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1. Introduction and motivation



Introduction and motivation

Cold atoms in optical lattices provide clean realizations of many-
body Hamiltonians in isolation from a thermal environment.

Motivated extensive studies of nonequi-
librium quantum dynamics of thermally
isolated systems:

Polkovnikov, Sengupta, Silva, and Vengalattore, RMP (2011).

Unitary evolution with Schrodinger equa-
tion, time-dependent Hamiltonian.

Fully deterministic evolution:

10p)(t) = H(g(t))(t)

Bloch, Dalibard, and Zwerger, RMP (2008).



Introduction and motivation

Given H(t) = H(g(t)) and ¢ (0), what happens at a later time ¢?

Examples:
1. Quantum quench: g(t) = g; for t < 0, and g(t) = g5 for t > 0.

2. Linear ramping: ¢(t) = go for t <0, and g(t) = go + 7t for t > 0.

9(t) 5 70
Y — N
> >




Introduction and motivation

Given H(t) = H(g(t)) and ¢ (0), what happens at a later time ¢?

Examples:
1. Quantum quench: g(t) = g; for t < 0, and g(t) = g5 for t > 0.

2. Linear ramping: ¢(t) = go for t <0, and g(t) = go + 7t for t > 0.

9(t) 5 70
Y — N
> >

t t
What about stochastic driving of the system?
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(Generic setup

New ingredient:  Averaging over noise.

Recent studies: Bunin, D’Alessio, Kafri, and Polkovnikov (2011).
Marino and Silva (2012).
Pichler, Schachenmayer, Simon, Zoller, and Daley (2012).

Questions:
e How can we characterize the absorbed energy?

e What happens to the correlation functions?
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Two types of energy moments

The absorbed energy is a time-dependent random variable e. We
are interested in E(e) and Var(e).

What do we mean by €7 We have a coherent superposition for
each realization of noise.



Two types of energy moments

The absorbed energy is a time-dependent random variable e. We
are interested in E(e) and Var(e).

What do we mean by €7 We have a coherent superposition for
each realization of noise.

Two sources of fluctuations:
Classical (different wave functions): f(1,t)

Quantum (internal structure of wave functions): [¢/) = >  ¢¥|n)
b
fx, 1) @ I CU RN (b)
! (Y t ‘

X =’<€>, € x=(€),€




Two types of energy moments

This leads to two types of moments:

r

< (€m) = [ dpf(, ) (|Hy"[¢) = tr [Hg" p(t)]

erm = [ dpf(,t) (| Holp))™

One average: E(e) = (e) ;
@ (@

Vars(€) = (62 - ((6))

N——"

Two variances: Vari (e
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Energy fluctuations in a noisy Luttinger
liquid

H(K)=u) oo (K4 + % ¢ ®,P_,)
H(K(t)) = H(Ko+ 0K (t)) for t >0

Traditional way: integrate out the noise at the outset.

Leads to quartic terms in the bosonic fields.



Energy fluctuations in a noisy Luttinger
liquid
H(K)=u) oo (K4 + % ¢ ®,P_,)
H(K(t)) =H(Ky+0K(t)) fort >0
Traditional way: integrate out the noise at the outset.

<Iiads to quartic terms in the bosonic fields.

An alternative approach: working directly with wave functions.
% Cx
q>0 (Hq + H(f )

The wave function for any K(t) can be written as

Two harmonic oscillators per mode q: H = )

V({24 }.8) = Ty (2122 ) exp (g 24(0) 2,7



Energy fluctuations in a noisy Luttinger
liquid

The parameters z, satisfy:

i24(8) = xly [(K®) 2(1)* — 1], 2(0) = K;'!

Langevin equation: /

f iZ2g = % (Kjz2 —1) —q (K§z2 +1) oo

Sa(t) = —0K(t) /K2 —

5&(t1>(504(t2) = W25(t1 — tg)

>

\



Energy fluctuations in a noisy Luttinger
liquid

Perturbative treatment:
Experimentally, the regime of interest is |0z, < K L

To leading order:
1024 =2q (024 — dar) = dz4(t) = 2iq fot dt’ e2iq(t/—t)504(t/).

