# Universal Quantum Simulation for Open-System Dynamics

| Dong-Sheng Wang       | U Calgary              |
|-----------------------|------------------------|
| Marcos C. de Oliveira | U Calgary              |
|                       | U Estadual de Campinas |
| Dominic W. Berry      | Macquarie U            |
| Barry C. Sanders      | U Calgary              |

#### 25 February 2013 KITP UC Santa Barbara

### Table of contents











Universal Q Sim for Open-System Dynamics

<ロ> (四) (四) (日) (日) (日)

Ξ

#### Problem statement

Construct an efficient algorithm for designing an efficient quantum algorithm, implemented with a small single-qubit universal gate set, that accurately simulates any completely-positive (CP) trace-preserving (TP) single-qubit mapping for any input state within pre-specified tolerance  $\epsilon$  in terms of distance between states.

## Strategy for open-system quantum simulation

- Dilate CPTP map to unitary operation U.
- Decompose U as ordered operator exponential
  - Solovay-Kitaev-Dawson-Nielsen algorithm
  - Explicitly construct lookup table for this algorithm
- Decompose CPTP map into product of channel types:
  - Unitary
  - Pauli
  - Amplitude attenuation/amplification
- Produce efficient algorithm for constructing efficient circuit.

イロト イポト イヨト イヨト

### Dilate CPTP map to unitary evolution

#### Operator sum decomposition

$$\mathsf{CP}\ \mathscr{E}: \mathcal{T}(\mathscr{H}) \mapsto \mathcal{T}(\mathscr{H}): \rho \mapsto \sum_{i} \mathsf{K}_{i} \rho \mathsf{K}_{i}^{\dagger}, \sum_{i} \mathsf{K}_{i}^{\dagger} \mathsf{K}_{i} \leq \mathbb{1}.$$

- Trace-preserving (TP):  $\sum_{i} K_{i}^{\dagger} K_{i} = \mathbb{1}$ .
- Introduce environment with  $\perp$  basis  $\{|i\rangle\}$  spanning  $\hat{\mathscr{H}}$ .
- Dilated Hilbert space:  $\mathscr{H}' = \mathscr{H} \otimes \tilde{\mathscr{H}}.$
- Construct  $U: \mathscr{H}' \to \mathscr{H}'$  s.t. each  $K_i = \langle i | U | 0 \rangle$ .
- U is minimal if  $\dim \tilde{\mathscr{H}} = (\dim \mathscr{H})^2 = d^2 \implies \dim \mathscr{H} = d^3$ .
- Kraus operator  $K_i$  are realized via measurement on ancillæ.
- For N-qubit open system, 2N qubit ancillæ are needed.
- Reduce cost: recycle ancillæ + use random classical bit(s).

イロト 不得 とくまとう まん

### Simulation accuracy condition

#### Definition

The inaccuracy for simulating q channel  $\mathscr{E}_1$  by approximate channel  $\mathscr{E}_2$  is  $\|\mathscr{E}_1 - \mathscr{E}_2\|_{1 \to 1} := \sup_{\rho} \|\mathscr{E}_1(\rho) - \mathscr{E}_2(\rho)\|_1$  for  $\| \bullet \|_1 := \operatorname{tr} \sqrt{\bullet^{\dagger} \bullet}$  the Schatten 1-norm.

#### Proposition

 $\forall \epsilon \in \mathbb{R}^+$ ,  $\rho \in \mathcal{T}(\mathscr{H})$  and CPTP maps  $\mathscr{E}_1, \mathscr{E}_2 : \mathcal{T}(\mathscr{H}) \to \mathcal{T}(\mathscr{H})$ with respective minimal dilations  $U_1, U_2 : \mathscr{H}' \to \mathscr{H}'$ , then  $\|U_1 - U_2\| \leq \epsilon/2 \implies \|\mathscr{E}_1 - \mathscr{E}_2\|_{1 \to 1} \leq \epsilon$  with  $\|\bullet\|$  the operator norm<sup>a</sup>.

