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Heterodyne-Detected Four Wave 
Mixing
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Coherent (non) linear response to 
classical fields

(n + 1) wave mixing: n incoming fields generate 1 signal field (ks)

n incoming fields induce an nth 
order polarization P(n) in the
material system

Semi-classical theory:
material ↔ quantum
field ↔ classical

four-wave mixing (n=3)



Nonlinear polarization

The Nonlinear Response FunctionsThe Nonlinear Response Functions

t



Two-dimensional correlation plots
• Double Fourier transform:
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•Particularly useful for displaying structural 
information, in analogy with 2D NMR
•Ultrafast (50 fs) time resolution
•Probe intra- and intermolecular interactions  
•Spreading transitions in multiple dimensions
•Lineshapes give environment fluctuations



Semi-classical prescription for 
calculating the signal

Two steps:
1. microscopic step: 

calculate the polarization, 
P(n), induced by the 
classical incoming fields

S(n)… nth order response function

2. Macroscopic step: solve Maxwell’s equations with 
P(n) as a source



Multi wave-mixing & the 
phase-matching condition

.... Suppose we know P(n)…

→ step 2: solve Maxwell eqn. for the signal field; P(n)

serves as a source.

N incoming fields:

Solution depends on geometry (boundary conditions) 
and pulse configuration of the sample



… yields a directed signal

Within the slowly varying amplitude approximation:

Phase matching condition:



Detection modes
• Homodyne detection: measure intensity

Heterodyne (holographic) detection: extract amplitude & phase of the 
field by interference of Es with external field, ELO (“local oscillator”), 
Propagating along ks



How to calculate the polarization?

(A) Wave function (Hilbert space) approach:

Forward & 
backward 
In time

Diagrammatic representation:
Schwinger-Keldysh loop



(B) Density operator (Liouville space approach:

both bra and ket
propagate forward 
in time Diagrammatic representation: double sided

Feynman diagram



Liouville-space pathways for third order 
response of excitons
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Merits of Liouville space picture

• We work in real physical time; purely 
forward propagation.

• The double sided Feynman diagrams 
connect directly to time-domain 
experiments.

• One explicitly visualizes the real time-
intervals, tj.



the k1= -k1+k2+k3 - signal
• four wave mixing
•phase-matching direction:
k1 = -k1 + k2 + k3

•ideal time domain experiment
with temporally well separated
pulses

Three level model system



Double sided Feynman diagrams for 
the k1-signal

Rotating Wave approximation: photon absorption (“arrow pointing inwards”)
excites the material, emission (“arrow pointing outwards”) de-excites
the material.



Quantum description of Field
Hamiltonian of the joint matter-field system (the bare field,

is eliminated by going to the interaction picture)

… bare material … matter-field coupling

Replace classical field by field operator:

photon field annihilation operator, represents destruction of a
photon at position r and time t.

Photons are bosons:



Matter-field coupling
Within the dipole – and Rotating Wave approximation

Decompose dipole operator       according to

… raising operator: creates excitation in 
the material

… annihilates an excitation



The detector registers the number of photons per unit 
time in mode       . The signal is given by the time averaged photon flux:α
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The Heisenberg equation of motion for the photon number:

† †,int
d ia a H a a
dt α α α α⎡ ⎤= ⎣ ⎦h

and the interaction Hamiltonian (1) give the following signal:

1 ( ) ( )S E t V t dtα α απ

∞

−∞

′ ′= ℑ ∫h

The expectation value         is over the initial state of the entire system
(light+matter)

α

The optical signal

†E a aα α α′ +�



Heterodyne detection revisited: a 
quantum field perspective

Semi-classical picture: Local oscillator (LO) does not interact with the 
material but only interferes with the generated signal field.  We 
measure the change in intensity of the local oscillator.

Is this assumption of a spatially separated LO necessary?
In a quantum description we consider the whole process as a single 

(n + 1)-photon event with n + 1fields.  The LO is singled out only by 
the detection process.
Calculate the change in intensity, ST directly from our microscopic 
definition of the signal,



Heterodyne detection is a stimulated 
process by the local oscillator

Using Heisenberg’s equation:

→ this is the starting point for a perturbative expansion in all the modes
(incoming & LO)
This looks like exactly like the semi-classical expression for the heterodyne
detected signal, If we replace the field operatory, 

by a classical field.

Leading order contribution – each mode enters to first order.  
Replacing Is exact!



