PAC-Learning and Reconstruction of Quantum States

Scott Aaronson (University of Texas at Austin)
KITP, October 12, 2017

The Problem

A state of n entangled qubits requires **2**ⁿ complex numbers to specify, even approximately:

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

Why is this a problem?

- -Quantum state tomography
- -Foundations of quantum mechanics (cf. Dorit's talk)

Can we tame the exponential beast?

Idea: "Shrink quantum states down to reasonable size" by viewing them operationally

Analogy: A probability distribution over n-bit strings *also* takes ~2ⁿ bits to specify. But seeing a sample only provides n bits

In this talk, I'll survey 14 years of results showing how tools from computational learning theory can be used to upper-bound the "effective size" of quantum states

[A. 2004], [A. 2006], [A.-Drucker 2010], [A. 2017], [A. et al. 2017]

Lesson: "The linearity of QM helps tame the exponentiality of QM"

The Absent-Minded Advisor Problem

Can you hand all your grad students the same $n^{O(1)}$ -qubit quantum state $|\psi\rangle$, so that by measuring their copy of $|\psi\rangle$ in a suitable basis, each student can learn the $\{0,1\}$ answer to their n-bit thesis question?

NO [Nayak 1999, Ambainis et al. 1999] Indeed, quantum communication is no better than classical for this task as $n \rightarrow \infty$

On the Bright Side...

Suppose Alice wants to describe an n-qubit quantum state $|\psi\rangle$ to Bob, well enough that, for any 2-outcome measurement E in some finite set S, Bob can estimate $Pr[E(|\psi\rangle)$ accepts] to constant additive error

Theorem (A. 2004): In that case, it suffices for Alice to send Bob only

~n log n · log | S |

classical bits (trivial bounds: exp(n), |S|)

ALL YES NO MEASUREMENTS
ALL YES NO MEASUREMENTS
PERFORMABLE USING \(\sin^2 \) GATES

How does the theorem work?

Alice is trying to describe the n-qubit state $\rho = |\psi\rangle\langle\psi|$ to Bob

In the beginning, Bob knows nothing about ρ , so he guesses it's the maximally mixed state ρ_0 =I (actually I/2ⁿ = I/D)

Then Alice helps Bob improve, by repeatedly telling him a measurement $E_t \in S$ on which his current guess ρ_{t-1} badly fails

Bob lets ρ_t be the state obtained by starting from ρ_{t-1} , then performing E_t and postselecting on getting the right outcome

Question: Why can Bob keep reusing the same state?

To ensure that, we actually need to "amplify" $|\psi\rangle$ to $|\psi\rangle$ $^{\otimes \log(n)}$, slightly increasing the number of qubits from n to n log n

Gentle Measurement / Almost As Good As New Lemma:

Suppose a measurement of a mixed state ρ yields a certain outcome with probability $\geq 1-\epsilon$

Then after the measurement, we still have a state ρ' that's $\sqrt{\epsilon}$ -close to ρ in trace distance

Crucial Claim: Bob's iterative learning procedure will "converge" on a state ρ_T that behaves like $|\psi\rangle^{\otimes \log(n)}$ on all measurements in the set S, after at most T=O(n log(n)) iterations

Proof: Let p. = Pr[first t postselections all succeed]. Then Solving, we find that $t = O(n \log(n))$ So it's enough for Alice to tell Bob about T=O(n log(n)) measurements $E_1,...,E_T$ using log|S| bits per measurement Complexity theory consequence: **BQP/qpoly** ⊆ PostBQP/poly (Open whether BQP/qpoly=BQP/poly)

Quantum Occam's Razor Theorem

Let $|\psi\rangle$ be an unknown entangled state of n particles

Suppose you just want to be able to estimate the acceptance probabilities of most measurements E drawn from some probability distribution μ

Then it suff

"Quantum states are PAC-learnable" 1.Choose m

2.Go into your lab and estimate acceptance probabilities of all of them on $|\psi\rangle$

3. Find any "hypothesis state" approximately consistent with all measurement outcomes

How do we find the hypothesis state?