 $\|u_1 - u_2\| := \sup_{|\psi\rangle} \|(u_1 - u_2)|\psi\rangle\| < \epsilon/2.$ 

イロト 不得下 イヨト イヨト 二日

### Efficient decomposition of unitary gate

- The Solovay-Kitaev theorem guarantees any N-qubit unitary gate can be decomposed into a gate sequence obtained from a finite instruction set with length O (log<sup>c</sup>(<sup>1</sup>/<sub>ε</sub>)).
- We employ the universal gate set

• 
$$H = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
,  
•  $T \equiv Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ ,  
•  $CNOT = \begin{pmatrix} 1 & 0 \\ 0 & X \end{pmatrix}$ .

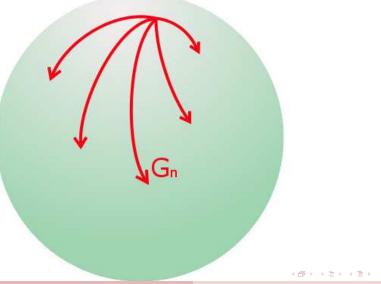
イロト 不得 とくまとう まん

### Available decomposition approaches

- Kitaev-Shen-Vyalyi phase-kickback algorithm [Toffoli gates].
- SKDN algorithm [proven to be efficient].
- Depth-optimal algorithm: shortest run-time [perhaps counted as # non-Clifford gates] through parallelized circuit
  - Fowler: QIC 11, 867-873 (2011).
  - Bocharov-Svore: arXiv.org:1206.3233
  - Trung-Meter-Horsman: arXiv.org:1209.4139
  - Kiluchnikov-Maslov-Mosca: arXiv.org:1206.5236
  - Amy-Maslov-Mosca-Roetteler: arXiv.org:1206.0758

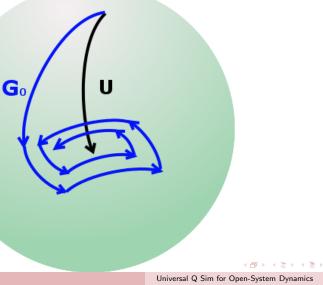
イロト イポト イヨト イヨト

# SKDN algorithm: Elements of database

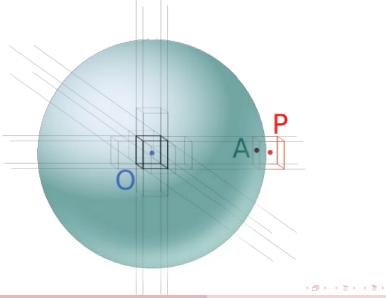


Universal Q Sim for Open-System Dynamics

# SKDN algorithm: "Balanced group commutator"



# Constructing look-up database for the SKDN algorithm



Universal Q Sim for Open-System Dynamics

#### Decomposing the single-qubit CPTP channel

Geometric representation of single-qubit CPTP channel For single-qubit state representation  $\rho \mapsto \frac{1}{2}(I + \mathbf{b} \cdot \boldsymbol{\sigma})$  and single-qubit CPTP mapping representation,  $\mathscr{E} \mapsto \mathbb{T} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{t} & T \end{pmatrix}$  s.t.  $\mathbb{T}_{ij} \mapsto \frac{1}{2} \operatorname{tr} (\sigma_i \mathscr{E}(\sigma_j)), \mathscr{E}(\rho) \mapsto \frac{1}{2}(I + \mathbf{b}' \cdot \boldsymbol{\sigma})$  is the affine map for  $\mathbf{b}' = T\mathbf{b} + \mathbf{t}$ , and  $\mathscr{E}$  is CPTP iff the Choi matrix  $\mathbb{C} \ge 0$  for  $(i, k|\mathbb{T}|j, l) := (i, j|\mathbb{C}|k, l)$  with  $|k, l) := |k\rangle\langle l|$ .

