Limits on the reliable storage of information in a volume of space

Steve Flammia

SF, J. Haah, M. Kastoryano, and I. Kim
Quantum 1, 4 (2017), arXiv:1610.06169

Frontiers of Quantum Information Physics
12 October 2017 KITP, Santa Barbara

Information, gravity, and geometry

This talk is about limitations on information storage in a volume of space, and the relationship between information and geometry of space.

Information, gravity, and geometry

This talk is about limitations on information storane in_a volume of space, and the relationst

Information aravity and genmetry

This talk is abou and the relations

Also in 1935, Einstein and Rosen (ER) showed that widely separated black holes can be connected by a tunnel through space-time now often known as a wormhole.
solume of space, space.

Quantum error correcting codes

No gravity in this talk, only codes, information, and geometry.
An $[[n, k, d]]$ quantum error correcting code is defined by three parameters:

- number of physical qubits n
- number of logical qubits k
- code distance d

Obviously, $k \leq n$ and $d \leq n$, but not all triples are possible.
However, it is known that random codes can achieve $k \geq \Omega(n)$ and $d \geq \Omega(n)$.
What happens when we insist that our code has additional locality structure?

Topological codes

Distance d relates to the systole of the geometry, and we get tradeoff bounds for $n=L^{D}$ in a Euclidean lattice:

- $k d^{2 /(D-1)} \leq c n$

Subspace and commuting projector codes
Bravyi, Poulin, Terhal

- $k d^{1 /(D-1)} \leq c n$

Subsystem codes
Bravyi; Bravyi Terhal;
Bacon, SF, Harrow, Shi

- $k d^{1 / 2} \leq \boldsymbol{c} \boldsymbol{n}$

D=2 classical codes
Bravyi, Poulin, Terhal;
Yoshida

- $k d^{2} \leq c n(\log k)^{2}$

Subspace codes on $\mathrm{D}=2$ hyperbolic lattice
Delfosse

Topological codes

Distance d relates to the systole of the geometry, and we get tradeoff bounds for $n=L^{D}$ in a Euclidean lattice:

- $k d^{2 /(D-1)} \leq c n$

Subspace and commuting projector codes

Bravyi, Poulin, Terhal

- $k d^{1 /(D-1)} \leq c n$

Subsystem codes

Bravyi; Bravyi Terhal;
Bacon, SF, Harrow, Shi

- $k d^{1 / 2} \leq \boldsymbol{c} \boldsymbol{n}$

D=2 classical codes
Bravyi, Poulin, Terhal;
Yoshida

All of these results assume exact error correction. What happens when we have an ε of room?

- $k d^{2} \leq c n(\log k)^{2}$

Subspace codes on D=2 hyperbolic lattice
Delfosse

Exact vs. approximate QEC

An exact quantum code can perfectly correct d - 1 erasure errors.
Equivalently, it can perfectly correct any $t=(d-1) / 2$ arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct $n / 2$ erasure errors, therefore no code can correct more than $t \leq n / 4$ errors (cf. classical codes).

Exact vs. approximate QEC

An exact quantum code can perfectly correct d - 1 erasure errors.
Equivalently, it can perfectly correct any $t=(d-1) / 2$ arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct $n / 2$ erasure errors, therefore no code can correct more than $t \leq n / 4$ errors (cf. classical codes).

Exact vs. approximate QEC

An exact quantum code can perfectly correct d-1 erasure errors.
Equivalently, it can perfectly correct any $t=(d-1) / 2$ arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct $n / 2$ erasure errors, therefore no code can correct more than $t \leq n / 4$ errors (cf. classical codes).

Exact vs. approximate QEC

An exact quantum code can perfectly correct d-1 erasure errors.
Equivalently, it can perfectly correct any $t=(d-1) / 2$ arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct $n / 2$ erasure errors, therefore no code can correct more than $t \leq n / 4$ errors (cf. classical codes).

However, approximate quantum codes can correct $\boldsymbol{t}=\boldsymbol{n} / \mathbf{2}$ errors...
with exponential accuracy!

The CGS codes are highly nonlocal. But this example suggests that the approximate case can differ dramatically from the exact case.

Commuting projector codes

$\left\{S_{j}\right\} \quad\left[S_{j}, S_{k}\right]=0 \quad S_{j}=S_{j}^{2}$
$\Pi=\prod S_{j} \quad \mathcal{C}=\{|\psi\rangle, \Pi|\psi\rangle=|\psi\rangle\}$
$\Rightarrow \mathcal{C}$ is the code space $\Rightarrow \Lambda$ is the lattice
\Rightarrow Consider erasure errors on the region A

R is a purifying system

There are several different ways we might define correctability of the code space that would naturally lead to a notion of topological code

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$
(i) Topological order

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$
(i) Topological order
(ii) Decoupling

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$
(i) Topological order
(ii) Decoupling
(iii) Error correction

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$
(i) Topological order
(ii) Decoupling
(iii) Error correction
(iv) Disentangling unitary

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{C}$
(i) Topological order
(ii) Decoupling
(iii) Error correction
(iv) Disentangling unitary
(v) Cleaning

Cleanability

Given a correctable region with a logical operator, we can clean it so that the logical operator does not touch the region.