Here's one way: let $b_1,...,b_m$ be the outcomes of measurements $E_1,...,E_m$

Then choose a hypothesis state σ to minimize

$$\sum_{i=1}^{m} (\operatorname{Tr}(E_i \sigma) - b_i)^2$$

This is a convex programming problem, which can be solved in time polynomial in $D=2^n$ (good enough in practice for $n \le 15$ or so)

Optimized, linear-time iterative method for this problem: [Hazan 2008]

Numerical Simulation

[A.-Dechter 2008]

We implemented Hazan's algorithm in MATLAB, and tested it on simulated quantum state data

We studied how the number of sample measurements m needed for accurate predictions scales with the number of qubits n, for n≤10

Result of experiment: My theorem appears to be true...

Combining My Postselection and Quantum Learning Results

[A.-Drucker 2010]: Given an n-qubit state ρ and complexity bound T, there exists an efficient measurement V on poly(n,T) qubits, such that any state that "passes" V can be used to efficiently estimate ρ 's response to any yes-or-no measurement E that's implementable by a circuit of size T

Application: Trusted quantum advice is equivalent to trusted *classical* advice + *untrusted* quantum advice

In complexity terms: $BQP/qpoly \subseteq QMA/poly$

Proof uses boosting-like techniques, together with results on ϵ -covers and fat-shattering dimension

New Result [A. 2017, in preparation]: "Shadow Tomography"

Theorem: Let ρ be an unknown D-dimensional state, and let $E_1,...,E_M$ be known 2-outcome measurements. Suppose we want to know $Tr(E_i\rho)$ to within additive error $\pm \epsilon$, for **all** $i\in[M]$. We can achieve this, with high probability, given only k copies of ρ , where

$$k = \widetilde{O}\left(\frac{\log^4 M \cdot \log D}{\varepsilon^4}\right)$$

Open Problem:

Dependence on D removable?

Challenge: How to measure $E_1,...,E_M$ without destroying our few copies of ρ in the process!

Proof Idea

Theorem [A. 2006, fixed by Harrow-Montanaro-Lin 2016]:

Let ρ be an unknown D-dimensional state, and let $E_1,...,E_M$ be known 2-outcome measurements. Suppose we're promised that either there exists an i such that $Tr(E_i\rho) \ge c$, or else $Tr(E_i\rho) \le c-\varepsilon$ for all $i \in [M]$. We can decide which, with high probability, given only k copies of ρ , where

$$k = O\left(\frac{\log M}{\varepsilon^2}\right)$$

Indeed, can find an i with $Tr(E_i\rho) \ge c-\epsilon$, if given $O(\log^4 M / \epsilon^2)$ copies of ρ

Now run my postselected learning algorithm [A. 2004], but using the above to find the E_i's to postselect on!

Online Learning of Quantum States

A., Chen, Hazan, Nayak 2017

Corollary of my Postselected Learning Algorithm: Let ρ be

an ur

outco

follov

we're

We c

Can use convex optimization tools to improve the $1/\epsilon^3$ to $1/\epsilon^2$, and also to prove a **regret bound**: Even if the data you get isn't consistent with any actual quantum state, you can output a sequence of hypotheses that, after T iterations, has made only $O(\sqrt(Tn))$ more mistakes than the best hypothesis you could find after having seen all the data

$$k = O\left(\frac{-\varepsilon}{\varepsilon^3}\right) \log \log \frac{-\varepsilon}{\varepsilon}$$

Summary

The tools of learning theory let us show that often, the "exponentiality" of quantum states is more bark than bite

I.e. there's a short classical string that specifies how the quantum state behaves, on any 2-outcome measurement you could actually perform

Applications from complexity theory to experimental quantum state tomography...

Alas, these results don't generalize to many-outcome measurements, or to learning quantum processes

Biggest future challenge: Find subclasses of states and measurements for which these learning procedures are *computationally* efficient (Stabilizer states: Rocchetto

2017