イロト 不得 とくまとう まん

# Single-qubit CPTP channel decomposition

- Implement T by Pauli channel  $\rho \mapsto \sum_{i=0}^{3} c_i \sigma_i \rho \sigma_i \mathcal{E}_P$
- Implement shift t by rotated amplitude-attenuation/amplification channel

$$-\mathcal{E}_{\mathsf{R}} - = -\mathcal{R}_{m}(\theta) - \mathcal{E}_{\mathsf{A}} - \mathcal{R}_{n}(\phi) -$$

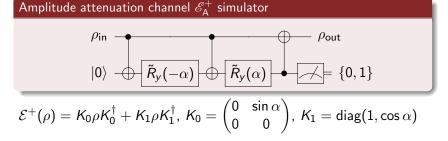
#### Proposition

Any single-qubit CPTP channel  $\mathcal{E}$  can be decomposed into the 12-parameter gate sequence

$$-\mathcal{E} = -\mathcal{V} + \mathcal{E}_{\mathsf{P}} - \mathcal{R}_{m}(\theta) + \mathcal{E}_{\mathsf{A}} - \mathcal{R}_{n}(\phi) + \mathcal{V}' - \mathcal{E}_{\mathsf{A}} - \mathcal{R}_{n}(\phi) + \mathcal{V}' - \mathcal{E}_{\mathsf{A}} - \mathcal{R}_{n}(\phi) + \mathcal{E}_{\mathsf{A}} - \mathcal{E}_{\mathsf{A}$$

イロト イポト イヨト イヨト

# Amplitude attenuation/amplification channel simulation



Amplitude amplification channel  $\mathscr{E}^-_A$  simulator

$$\begin{array}{c}\rho_{\text{in}} & & & & & \\ & & & & \\ |1\rangle & & & & \tilde{R}_{y}(-\beta) \end{array} \xrightarrow{\rho_{\text{out}}} \rho_{\text{out}} \\ & & & & \tilde{R}_{y}(\beta) \end{array} \xrightarrow{\rho_{\text{out}}} \{0,1\}$$

$$\mathcal{E}_{\mathsf{A}}^{-}(
ho) = \mathcal{K}_{2}
ho \mathcal{K}_{2}^{\dagger} + \mathcal{K}_{3}
ho \mathcal{K}_{3}^{\dagger}, \ \mathcal{K}_{2} = \begin{pmatrix} 0 & 0 \\ \sin eta & 0 \end{pmatrix}, \ \mathcal{K}_{3} = \mathsf{diag}(\cos eta, 1)$$

Universal Q Sim for Open-System Dynamics

# Decomposing the single-qubit CPTP channel

$$-\mathcal{E}_{P} = -V + \mathcal{E}_{P} + R_{m}(\theta) + \mathcal{E}_{A} + R_{n}(\phi) + V' + \mathbf{V}' + \mathbf{$$

- Resources
  - cbits + recyclable ancillary qubit for  $ilde{\mathscr{E}}_{\mathsf{A}}$
  - one classical bit for 
     <sup>˜</sup><sub>P</sub>.
- Complexity (follows SKDN algorithm complexity):
  - # gates in q circuit  $\in O(\log^{3.97}(1/\epsilon));$
  - CPU time on classical computer  $\in O(\log^{2.71}(1/\epsilon)).$

### Results

- CPTP channel simulation error is bounded by the inaccuracy of simulating corresponding minimally dilated unitary map.
- Derived exact decomposition of arbitrary single-qubit CPTP channel as a product of unitary channels and one Pauli and one rotated amplitude attenuation/amplification channel
- Simplified single-qubit CPTP channel simulation from two qubit ancillæ to one recyclable ancilla plus classical bits
- Developed an explicit geometric look-up database for use in the Solovay-Kitaev-Dawson-Nielsen algorithm
- Classical algorithm and quantum gate length  $polylog(1/\epsilon)$

イロン イロン イヨン イヨン