Geometric optimal control of dissipative quantum systems

Dominique Sugny

Institut Carnot de Bourgogne, Dijon, France

Financial support:

- French research project ANR CoMoC
- European Marie-Curie Network Fastquast

May 6, 2009

Optimal control of quantum dynamics

$$i\hbar \frac{\partial}{\partial t}\psi(t) = [H_0 + u(t)H_1]\psi(t)$$

Control: $\psi(0) = \psi_i \Longrightarrow \psi(T) = \psi_f$

Rem. 1: controllability (accessible set).

Rem. 2: optimal: minimization of a cost.

Energy:
$$\int_0^T [u(t)^2] dt$$

Time: T with $|u| \le 1$

Ref: Numerical analysis by direct methods

Geometric optimal control theory

- Pontryagin maximum principle
- Analysis of the geometry of the Hamiltonian dynamics (extremals)
- Indirect numerical methods (homotopy)
- second-order optimality conditions (conjugate point)

Ref: A. Agrachev, J.-P. Gauthier, B. Bonnard, U. Boscain, V. Jurdjevic...

In quantum physics:

- Conservative case (U. Boscain et al)
- Sudden case (N. Khaneja, S. Glaser et al)

Pontryagin Maximum principle

Time-minimal control with $u_1^2 + u_2^2 \le 1$:

$$\dot{x} = F_0(x) + u_1 F_1(x) + u_2 F_2(x)$$

We introduce a pseudo-Hamiltonian:

$$\mathcal{H} = p \cdot (F_0(x) + u_1 F_1(x) + u_2 F_2(x)) + p_0$$

with $p_0 \leq 0$.

The final time is not fixed $\Rightarrow \mathcal{H} = 0$. $(p, p_0) \in \mathbb{R}^{n+1,*}$ is defined up to a scalar factor.

Theorem

PMP: The extremal dynamics are given almost everywhere by

$$\dot{x} = \frac{\partial \mathcal{H}}{\partial p}, \ \dot{p} = -\frac{\partial \mathcal{H}}{\partial x}$$

with the condition $H(x, p) = \max_{u_1, u_2 \in U} \mathcal{H}(x, p, u_1, u_2)$.

Time-minimal control

In the regular case:

$$u_1 = p \cdot F_1(x) / \sqrt{(p \cdot F_1(x))^2 + (p \cdot F_2(x))^2}$$

$$u_2 = p \cdot F_2(x) / \sqrt{(p \cdot F_1(x))^2 + (p \cdot F_2(x))^2}$$

with $(p \cdot F_1(x))^2 + (p \cdot F_2(x))^2 \neq 0$ and |u| = 1. Smooth extremals are given by the corresponding Hamiltonian:

$$H(x,p) = p \cdot F_0(x) + \sqrt{(p \cdot F_1(x))^2 + (p \cdot F_2(x))^2}.$$

In the singular case: $p \cdot F_1(x) = p \cdot F_2(x) = 0$.

Dissipative quantum dynamics

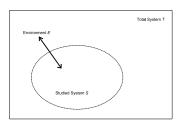


Figure: Open quantum systems

Lindblad form of dissipative dynamics:

$$i\hbar \frac{\partial}{\partial t} \rho(t) = [H_0 + u(t)H_1, \rho(t)] + \mathcal{L}[\rho(t)]$$

with
$$\mathrm{Tr}[
ho]=1$$
 and $\mathrm{Tr}[
ho^2]\leq 1$

Dissipative two-level quantum systems

- ▶ A spin 1/2 particle in a magnetic field $(B_x \text{ and } B_y)$
- ▶ The first two levels of a molecular system interacting with an electric field $(E_x \text{ and } E_y)$.

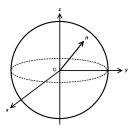


Figure: The Bloch ball

$$\operatorname{Tr}[\rho^2] \le 1 \Leftrightarrow x^2 + y^2 + z^2 \le 1$$

Control of two-level quantum systems

$$\begin{cases} \dot{x} = -\Gamma x + u_2 z \\ \dot{y} = -\Gamma y - u_1 z \\ \dot{z} = (\gamma_{12} - \gamma_{21}) - (\gamma_{12} + \gamma_{21})z + u_1 y - u_2 x \end{cases}.$$

We introduce $\gamma_+=\gamma_{12}+\gamma_{21}$ and $\gamma_-=\gamma_{12}-\gamma_{21}$ such that $2\Gamma\geq\gamma_+\geq|\gamma_-|$.

Нур.:

- u_1 and u_2 envelopes of the two control fields.
- laser in resonance with the two-level system.
- Rotating wave approximation ($u \ll \omega$)

The single-input case

We consider the case $u_2 = 0$. (general case if the initial point is a pole).

$$\begin{cases} \dot{y} = -\Gamma y - u_1 z \\ \dot{z} = (\gamma_{12} - \gamma_{21}) - (\gamma_{12} + \gamma_{21})z + u_1 y \end{cases}.$$

System on \mathbb{R}^2 of the form: $\dot{x} = F_0(x) + uF_1(x)$

$$PMP: \mathcal{H} = p \cdot F_0(x) + up \cdot F_1(x) + p_0$$

with $|u| \leq 1$.

We introduce the switching function ϕ :

$$\phi(x,p)=p\cdot F_1(x)$$

- Regular case: $\phi(x, p) \neq 0$, $u = \text{sign}[\phi]$
- **Singular case**: $\phi(x,p) = 0$, u_s such that $\frac{d\phi}{dt} = 0$.

