

|n1, n2�Charge basis:
Ĥ =

�

n1,n2

Ech,,n1,n2(V1, V2)|n1, n2��n1, n2|+
EJ1

2

�

n

(|n��n+ 1|+ h.c.)⊗ 1̂ + (1 ↔ 2)

Logical basis: |σ1, σ2�

... and then run GRAPE to optimize fidelity J

Fast, palindromic, EJ-limited

Ĥ =
�

i

Eciδni(t)Ẑi +
EJ,i

2
X̂i + Ec12Ẑ1Ẑ2
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Leakage
Transmon/Phase qubit 

Lucero et al., 2008; 
Chow et al., 2009

Motzoi et al., PRL 2009
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Leakage
Transmon/Phase qubit 

Lucero et al., 2008; 
Chow et al., 2009

Solution: Envelope shaping
Derivative Removal 
by Adiabatic Gate

Motzoi et al., PRL 2009
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Leakage
Transmon/Phase qubit 

Lucero et al., 2008; 
Chow et al., 2009

Solution: Envelope shaping
Derivative Removal 
by Adiabatic Gate

12

ω

ωω
S

01

Spectral limitation: 
Duration/bandwith uncertainty

∆2

tg

Motzoi et al., PRL 2009
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Solution DRAG

Theorists dream ... experimental reality

Gambetta et al., 2011; 
Lucero et al., 2010; 
Chow et al., 2010

u1(t)cosωt+ u2(t) sinωt

u2 =
u̇1

∆2
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Solution DRAG

Theorists dream ... experimental reality

• CAD of analytical 
scheme

• amenable to long 
pixels

• third control can 
be removed - 
family of DRAG 
solutions

Gambetta et al., 2011; 
Lucero et al., 2010; 
Chow et al., 2010

u1(t)cosωt+ u2(t) sinωt

u2 =
u̇1

∆2
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Classical: Why derivative?
Excitation profile at weak drive: Fourier transform

Simple integration by parts:

Ω(t) = Ω1(t) + iΩ2(t)Drive envelope

Detuning δ

Motzoi et al., in preparation
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Quantum: The DRAG family
Transformation Heff = R

†(t)H(t)R(t) + iṘ
†
R

Generated by: R(t) = eiS(t)

Get gate in right frame: S(0) = S(tg) = 0

�qubit|Heff |leak� = 0No leakage

Controllable qubit: �qubit1|Heff |qubit2�

Underconstrained set of equations for S(t)
+controls

Gambetta, Motzoi, Merkel, FKW, PRA 2011
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Multi-transition DRAG

Qubit 2

ω
(2)
01

ω
(1)
01 + δ

∆

Qubit 1

ωdω
(1)
01

∆

Two 3D Transmons

δ = 90MHz � 0.2∆
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∆2
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Wah-wah pulses
Sideband modulation, optimized with Magnus expansion
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Numerical optimization

No speed limit other than sufficient # of pixels
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Long pulse At the limit

Schutjens, Abu Dagga, Egger, FKW, in preparation
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Robustness of optimal pulses

Spörl et al., 2007
Montangero et al., 2007
Khani et al., 2011
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Robustness of optimal pulses

Spörl et al., 2007
Montangero et al., 2007
Khani et al., 2011

Timing jitter

Extremum - flat

Slow noise
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Robustness of optimal pulses
Better: Robust performance index

J → �J�

e.g. cosine potential

Spörl et al., 2007
Montangero et al., 2007
Khani et al., 2011

Timing jitter

Extremum - flat

Slow noise
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Robustness of optimal pulses
Better: Robust performance index

J → �J�

e.g. cosine potential

Spörl et al., 2007
Montangero et al., 2007
Khani et al., 2011

Timing jitter

Extremum - flat

Slow noise

large r: little nonlinearity
small r: large dispersion
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Making a CZ work
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RezQU CPHASE