Perturbative expansion in the interaction Liouvillian superoperator
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Conclusions
Recover the classical result, but now LO does not have 

to be spatially separated anymore.

“One shot” microscopic calculation of the signal as an 
(n + 1 )-photon event: no need to create polarization 
and use Maxwell equations.



Manipulating Quantum Pathways of Matter by 
Coherent Multidimensional Spectroscopy 

with  Entangled Photons



The ks= - k1+k2+k3 - signal

Frequency domain; no 
control over time-
ordering (different 
than kI)

Construction of the diagrams:

1. “2” and “3” are represented by arrows pointing to the right (absorption) and
“1” and “s” by arrows pointing to the left (emission).

2. Consider all possible ways to distribute these arrows around the loop;
Constraints:

• The interaction with the detected mode “s” is fixed to the top left branch.
• The material system must start & end in the same state (its ground state,

la>)



8 loop diagrams….



Twin entangled photons generated by PDC

( )

1 2
(2)

0

(2) † † †
int 1 2 0 0 2 1

The idler (A = ) and signal (B = ) are populated from the vacuum state from the pump

photon  (P = ) by means of the interactions mediated by the nonlinear   crystal:

H a a a a a a

χ

χ +

k k

k

:

( )(4) † † †
2 2 3 3 4 4 5 5 6 6 7

†
6 6 1 1 1 1 7 8 8

The idler and signal are entangled:
,.. { ( ) ( ) ( ) ( ) ( ) ( ) ( ) (., ) } 0t Tr a t a t a t a t a t a t a tG r t r r r r r r r r ra t ρ= ≠



Twin photons. Types of entanglement.

2 1

Polarization entanglement.
Photons having horizontal ( , signal ) and vertical ( , idler ) linear polarizations
 are emitted along the two conical surfaces. A pair of photons emitted to the crossing

H Vk k
directions

of the two cones is entangled.



Twin photons. Types of entanglement.

( ) ( )( ) ( )1 1 2 21 2 1 1

The twin photons are also entangled with respect to the continous variables: 
position (space entanglement), frequency (energy entanglement), 
wave vector (momentum entanglement).
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Twin photons. Properties.

12

12

The twin photons are created withing an entanglement time  and within an entanglement
area  of each other. This quantities represent the width of the fourth-order temporal- and 

spacial - coherenc

T
A

(4)e functions  , respectively. G



Spectroscopy with Twin photons

Several spectroscopic techniques had been reported by several groups: 
Two photon absorption {Dayan 2004, Saleh 1998epv} (TPA), 
Sum frequency generation {Silberberg 2 , Peer 2007} (SFG), 
Two phot

007
on induced fluorescence {Goodgon_2007, Lee 2007, Teich 1998}_ (TPIF)



Signal linear dependence on pump intensity 
as a signature of entanglement.

22 2
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Theoretical prediction for homodyne-detected SFG:

Experimental verification for homodyne-detected SFG and TPIF:

B. Saleh, B. Jostm, M. Teich: “Entangled-Photons Virtual-State spectroscopy ”
PRL,80, 3483-3486, (1998). 

M. Teich, B. Saleh, “Entangled-photons microscopy, spectroscopy and display”,
US Patent 5,796, 477

A. Sergienko, M. Teich etc. “Quantum theory of entangled photon photoemission”
PRB, 69, 165317, (2004).

A.Pe’er, B. Dayan, Y.Silberberg, “Temporal shaping of entangled photons”,
PRL, 94,073601 (2005), “Nonlinear interactions with an ultrahigh flux of
Broadband entangled photons”, PRL, 94, 043602 (2005).

D.Lee, T.Goodson “Entangled Photon Absorption in an organic porphyrine
dendrimer”, Journal of physical chemistry, 110, 25582-25585, (2006).



Improvements over conventional microscopy

2

12 12

Absorption rate p

T A
:

E

The absorption no longer depends on an accidentally simultaneous arrival of two photons. 
The twin photons act as a single unit and their absorption rate no longer quadratically depends 
on photon flux density, but appears to be linear {Javanainen 1990}.

Spectral resolution can be improved since absorption only occur in a region 
where correlated photon pairs overlap in space.

Power levels required for TP excitation 
can be dramatically reduced



Entangled photons PDC/MZI in non-linear 
spectroscopy

Experiments are conducted with the non-orthogonal modes a1, a2
with wavevectors k1,k2. 



