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The Problem

A state of n entangled qubits requires 2" complex
numbers to specify, even approximately:

y)= ) a,lx)

Why is this a problem?
-Quantum state tomography

-Foundations of quantum mechanics (cf. Dorit’s talk)



Can we tame the exponential beast?

ldea: “Shrink quantum states down to reasonable
size” by viewing them operationally

Analogy: A probability distribution over n-bit strings also takes
~2" bits to specify. But seeing a sample only provides n bits

In this talk, I’ll survey 14 years of results showing how tools
from computational learning theory can be used to upper-
bound the “effective size” of quantum states

[A. 2004], [A. 2006], [A.-Drucker 2010], [A. 2017], [A. et al. 2017]

Lesson: “The linearity of QM helps tame
the exponentiality of QM”




The Absent-Minded Advisor Problem

Can you hand all your grad students the same n©1)-
qubit quantum state |), so that by measuring their
copy of |1) in a suitable basis, each student can
learn the {0,1} answer to their n-bit thesis question?

NO [Nayak 1999, Ambainis et al. 1999]
Indeed, quantum communication is no better than
classical for this task as n=>x
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On the Bright Side...

Suppose Alice wants to describe an n-qubit quantum
state |y) to Bob, well enough that, for any 2-outcome
measurement E in some finite set S, Bob can estimate
Pr(E(|)) accepts] to constant additive error

Theorem (A. 2004): In that case, it
suffices for Alice to send Bob only

~“nlogn-log|S|

classical bits (trivial bounds: exp(n), |S|)
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How does the theorem work?

Alice is trying to describe the n-qubit state p=|y))(\| to Bob

In the beginning, Bob knows nothing about p, so he guesses it’s
the maximally mixed state p,=I (actually 1/2" =1/D)

Then Alice helps Bob improve, by repeatedly telling him a
measurement E,ES on which his current guess p, , badly fails

Bob lets p, be the state obtained by starting from p,_;, then
performing E, and postselecting on getting the right outcome



Question: Why can Bob keep reusing the same state?

To ensure that, we actually need to “amplify” |y) to |)
®log(n) slightly increasing the number of qubits from n to n

log n

Gentle Measurement / Almost As
Good As New Lemma:

Suppose a measurement of a mixed
state p yields a certain outcome with
probability =1-¢

Then after the measurement, we still
have a state p’ that’s Ve-close to p in
trace distance
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Crucial Claim: Bob’s iterative learning procedure will “converge”

on a state p; that behaves like |y)®'°8(" on all measurements in
the set S, after at most T=0(n log(n)) iterations

Proof: Let n. = Prlfirst t postselections all succeed]l. Then

Solving, we find that t = O(n log(n))

— So it’s enough for Alice to tell Bob about
T=0(n log(n)) measurements E.,...,E;,
using log|S| bits per measurement

I'=—= Y W)yl ) =lv)

Complexity theory consequence:
BQP/gpoly C PostBQP/poly

(Open whether BQP/qgpoly=BQP/poly)
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Quantum Occam’s Razor
Theorem

Let |y) be an unknown entangled state of n particles

Suppose you just want to be able to estimate the
acceptance probabilities of most measurements E drawn

from some probability distribution n -

Thenitsufl “Quantum states are [FO(n):

1.Choose m ”
PAC-learnable
2.Go into your Tab and estimate acceptance probabiities of all of them

on |y)

3.Find any “hypothesis state” approximately consistent with all
measurement outcomes




11

How do we find the hypothesis state?

Here’s one way: let b,,...,b_ be the outcomes of
measurements E,,...,E

Then choose a hypothesis state 6 to minimize

i (Tr(Eo)-b, )

This is a convex programming problem, which can be
solved in time polynomial in D=2" (good enough in
practice for n=15 or so)

Optimized, linear-time iterative method for this problem:
[Hazan 2008]



Numerical Simulation
[A.-Dechter 2008]

We implemented Hazan’s algorithm in MATLAB, and
tested it on simulated quantum state data

We studied how the number of sample measurements m
needed for accurate predictions scales with the number
of qubits n, for n<10

Result of experiment: My theorem appears to be true...
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Now tested on real lab data
as well! [Rocchetto et al.
2017, in preparation]
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Combining My Postselection and

Quantum Learning Results

[A.-Drucker 2010]: Given an n-qubit state p and complexity
bound T, there exists an efficient measurement V on
poly(n,T) qubits, such that any state that “passes” V can be

used to efficiently estimate p’s response to any yes-or-no
measurement E that’s implementable by a circuit of size T

Application: Trusted quantum advice is equivalent to
trusted classical advice + untrusted quantum advice

In complexity terms: BQP/qpoly € QMA/poly

Proof uses boosting-like techniques, together with results
on g-covers and fat-shattering dimension
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New Result [A. 2017, in preparation]:
“Shadow Tomography”

Theorem: Let p be an unknown D-dimensional state, and let
E,...Ey be known 2-outcome measurements. Suppose we
want to know Tr(E,p) to within additive error =g, for all
iIE[M]. We can achieve this, with high probability, given
only k copies of p, where

Ve Open Problem:
k=0 log lOgD Dependence on D
4
E removable?

Challenge: How to measure E,,...,E,, without destroying our
few copies of p in the process!



Proof Idea
Theorem [A. 2006, fixed by Harrow-Montanaro-Lin 2016]:

Let p be an unknown D-dimensional state, and let E,,...,E,,
be known 2-outcome measurements. Suppose we’re
promised that either there exists an i such that Tr(E,p)=c, or
else Tr(E,p)=c-¢ for all i€[M]. We can decide which, with
high probability, given only k copies of p, where

- 0( logM)
£

Indeed, can find an i with Tr(E.p)=c-¢, if given O(log* M / €2)
copies of p

but using the above to find the E’s to postselect on!

Now run my postselected learning algorithm [A. 2004],
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Online Learning of Quantum States

Coro

A., Chen, Hazan, Nayak 2017

lary of my Postselected Learning Algorithm: Let p be

an ur
outcc

Can use convex optimization tools to improve
the 1/¢3 to 1/¢?, and also to prove a regret

folloy bound: Even if the data you get isn’t consistent

we’ré

with any actual quantum state, you can output a
sequence of hypotheses that, after T iterations,
has made only O(V(Tn)) more mistakes than the

We c{ best hypothesis you could find after having seen

all the data

)-

e,

[ qum

/c=()k = loglog—)
E E
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Summary

The tools of learning theory let us show that often, the
“exponentiality” of quantum states is more bark than bite

l.e. there’s a short classical string that specifies how the
guantum state behaves, on any 2-outcome measurement
you could actually perform

Applications from complexity theory to experimental
guantum state tomography...

Alas, these results don’t generalize to many-outcome
measurements, or to learning quantum processes

Biggest future challenge: Find subclasses of states and
measurements for which these learning procedures are
computationally efficient (Stabilizer states: Rocchetto

~N/r\N1 =7\
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