Cleanability

Given a correctable region with a logical operator, we can clean it so that the logical operator does not touch the region.

Cleanability

Given a correctable region with a logical operator, we can clean it so that the logical operator does not touch the region.

Cleanability

Given a correctable region with a logical operator, we can clean it so that the logical operator does not touch the region.

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

\Rightarrow Focus on topological codes; tradeoff bounds

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, the ex exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Which properties can be extended to approximate codes?

Take as our basic definition

Approximate QEC

Definition (approximate correctability):
There exists a recovery map $\mathcal{R}_{B}^{A B}$ such that for any code state $\rho^{A B R} \in \mathcal{C}$ the following holds:

$$
\mathcal{B}\left(\rho^{A B R}, \mathcal{R}_{B}^{A B}\left(\rho^{B R}\right)\right) \leq \delta
$$

\Rightarrow Bures distance $\mathcal{B}(\rho, \sigma)^{2}=1-F(\rho, \sigma)$

$$
F(\rho, \sigma)=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}
$$

Stabilized distance; R is a copy of the logical space.

Approximate QEC

Definition (local approximate correctability):
There exists a recovery map $\mathcal{R}_{B}^{A B}$ such that for any code state $\rho^{A B C R} \in \mathcal{C}$ the following holds:

$$
\mathcal{B}\left(\rho^{A B C R}, \mathcal{R}_{B}^{A B}\left(\rho^{B C R}\right)\right) \leq \delta
$$

\Rightarrow state can be recovered without modifying C

Equivalent formulations

Theorem (information-disturbance tradeoff):

$$
\inf _{\omega^{A}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\omega^{A} \otimes \rho^{C R}, \rho^{A C R}\right)=\inf _{\mathcal{R}_{B}^{A B}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\mathcal{R}_{B}^{A B}\left(\rho^{B C R}\right), \rho^{A B C R}\right)
$$

$$
\delta_{\ell}(A):=\inf _{\omega^{A}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\omega^{A} \otimes \rho^{C R}, \rho^{A C R}\right)
$$

$\Rightarrow \rho^{A B C R}$ is in the code space
$R \Rightarrow \omega^{A}$ is some fixed state on A

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Which properties can be extended to approximate codes?
(iii) $<=>$ (iv)

Equivalent formulations

Theorem (information-disturbance tradeoff):

$$
\inf _{\omega^{A}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\omega^{A} \otimes \rho^{C R}, \rho^{A C R}\right)=\inf _{\mathcal{R}_{B}^{A B}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\mathcal{R}_{B}^{A B}\left(\rho^{B C R}\right), \rho^{A B C R}\right)
$$

$$
\delta_{\ell}(A):=\inf _{\omega^{A}} \sup _{\rho^{A B C R}} \mathcal{B}\left(\omega^{A} \otimes \rho^{C R}, \rho^{A C R}\right)
$$

Theorem (decoupling):

$$
\frac{1}{9} \delta_{\ell}(A)^{2} \leq \sup _{\rho^{A B C R}} \mathcal{B}\left(\rho^{A C R}, \rho^{A} \otimes \rho^{C R}\right) \leq 2 \delta_{\ell}(A)
$$

(Also need to prove $B^{2} \leq I(A: R) \leq \delta \log (1 / \delta)$)

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Which properties can be extended to approximate codes?
(iii) $<=>$ (iv)
(iii) $<=>$ (ii) but with different error order

Error correction \Rightarrow cleanability:
If A is locally correctable: $\mathcal{B}\left(\mathcal{R}_{B}^{A B}\left(\rho^{B C R}\right), \rho^{A B C R}\right) \leq \delta$
Then for any logical unitary $U^{A B C}$, the pull-back $V^{B C}=\left(\mathcal{R}_{B}^{A B}\right)^{*}\left(U^{A B C}\right)$ satisfies

$$
\left\|\left(U^{A B C}-V^{B C}\right) \Pi\right\| \leq 4 \sqrt{\delta}
$$

Error correction \Leftarrow cleanability:
If for any $U^{A B}$ there exists a $\left\|V^{B}\right\| \leq 1$ on B s.t. $\left\|\left(U^{A B C}-V^{B C}\right) \Pi\right\| \leq \delta$
Then there exists ω^{A} s.t. $\quad\left\|\rho^{A B}-\omega^{A} \otimes \rho^{R}\right\|_{1} \leq 5 \delta$