[@ ~ L K2W?t/4 J




Energy fluctuations in a noisy Luttinger
liquid
Perturbative treatment:

Experimentally, the regime of interest is |0z,| < K L

To leading order:
i 024 = 2q (5,zq — o) = 5Zq(t) = 2iq fot dt’ €2iq(t’_t)5a(t/).

[@ ~ L K2W?t/4 J

() = (H?), (o =(H)* H=3 ,(H+H)

N
<HCI1HQ2> <HQ1><HQ2>

Ve, —
—

only different for ¢; = ¢o in the same R or & sector




Energy fluctuations in a noisy Luttinger
liquid

(@) =17 +2%, ((H2) - (H,P?)




Energy fluctuations in a noisy Luttinger
liquid

@ (@) =1 () +2x, (@3 - )

O(L?) O(L?) O(L)

(In the thermodynamic limit classical fluctuations dominate.)




Energy fluctuations in a noisy Luttinger
liquid

@ (@) =1 () +2x, (@3 - )

O(L?) O(L?) O(L)

(In the thermodynamic limit classical fluctuations dominate.)

(€)2 — (@)2 = LS KGWH2 L2 F (nt)

CHEES

[ Var(e) — f(wt) [E(e)]QJ F(gj) N{ 2 (1 _ %CEQ) ozl

independent of Ky and W
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Correlation functions

Expressions in terms of z,:

(P(x)P(x")) = %Zq>0 COS[ZgZ;x/)]

Correlation function | Ground state | Correction due to noise
(P(x)P(x')) In(x — ') o W23 (z — 2') ™4
(0, P ()0, P(x')) (x —a')~? o W23 (x — 2') ¢
(eiv®(x) g—iv®(a)) (z — x/)—u2/2 x W23 (z — $/>—4—1/2/2

CO(z) ~az=2, C(x) — CO(z) o W2t3gp=24
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6. Fokker-Planck approach



Fokker-Planck approach

So far everything has been purterbatve in 0z, (linearized Langevin
equation and expanded observables).

Can we go beyond this approximation?
iZ2g = 5 (Kjz2 —1) —q (K322 + 1) da
Systematic approach based on Fokker-Plank equation:

(General formalism:

a: a vector of real stochastic variables

Ora; = hi(a@) + gi(a@)y(t), ~(E)v(') =26(t —1t')




Fokker-Planck approach

0, f(@t)=Df(d,t) D=—Lh -2

da; da; 0a, 97 T Bas aa 9i9;

\
G(a)|, = 11, da; G(a@) e”" f(a.0)
=11

; da; f(@,0) P *G(a)
DT = (hz’ + 23@ gg) 9a;, T 9i9; 3?11 a(ZJ
£(@,0) =TI, 6(a; — a;(0))

A systematic way to obtain a Taylor expansion to a finite
order, and an exact solution if we can resum.




Fokker-Planck approach

Noise-averaged ener
Perturbative 5 &Y

(Hy(Ko)) ~ L K3|0z4|? 102, =2q (624 — da) (Hg) = ¢ KgW?t




Fokker-Planck approach

Noise-averaged energy

Perturbative
(Hy(Ko)) ~ L K3|0z4|? 102, =2q (624 — da) (Hg) = ¢ KgW?t
Nonperturbative L @q, = Sz,

(Hy(Ko)) = § { sy [1+ K322 + 92)] — 1]

%q — QK()(] %ijQQKoqi %qf (50&

Iy =Koq (I2 — %>+ K;?) — Kiq (I — %2 — K;?) b
(Hy) = 4 [exp (2q2W2K8t) —

(€) = SWKIQJW% (62K§W2W2t — 2w KWt — 1)
0

),
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Summary

e We studied a thermally isolated Luttinger liquid driven with
a noisy Luttinger parameter by a mapping to classical sta-
tistical mechanics.

e We characterized energy fluctuations by two types of energy
moments, and argued that classical fluctuations dominate in
the thermodynamic limit.

e We found two relationships that exhibited some universal
features:

Var(e) = F(mt) [E(e)]?
Clx) —CO(x) x W2t3z=2~4, CO(z) ~ ™2