TPA
Pump-probe (PP) technique carried out with two optical modes
Interacting with N three level molecules.

The signal is the time-averaged photon flux in one of the 
modes. 

( )1 2, material SNGF optical SNGFS ω ω ×∑�



Pump-Probe with classical beams

All optical SNGF’s are the same:
2 2

1 2
†

1
†

1 2 2~| | | |a a a a〈 〉〈 〉〈 〉〈 〉 E E

The classical pump-probe signal is TPA + Ground state bleaching:

( ) 2 2 (3) (3)
1 2 1 2 1 2 1 2( , ) ~| | | | [ ( , ) ( , )]C

A BS ω ω χ ω ω χ ω ωℑ +E E



TPA with maximally entangled PDC/MZI 
beams

Optical SNGF’s of group A:

† 4† 2~| | | |p pa a aa〈 〉 +E E

Optical SNGF’s of group B:

† 4† ~| |pa aa a〈 〉 E

( ) (3)2
1 2 1 2| |( , ) ~ ( , )E

ApS ω ω χ ω ωℑE

At low pump intensity limit the signal is solely given by group A :



Group A  TPA pathways contribution

Cross peaks due to pathway i are 
given by double resonance condition:  
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Cross-peaks due to
pathway iii are 
doubly resonant: 

1

1 2
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ω ω
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eg ef

Cross peaks due to
pathways ii and iv are
given by triply resonant:

ω ω≈

2| |p� E



Group B Raman pathways contribution

The pathways of group B induce 
cross-peaks at:

1 2 ',eg e gω ω ω ω≈ ≈

4| |p� E



Total signal group A + B pathways

large dephasing rate and close 
transition frequencies:

/ 0.1eg

The pathways of group A (TPA) and B (single photon transition) may not be 
separated by using classical optical fields.

γ ω =

eg feω ω≈

This is possible by the entangled (PDC/MZI) photon signal.

All dipole moments are
the same 0.1 (arb. units)

= Spectral overlap



The diagonal section of the 2D spectra
1 2 1 1gfω ω ω+ = =

egω 1efω

A) Entangled photon (PDC/MZI) signal 
(Group A)

B)  Group B contributions
C)  Classical signal (A+B)

Resonances are very sensitive toResonances are very sensitive to
the overlap between pathwaysthe overlap between pathways
due to destructive interference betweendue to destructive interference between
pathway pathway iii iii and pathways of group B.and pathways of group B.

The resonances are given by pathway The resonances are given by pathway i i and interfereand interfere
constructively with group B. They disappear slowly with constructively with group B. They disappear slowly with 
Increasing Increasing dephasingdephasing..

Pathways Pathways iiii and and iviv augment the central peakaugment the central peak



Classical vs. entangled (PDC/MZI) signals

( ) 2 2
1 2 1 2( , ) ~| | | |CS ω ω E E

Classical signal:

1) Scales as intensity square

2) Pathway selectivity: NO
( ) (3) (3)

1 2( , ) ~ [ ]C
A BS ω ω χ χℑ +

Entangled photons signal:

1) Scales linearly with intensity:

( ) 2
1 2( , ) ~| |C

pS ω ω E

2) Pathway selectivity: YES

( ) (3)
1 2( , ) ~C

AS ω ω χℑ



TPA on a closed-time path loop.

2 2

1

Detector  measures change in intensity of the V polarized mode  
with and without (place H polarizer before the sample) mode .

d k
k

1 1

2

Detector  measures change in intensity of the H polarized mode  
with and without (place V polarizer before the sample) mode .

d k
k

The two signals are
blended together.
+ is for symmetric TPA
- is for asymmetric TPA



PP on a closed-time path loop. 



PP on a closed-time path loop.

3

1 2 4 3 2 1

† †
4 2 2 3 3 1 1 3 2 4 1 1 2 3 1 2 2 4

4 2 2 1

† †

2 1( , )
2 3!

