Limits on the reliable storage of information in a volume of space

Steve Flammia

SF, J. Haah, M. Kastoryano, and I. Kim Quantum 1, 4 (2017), arXiv:1610.06169

Frontiers of Quantum Information Physics 12 October 2017 KITP, Santa Barbara

Information, gravity, and geometry

This talk is about **limitations on information storage** in a volume of space, and the relationship between **information** and **geometry** of space.

Information, gravity, and geometry

Information aravity and acometry ER = EPRAlso in 1935, Einstein and Rosen (ER) showed that widely separated black holes can be connected by a tunnel through space-time now often known as a wormhole. This talk is abou volume of space, and the relations space. Wormhole Black Black hole 2 hole 1 Quantum entanglement Particle Particle Physicists suspect that the connection in a wormhole and the connection in quantum entanglement are the same thing, just on a vastly different scale. Aside from their size there is no fundamental difference. © nature NIK SPENCER/NATURE

Quantum error correcting codes

No gravity in this talk, only codes, information, and geometry.

An [[*n*,*k*,*d*]] quantum error correcting code is defined by three parameters:

- number of physical qubits *n*
- number of logical qubits k
- code distance d

Obviously, $k \le n$ and $d \le n$, but not all triples are possible.

However, it is known that *random* codes can achieve $k \ge \Omega(n)$ and $d \ge \Omega(n)$.

What happens when we insist that our code has additional locality structure?

Topological codes

Distance *d* relates to the systole of the geometry, and we get *tradeoff bounds* for $n = L^{D}$ in a Euclidean lattice:

 $\cdot k d^{2/(D-1)} \leq c n$

Subspace and commuting projector codes Bravyi, Poulin, Terhal

$\cdot k d^{1/(D-1)} \leq c n$

Subsystem codes Bravyi; Bravyi Terhal; Bacon, SF, Harrow, Shi

$\cdot kd^{1/2} \leq cn$

D=2 classical codes Bravyi, Poulin, Terhal; Yoshida

$\cdot k d^2 \le c n (\log k)^2$

Subspace codes on D=2 <u>hyperbolic</u> lattice Delfosse

Topological codes

Distance *d* relates to the systole of the geometry, and we get *tradeoff bounds* for $n = L^{D}$ in a Euclidean lattice:

 $\cdot k d^{2/(D-1)} \leq c n$

Subspace and commuting projector codes Bravyi, Poulin, Terhal

$\cdot k d^{1/(D-1)} \leq c n$

Subsystem codes Bravyi; Bravyi Terhal; Bacon, SF, Harrow, Shi

$\cdot kd^{1/2} \leq cn$

D=2 classical codes Bravyi, Poulin, Terhal; Yoshida All of these results assume exact error correction. What happens when we have an ε of room?

$\cdot k d^2 \le c n (\log k)^2$

Subspace codes on D=2 <u>hyperbolic</u> lattice Delfosse

An *exact* quantum code can perfectly correct *d*-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore no code can correct more than $t \le n/4$ errors (cf. classical codes).

An *exact* quantum code can perfectly correct *d*-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore no code can correct more than $t \le n/4$ errors (cf. classical codes).

An *exact* quantum code can perfectly correct *d*-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore no code can correct more than $t \le n/4$ errors (cf. classical codes).

An *exact* quantum code can perfectly correct *d*-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore no code can correct more than $t \le n/4$ errors (cf. classical codes).

However, *approximate* quantum codes can correct **t** = **n/2** errors... *with exponential accuracy*! Crépeau, Gottesman, Smith (2005)

The CGS codes are highly nonlocal. But this example suggests that the approximate case can differ dramatically from the exact case.