Example of solution

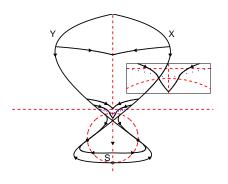


Figure: Optimal synthesis for $\Gamma=3$, $\gamma_+=0.4$ and $\gamma_-=-0.2$.

Rem: Complete classification in B. Bonnard, M. Chyba and D. Sugny, to appear in IEEE AC.

The double-input case

We introduce the spherical coordinates (ρ, θ, ϕ)

$$H = \left[\gamma_{-}\cos\phi - \rho(\gamma_{+}\cos^{2}\phi + \Gamma\sin^{2}\phi)\right]p_{\rho} + p_{\phi}\left[-\frac{\gamma_{-}\sin\phi}{\rho} + \frac{\sin(2\phi)}{2}(\gamma_{+} - \Gamma)\right] + \sqrt{p_{\phi}^{2} + p_{\theta}^{2}\cot^{2}\phi}$$

Rem:

- p_{θ} is a constant of the motion (symmetry of revolution).
- $ho p_
 ho$ is a constant of the motion if $\gamma_-=0$
- \Rightarrow *H* is integrable.
- Grushin model for $\Gamma=\gamma_+$. (dissipation in the radial direction)

The Grushin model on the sphere

$$H = \sqrt{p_\phi^2 + p_\theta^2 \cot^2 \phi}$$

Rem:

- Three-level quantum systems in the conservative case.
- Two-level dissipative quantum systems for $\Gamma=\gamma_+$ (independent of the purity).

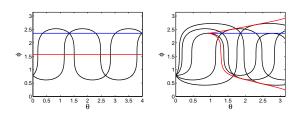


Figure: Conjugate and cut loci.

The concept of conjugate point

Local optimality:
$$\frac{\partial \mathcal{H}}{\partial u} = 0$$
, $\frac{\partial^2 \mathcal{H}}{\partial u^2} \leq 0$

$$\begin{cases} \dot{\delta x} = \frac{\partial^2 H}{\partial x \partial p} \delta x + \frac{\partial^2 H}{\partial p^2} \delta p \\ \dot{\delta p} = -\frac{\partial^2 H}{\partial x^2} \delta x - \frac{\partial^2 H}{\partial x \partial p} \delta p \end{cases},$$

with $\delta x(0) = 0$ and $\delta p(0) \cdot p(0) = 0$.

Conjugate point: Rank $(\delta x_1(t_c), \delta x_2(t_c), \cdots, \delta x_{n-1}(t_c)) \leq n-2$

Ref.: The CotCot code (J.-B. Caillau)

The Integrable case

Deformation of the Grushin case with $\Gamma \neq \gamma_+$ and $\gamma_- = 0$. Two different behaviors: $|\Gamma - \gamma_+| < 2$ and $|\Gamma - \gamma_+| > 2$

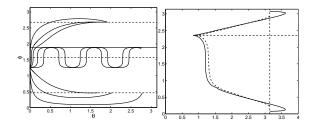


Figure: Projections of the extremals and of the conjugate locus.

Rem: Some properties are preserved when Γ and γ_+ vary. **Ref.:** B. Bonnard and D. Sugny, SIAM J. Control Optim. 48, 1289 (2009).

The generic case

Deformation of the integrable case with $\gamma_- \neq 0$: not trivial! \Rightarrow Numerical simulations: Two cases.

- 1. Asymptotic dynamics for $|\Gamma \gamma_+| > 2$: $\lim_{t \to +\infty} |p_{\phi}(t)| = +\infty$, $(\rho, \theta, \phi) \to (\rho_f, \theta_f, \phi_f)$ No conjugate point.
- 2. Periodic dynamics for $|\Gamma \gamma_+| < 2$: $\lim_{t \to +\infty} |\phi(t)| = 0, \pi, \ \rho \to \rho_f$ Conjugate points.

Ref: B. Bonnard, M. Chyba and D. Sugny, IEEE Trans. AC.

Example of the continuation method: The two-dimensional case

We determine $(p_{\phi}(0), t_f)$ to reach the point (θ_f, ϕ_f) from the initial point (θ_i, ϕ_i) : $(\theta_i, \phi_i) \rightarrow (\theta_f, \phi_f)$

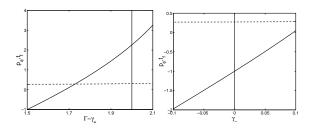


Figure: Continuation method from $\Gamma=3.5$, $\gamma_+=2$ and $\gamma_-=0$.

Rem:

- constant step
- Newton algorithm

Conclusion and perspectives

- Analytical proofs of numerical conjectures
- Generalization to more complex dynamics, quantum computing
- Coupling between indirect and direct methods
- Experimental applications in spin systems (NMR)

Bibliography

This work has been done in collaboration with B. Bonnard (Institut de Mathématiques de Bourgogne).

- ► Time-optimal control of a two-level dissipative quantum system
 - D. Sugny, C. Kontz and H. R. Jauslin, Phys. Rev. A 76,023419 (2007).
- ► Time-minimal control of dissipative two-level quantum systems: The integrable case
 - B. Bonnard and D. Sugny, SIAM, J. Control. Optim. 48, 1289 (2009)
- ► Time-minimal control of dissipative two-level quantum systems: The generic case
 - B. Bonnard, M. Chyba and D. Sugny, to appear in IEEE Trans. AC.
- Optimal control theory in space and quantum dynamics
 B. Bonnard and D. Sugny, AIMS applied mathematics.