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) (

Using the loop diagrams the PP signal  can be written as:
T

Sym

T
PP

N iS dt dt dt dt
T

t t t t t t V t V t V t V t E t E t E t E t

t t t t

πω ω

θ θ θ

θ θ

∞ ∞ ∞

− −∞ −∞ −∞

= ℑ
Ω

〈 〉〈 〉 +

+

∫ ∫ ∫ ∫

† †
1 3 3 1 2 4 2 3 1 1 1 2 2 4

† †
4 2 4 3 3 1 1 3 4 2 1 1 2 3 2 4 1 2

† †
4 2 4 1 1 3 3 1 4 2 2 3 1 1

† †

† †

†
2

†

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

t t V t V t V t V t E t E t E t E t

t t t t t t V t V t V t V t E t E t E t E t

t t t t t t V t V t V t V t E t E t E

θ

θ θ θ

θ θ θ

〈 〉〈 〉 +

+ 〈 〉〈 〉 +

+ 〈 〉〈 4 1 2

1 2

) ( )
{ }]

t E t 〉 +
+ ↔k k

i
ii
iii
iv

, , ,v vi vii viii

PMP TPA



PP with classical fields.
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| | |
All optical field correlation functions become the product of the fields intensities:

At this point let us introduce the TP operator in the frequency doma
|
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PP with classical fields.

1 2 1 2 1 2

1 2 1 2
†

In the molecular eigenstates basis the only non-zero matrix elements 
of the TP operators (TP amplitudes) 

| ( , ) | ( , ) ( ) ( )
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TPA pathways (group B).

1 2( , )  absorption on the left branch (forward time) with

retarded Green's functions
fg ω ωT

1 2( , ) emission on the right branch (backward time) with

advanced Green's functions
gf ω ωåT

Accompanied by emmision from state f



PMP pathways (group A).

1 2( , ) absorption on the right branch (backward time) with

advanced Green's functions
fg ω ωåT

1 2( , ) emission on the right branch (backward time) with

advanced Green's functions
gf ω ωåT

Accompanied by emmision from state e



PP classical signal.
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The system evolution after the two photons had been absorbed is described 
by the double excited state Green's function 
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Twin state as initial state of the field.

1 2

1 2

1 2 1 2 ,

 is the interaction time

Twin state is defined as:
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2 2 2 2

 within the PDC crystal 
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The normalization constant is proportional to 

the nonlinearity of the PDC crystal , the pump electric field amplitude 

and the entanglement area .
The Fock state

/

| contain,  s

z

p

p

C

A

L

Aχ

χ

=

〉k k

E

E

1 2 one photon in each mode  and .k k



Twin state (no delay) correlation functions.

2 4 1 2 4 2 4 2 12 2 4 2
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For the twin states the optical field correlation functions are factorized into 
the products 
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Twin state (no delay) correlation functions.

3

1 2 4 3 2 1

† †
4 2 2 3 3 1 1 3 2 4 3 1 12 4 2 12

4 2 2 1 1
†

3 3 1 2 4 1 3
†

2 1( , )
2 3!

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) ( , , )

( ) (

The signal become

) ( ) ( ) ( ) ( ) (

s:

) ( , ,

T
Sym
PP

T

N iS dt dt dt dt
T

t t t t t t V t V t V t V t F t t T F t t T

t t t t t t V t V t V t V t F t t

πω ω

θ θ θ

θ θ θ

∞ ∞ ∞

− −∞ −∞ −∞

= ℑ
Ω

〈 〉 +

+ 〈 〉

∫ ∫ ∫ ∫
å

å
12 4 2 12

1 2 †
4 2 4 3 3 1 1 3 4 2 3 1 12 2 4 12

2 1
4 2 4 1 1 3 3 1 4 2

†

†
1 3 12 2 4 12

1 2

†

) ( , , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) ( , , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) ( , , )
{ }]

T F t t T

t t t t t t V t V t V t V t F t t T F t t T

t t t t t t V t V t V t V t F t t T F t t T

θ θ θ

θ θ θ

+

+ 〈 〉 +

+ 〈 〉 +

+ ↔k k

å

å



Twin state (no delay) TP transition amplitudes.

( )
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12

At this point let us introduce the following transformation of the material Green's function 
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That is the role of the entanglement is the  
of the material Green's function.  can be alternatively 
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TP induced transparency.
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PP entanglement time spectra

1) All pathways interfere constructively.
2) b resonances can be detected by a conventional 
pump-probe with short well separated pulses.
3) Increasing the dephasing rate (left column) quenches 
the resonances in regions a and c.



PP entanglement time spectra

1 2

4) PMP pathways contribute to spectral regions b and c.
5) TPA pathways show resonances in regions a and b.
6) 
7) The assymertic signal vanishes.

d d SymS S S= =



PP with mutually delayed twin photons.