Commuting projector codes

 $\{S_j\} \quad [S_j, S_k] = 0 \quad S_j = S_j^2$ $\Pi = \prod_j S_j \quad \mathcal{C} = \{|\psi\rangle, \Pi |\psi\rangle = |\psi\rangle\}$ $\Rightarrow \mathcal{C} \text{ is the code space } \Rightarrow \Lambda \text{ is the lattice}$ $\Rightarrow \text{ Consider erasure errors on the region A}$

R is a purifying system

- (i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.
- (ii) Decoupling: For any $\rho \in C$ we have $I_{\rho}(A:CR) = 0$.
- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\overline{\mathcal{C}}}$

- (i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.
- (ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A:CR) = 0$.
- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$
- ► (i) Topological order

- (i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.
- (ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A:CR) = 0$.
- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$
- (i) Topological order
- (ii) Decoupling

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any
$$\rho \in C$$
 we have $I_{\rho}(A:CR) = 0$.

- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$
- (i) Topological order
- (ii) Decoupling
- (iii) Error correction

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any
$$\rho \in C$$
 we have $I_{\rho}(A:CR) = 0$.

- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$
- (i) Topological order
- (ii) Decoupling
- (iii) Error correction
- (iv) Disentangling unitary

- (i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.
- (ii) Decoupling: For any $\rho \in C$ we have $I_{\rho}(A:CR) = 0$.
- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$
- (i) Topological order
- (ii) Decoupling
- (iii) Error correction
- (iv) Disentangling unitary
- (v) Cleaning

- (i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.
- (ii) Decoupling: For any $\rho \in C$ we have $I_{\rho}(A:CR) = 0$.
- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any
$$\rho \in C$$
 we have $I_{\rho}(A:CR) = 0$.

- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

Focus on topological codes; tradeoff bounds

Take as our basic definition

Approximate QEC

Definition (approximate correctability):

There exists a recovery map \mathcal{R}_B^{AB} such that for any code state $\rho^{ABR} \in \mathcal{C}$ the following holds:

 $\mathcal{B}(\rho^{ABR}, \mathcal{R}^{AB}_B(\rho^{BR})) \leq \delta$

 \blacktriangleright Bures distance $\mathcal{B}(\rho,\sigma)^2 = 1 - F(\rho,\sigma)$

$$F(\rho,\sigma) = \|\sqrt{\rho}\sqrt{\sigma}\|_1$$

Stabilized distance; R is a copy of the logical space.

Approximate QEC

Definition (local approximate correctability):

There exists a recovery map \mathcal{R}_B^{AB} such that for any code state $\rho^{ABCR} \in \mathcal{C}$ the following holds:

 $\mathcal{B}(\rho^{ABCR}, \mathcal{R}^{AB}_B(\rho^{BCR})) \leq \delta$

state can be recovered without modifying C

Equivalent formulations

Theorem (information-disturbance tradeoff):

$$\inf_{\omega^{A}} \sup_{\rho^{ABCR}} \mathcal{B}(\omega^{A} \otimes \rho^{CR}, \rho^{ACR}) = \inf_{\mathcal{R}_{B}^{AB}} \sup_{\rho^{ABCR}} \mathcal{B}(\mathcal{R}_{B}^{AB}(\rho^{BCR}), \rho^{ABCR})$$

$$\delta_{\ell}(A) := \inf_{\omega^{A}} \sup_{\rho^{ABCR}} \mathcal{B}(\omega^{A} \otimes \rho^{CR}, \rho^{ACR})$$

$$ho^{ABCR}$$
 is in the code space

 $\implies \omega^A$ is some fixed state on A

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any
$$\rho \in C$$
 we have $I_{\rho}(A:CR) = 0$.