Goal: CPHASE 
between qubits |σ1, 0, σ2� �→ (−1)σ1σ2 |σ1, 0, σ2�

|q1, c, q2�

M. Mariantoni et al., Science 2011

Cavity-assisted CPHASE

|0� → |0�

Q Q
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Baseline sequence
Hamiltonian

conserves total # of excitations
            iSWAP

-1

• single excitation subspace: iSWAP Qubit 1
into resonator

• two-excitation subspace: conditional phase 
between res and Qubit 2

• iSWAP back into qubit 1

F. Strauch et al., PRL 2002

ĤJC = g
�
σ̂
+
â+ σ̂

−
â
†�

t = π/2g
t = π/g

|1, 0, x� �→ |0, 1, x�

|0, 1, 1� �→ |0, 0, 2� �→ | − 0, 1, 1�
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Baseline
CPHASE is symmetric

26Tuesday, February 26, 2013



Baseline

iSWAP - Strauch - iSWAP

Ginger

Fred

Asymmetric sequence:

CPHASE is symmetric
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Baseline

• three sequential 
steps

• need to correct 
phases

• third-level errors
iSWAP - Strauch - iSWAP

Ginger

Fred

Asymmetric sequence:

CPHASE is symmetric
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Baseline

• three sequential 
steps

• need to correct 
phases

• third-level errors

Filtering extreme

1ns 4 ns

iSWAP - Strauch - iSWAP

Ginger

Fred

Asymmetric sequence:

CPHASE is symmetric
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GRAPE pulse, no filter
Ginger
Fred

(iSWAP)2+
Stark-shift correction

Strauch+
phase comp

Palindromic!
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A worked example
Cavity-assisted CPHASE

|0� → |0�

Q Q

- 27 ns gate
- 1 ns pixel length
- 4 ns Gaussian filter
- g= 30 MHz

D.J. Egger and FKW, in preparation
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A worked example
Cavity-assisted CPHASE

|0� → |0�

Q Q Ideal

- 27 ns gate
- 1 ns pixel length
- 4 ns Gaussian filter
- g= 30 MHz

D.J. Egger and FKW, in preparation
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A worked example
Cavity-assisted CPHASE

|0� → |0�

Q Q Ideal

Program
- 27 ns gate
- 1 ns pixel length
- 4 ns Gaussian filter
- g= 30 MHz

D.J. Egger and FKW, in preparation
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A worked example
Cavity-assisted CPHASE

|0� → |0�

Q Q Ideal

Program

Post-4ns
 filter

- 27 ns gate
- 1 ns pixel length
- 4 ns Gaussian filter
- g= 30 MHz

D.J. Egger and FKW, in preparation
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The challenge: Tuneup

• Translation of 
control voltage 
into qubit 
frequency not 
known precisely

• Enters 
everywhere: High 
sensitivity
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Pulse debugging
Phase / leakage level error landscape

Experiment Theory

• Map out error landscape and minimize by 
hand

• seems to work
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Lessons learned and 
potential solutions

• GRAPE pulses can work in superconducting 
qubits, but don‘t right now

• Precise system characterization is crucial, 
robust GRAPE does not suffice (yet)

• Nonlinear transfer functions limiting factor

So we work on these issues 
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Self-learning
• Include the 

unmeasurable?

• Way out: Genetic 
algorithms

• Challenge: Easy 
measurement of 
performance (possible in 
specific cases)

• Note: These are GAs for 
unitaries, seeded by 
pretty good guesses 

fs-chemistry:
Rabitz, Gerber ...
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Hamiltonian learning

Based on Schirmer, Oi, 
Langbein, Wiseman, Ferrie ...

• Example: Find resonators and 
couplings

• Input: SWAP-spectroscopy = 
nonlocal FID

• Previous: 10000 shots / point

• speedup by nonadaptive Bayesian 
update

Y.R. Sanders and FKW, in preparation
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Bayesian tomography 

• Measure chi-
Matrix efficiently

• diligent use of 
priors

• adaptive 
measurement 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000
M

M. Stenberg and FKW, in preparation
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Conclusions

• Superconducting qubits and optimal control 
mutually beneficial

• Solved higher-level leakage issue

• Ultrafast gates in frequency-crowded 3D-
transmons

• challenge in application: closing the control-
characterization loop

35Tuesday, February 26, 2013