1 2

Now let us consider a different TPA setup with twin photons close to those proposed by Saleh.
The frequencies of the beams are fixed to be and we introduce 

a relative time delay 
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PP with mutually delayed twin photons. Twin correlation 
functions.
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PP with mutually delayed twin photons. Matter transition 
amplitudes.

12( / 2, ) describe the Fourier transform of the system(twin/matter) Green sfunction by incorporating 

the relativedelay  between the entangled photons.
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TPA with mutually delayed twin photons. 
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PP delay time spectra
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PP delay time spectra
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PP delay time spectra

For PMP (TPA) pathways region  ( ) resonances are produced by the pathways 
where emitted and absorbed photon follow the same chronological order; the region  ( )
resonances a

a c i,v,i

re give

ii,vii
c a

n by the pathways  where the chronological photon 
order for the emission is opposite to those of the absorption. This peculiar feature is a result
of broken symmetry of the field tran

ii,vi,iv,v

sition a

iii

mplitude.



PP delay time spectra

1) For small dephasing rate (right panle) PMP and TPA contribute to the same regions in
all spectra and spectrally non separable by the pump-probe technique.
2) At large dephasing rate (left panel) pathways  do not contribute regionsv-viii a and c.



PP delay time spectra

2d

Sym Asym

Only the S signal reveals the resonances in the non-classical regio a ns and c
3) The spectra obtained from the two detectors are differen

Both S and S signals contain all re

t.
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.

es.
6) The TPA signal misses the region  resonances, and PMP misses resonances in 
    region , thus one can separate PMP from TPA if focuses on the regions  and  o

c
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nly.



PP correlation spectra. Detector 1 and 2.
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The correlation spectra from the two detectors are different. Unlike the delay 
spectra, detector d1 reveals all spectral regions, while 
resonances ( ) and ( ) from detector d2 are supprea,a c,c ssed.



PP correlation spectra. TPA and Sym spectra.

1) The off-diagonal, as well as ( ), resonances are sensitive to the dephasing rate 
     and vanish

b,b
a,a c,c for large dephasing. The diagonal ( ) and ( ) resonances 

     overlap as the dephasing rate increases.



PP correlation spectra. TPA and Sym spectra.

2) For both values of the dephasing rate the TPA and PMP sign c,c
a,a

als miss the ( ) 
    and ( ) resonances correspondingly.



TPA with mutually delayed rectangular shaped fields. 
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TPA with mutually delayed rectangular shaped fields. 
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Conclusions

• We used mutually delayed twin photons to study off-resonant single excited 
states in a three level model system.
• Two detectors measured the change in one of the beams intensity with and 
without other beam. The symmetric (asymmetric) two-photon absorption was 
defined as sum (difference) of the detectors readings.
• Fully microscopic entangled photon TPA formalism using close time path 
loop (CTPL) diagrams was developed. Its predictions was compared with 
proposed before virtual state spectroscopy based on conventional two-photon 
counting Glauber theory. 
• For general quantum optical fields CTPL theory yields the signal in terms of 
Liouville pathways each scaled with corresponding four point optical 
correlation function. There are two groups of pathways TPA and PMP. The TPA 
pathways correspond to emission from the double excited states and may be 
taken into account by the two-photon counting Glauber theory. The PMP 
pathways are related to emission from the single excited states where the one 
of the photons creates just an intermediate coherence between the ground and 
double excited states.
• For the degenerate off-resonant case of classical uncorrelated photons the 
signal PMP = TPA. Asymetric signal vanishes.



Conclusions

• For highly correlated entangled photons PMP contribution differs from TPA, 
as shown in the Fourier spectra.
• Dependence of the signal on such adjustable parameters as the delay time 
and entanglement time makes the single excited states effectively resonant. 
That is they are off-resonant with respect to the photon frequency but resonant 
on the spectra defined as the Fourier transform with respect to the delay or 
entanglement times.
• Numerical simulation of the spectra shows that the resonances associated 
with the single excited state manifold as well as the intra-band transitions 
within this manifold may be visualized on the correlation spectra. Focusing on 
different regions in the correlation spectra one can separate PMP and TPA 
contributions. 
• Alternatively one can mimic two-photon absorption with entangled photons 
by using two mutually delayed rectangular shaped optical fields. This shapes 
up the optical field correlation function so that the two signals differ by delay 
independent pre-factor giving the same as for twin photons specter (time 
delay).
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