- (iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.
- (iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .
- (v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

 $(iii) \le (iv)$

Equivalent formulations

Theorem (information-disturbance tradeoff):

$$\inf_{\omega^{A}} \sup_{\rho^{ABCR}} \mathcal{B}(\omega^{A} \otimes \rho^{CR}, \rho^{ACR}) = \inf_{\mathcal{R}_{B}^{AB}} \sup_{\rho^{ABCR}} \mathcal{B}(\mathcal{R}_{B}^{AB}(\rho^{BCR}), \rho^{ABCR})$$

$$\delta_{\ell}(A) := \inf_{\omega^{A}} \sup_{\rho^{ABCR}} \mathcal{B}(\omega^{A} \otimes \rho^{CR}, \rho^{ACR})$$

Theorem (decoupling):

$$\frac{1}{9}\delta_{\ell}(A)^2 \le \sup_{\rho^{ABCR}} \mathcal{B}(\rho^{ACR}, \rho^A \otimes \rho^{CR}) \le 2\delta_{\ell}(A)$$

(Also need to prove $B^2 \leq I(A:R) \leq \delta \log(1/\delta)$)

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_{\rho}(A:CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1} .

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

 $(iii) \le (iv)$

(iii) $\langle = \rangle$ (ii) but with different error order

<u>Error correction \Rightarrow cleanability:</u>

If A is locally correctable: $\mathcal{B}(\mathcal{R}_B^{AB}(\rho^{BCR}), \rho^{ABCR}) \leq \delta$

Then for any logical unitary U^{ABC} , the pull-back $V^{BC} = (\mathcal{R}^{AB}_B)^*(U^{ABC})$ satisfies

 $||(U^{ABC} - V^{BC})\Pi|| \le 4\sqrt{\delta}$

Error correction \Leftarrow cleanability:

If for any U^{AB} there exists a $||V^B|| \le 1$ on B s.t. $||(U^{ABC} - V^{BC})\Pi|| \le \delta$ Then there exists ω^A s.t. $||\rho^{AB} - \omega^A \otimes \rho^R||_1 \le 5\delta$

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_{\rho}(A:CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $\mathcal{R}_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B , such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1} .

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_{\mathcal{C}} = V^{BC}|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

 $(iii) \le (iv)$

(iii) <=> (ii) but with different error order
(iii) <=> (v) but with different error order
and different locality constraints

BPT bound

Tradeoff bound

 $kd^2 \leq cn$ Subspace or commuting projector codes Bravyi, Poulin, Terhal

📫 To

Toric code saturates the bound in 2D

Proof:

- Union lemma
- Counting degrees of freedom

Approximate BPT

Tradeoff bound

Approximate union bound

Need locality of recovery

$kd^2 \le cn$

BPT bound

Expansion Lemma:

If A is correctable and B is correctable, then $A \cup B$ is correctable.

Proof:

$$\begin{array}{ll} A \ \text{correctable} \Rightarrow & \rho^{ACD} = \omega^A \otimes \rho^{CD} & \text{(iv)} \\ B \ \text{correctable} \Rightarrow \mathcal{R}^{ABC}_{AC}(\rho^{ACD}) = \rho^{ABCD} \text{(iii)} \end{array}$$

Define a map $\mathcal{F}_{C}^{ABC}(\rho^{CD}) = \mathcal{R}_{AC}^{ABC}(\omega^{A} \otimes \rho^{CD})$

Show (iii) $\mathcal{F}_{C}^{ABC}(\rho^{CD}) = \mathcal{R}_{AC}^{ABC}(\omega^{A} \otimes \rho^{CD}) = \mathcal{R}_{AC}^{ABC}(\rho^{ACD}) = \rho^{ABCD}$

$$kd^2 \le cn$$

(iii)

(iii)

BPT bound

Union Lemma:

If A is correctable and B is correctable, then $A \cup B$ is correctable.

Proof:

$$A \text{ correctable} \Rightarrow \mathcal{R}^{A\partial A}_{\partial A}(\rho^{\Lambda \setminus A}) = \rho^{\Lambda}$$
$$B \text{ correctable} \Rightarrow \mathcal{R}^{B\partial B}_{\partial B}(\rho^{\Lambda \setminus B}) = \rho^{\Lambda}$$

 Λ

Clearly, $\mathcal{R}^{AB\partial B}_{\partial AB}(\rho^{\Lambda\backslash AB})=\rho^{\Lambda}$

 $(1 - c \epsilon \log(1/\epsilon))kd^2 \le c'n\ell^4$

Proof:

Construct the largest square correctible region by adding 'onion' rings.

 \blacktriangleright Largest square region d^2

Decompose the lattice as in Fig 2.

 $X \operatorname{and} Y$ are correctable

$$I(X:R) = S(X) + S(R) - S(XR) = 0$$
$$S(Y) + S(R) - S(YR) = 0$$

Sum the two and use subadditivity to get

$$S(R) \le S(Z)$$

Take identity state on code space

 $S(R) = k \log(2)$ and $S(Z) \le cn/d^2 \implies kd^2 \le cn$

Take identity state on code space

 $S(R) = k \log(2)$ and $S(Z) \le cn/d^2 \implies kd^2 \le cn$

Finite anyon types

If the unitaries that commute with the code space are "flexible strings", then the code space has bounded degeneracy.

Thus we can *derive* one of the key assumptions of the algebraic theory of anyons, namely that there are only a bounded number of simple objects (anyon types).

Definition 14. A subspace Π on a two-dimensional system admits flexible (logical) operators if for any logical unitary operator U^{XYZ} there exist operators V_1^{YZ} supported on YZ and V_2^{XZ} on XZsuch that $\|V_i\| \leq 1$, $\|\Pi(U - V_i)\| \leq \epsilon_{\ell}$, and $\|(U - V_i)\Pi\| \leq \epsilon_{\ell}$, where i = 1, 2 and ϵ_{ℓ} is independent of system size and vanishes as $\ell \to \infty$.

Assuming flexible logical operators, we find that:

 $\dim \mathcal{C} \le \exp(O(\ell^2))$

Further applications

Support of logical operators

Theorem For any (δ, ℓ) -correctable code C with dim C > 1 on a D-dimensional lattice of linear size L, if $10L\delta < \ell$, then the code distance is bounded from above by $5\ell L^{D-1}$.

Theorem For any (δ, ℓ) -correctable code of code distance d on a D-dimensional lattice with Euclidean geometry of linear size L, there exists a region Y that contains \tilde{d} qubits such that every logical operator U can be approximated by an operator V on Y where

$$\begin{aligned} \|(U-V)\Pi\| &\leq O\left(\sqrt{n\delta/d}\right)\\ \tilde{d}d^{\frac{1}{D-1}} &\leq O(n\ell^{\frac{D}{D-1}}) \end{aligned}$$

Saturating these bounds: From Circuits to Codes

- Begin with a stabilizer code of your choice
- Write a Clifford quantum circuit for measuring the stabilizers of this code.
- Turn the circuit elements into input/output qubits
- Add gauge generators via Pauli circuit identities
- This defines the code

Bacon, SF, A. Harrow, J. Shi, 2014

Circuits to codes

- Concatenation of codes, localized on a 3D lattice
- Local subsystem codes exist with

 $d = O(L^{D-1-\varepsilon})$

and

 $\varepsilon = O(1/\sqrt{\log n})$

These codes reliably encode almost as much information as there is on the boundary. Holographic information encoding

Highest level of concatenation

Total volume is $n = L^D$

Bacon, SF, A. Harrow, J. Shi, 2014

Conclusions

Consistent definition of approximate topological quantum codes

Geometry alone constrains information storage, even with an ϵ .

Fractional quantum Hall states?

Applications to Holography? (MERA codes, Kastoryano & Kim?)

Approximate Eastin-Knill theorem?

Subsystem code version?

SF, J. Haah, M. Kastoryano, I. Kim, Quantum 1, 4 (2017), arXiv:1610.06169

Bacon, SF, A. Harrow, J. Shi, IEEE Tr. Inf. Th. 63, 2464 (2017), arXiv:1411.3334