Lemma Let \mathcal{C} be a commuting projector code, and $A B C=\Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:
(i) Topological Quantum Order (TQO): for any observable O_{A} with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^{A}|\phi\rangle=\langle\psi| O^{A}|\psi\rangle$.
(ii) Decoupling: For any $\rho \in \mathcal{C}$ we have $I_{\rho}(A: C R)=0$.
(iii) Error correction: There exists a recovery map acting on $A B$ such that $\mathcal{R}_{B}^{A B}\left(\rho^{B C}\right)=\rho^{A B C}$ for any $\rho \in \Pi$.
(iv) Disentangling unitary: For any $\rho \in \mathcal{C}$ there exists a unitary U^{B}, such that $U^{B} \rho U^{B \dagger}=\omega^{A B_{1}} \otimes \rho^{B_{2} C}$, for some state $\omega^{A B_{1}}$.
(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{B C}$ such that $\left.U\right|_{\mathcal{C}}=$ $\left.V^{B C}\right|_{\mathcal{C}}$

Which properties can be extended to approximate codes?
(iii) $<=>$ (iv)
(iii) $<=>$ (ii) but with different error order
(iii) <=> (v) but with different error order and different locality constraints

BPT bound

Tradeoff bound

$$
k d^{2} \leq c n \quad \text { Subspace or commuting projector coded cravyi, Poulin, Terhal }
$$

\Rightarrow Toric code saturates the bound in 2D

Proof:

- Expansion lemma
- Union lemma

Counting degrees of freedom

Approximate BPT

Tradeoff bound

$$
k d^{2} \leq c n
$$

becomes

$$
(1-c \epsilon \log (1 / \epsilon)) k d^{2} \leq c^{\prime} n \ell^{4}
$$

Proof:

- Approximate expansion bound
$\Rightarrow \quad$ Need (iv) and (iii)

$$
\epsilon=\frac{\delta}{d / n}
$$

- Approximate union bound
$\Rightarrow \quad$ Need locality of recovery

BPT bound

$$
k d^{2} \leq c n
$$

Expansion Lemma:

If A is correctable and B is correctable, then $A \cup B$ is correctable.

Proof:

A correctable $\Rightarrow \quad \rho^{A C D}=\omega^{A} \otimes \rho^{C D}$
B correctable $\Rightarrow \mathcal{R}_{A C}^{A B C}\left(\rho^{A C D}\right)=\rho^{A B C D}$ (iii)

Define a map $\quad \mathcal{F}_{C}^{A B C}\left(\rho^{C D}\right)=\mathcal{R}_{A C}^{A B C}\left(\omega^{A} \otimes \rho^{C D}\right)$

Show (iii) $\quad \mathcal{F}_{C}^{A B C}\left(\rho^{C D}\right)=\mathcal{R}_{A C}^{A B C}\left(\omega^{A} \otimes \rho^{C D}\right)=\mathcal{R}_{A C}^{A B C}\left(\rho^{A C D}\right)=\rho^{A B C D}$

BPT bound

$$
k d^{2} \leq c n
$$

Union Lemma:

If A is correctable and B is correctable, then $A \cup B$ is correctable.

Proof:

A correctable $\Rightarrow \quad \mathcal{R}_{\partial A}^{A \partial A}\left(\rho^{\Lambda \backslash A}\right)=\rho^{\Lambda}$
B correctable $\Rightarrow \mathcal{R}_{\partial B}^{B \partial B}\left(\rho^{\Lambda \backslash B}\right)=\rho^{\Lambda}$
(iii)

Λ
Clearly, $\quad \mathcal{R}_{\partial A B}^{A B \partial B}\left(\rho^{\Lambda \backslash A B}\right)=\rho^{\Lambda}$

$$
(1-c \epsilon \log (1 / \epsilon)) k d^{2} \leq c^{\prime} n \ell^{4}
$$

Proof:

Construct the largest square correctible region by adding 'onion' rings.

Decompose the lattice as in Fig 2.
X and Y are correctable

$$
\begin{aligned}
& I(X: R)=S(X)+S(R)-S(X R)=0 \\
& S(Y)+S(R)-S(Y R)=0
\end{aligned}
$$

Sum the two and use subadditivity to get

$$
S(R) \leq S(Z)
$$

Fig 2

Take identity state on code space

$$
S(R)=k \log (2) \quad \text { and } \quad S(Z) \leq c n / d^{2} \quad \Rightarrow \quad k d^{2} \leq c n
$$

$$
(1-c \epsilon \log (1 / \epsilon)) k d^{2} \leq c^{\prime} n \ell^{4}
$$

Proof:

Construct the largest square correctible region by adding ‘onion’ rings.

$$
\text { Decompose the lattice as in Fi } \quad \text { Need (iii) }=\text { (iv) }
$$

X and Y are correctable

$$
I(X: R)=S(X)+S(R)-S(X R)=0
$$

$S(Y)+S(D)$

Sum the two and

$$
S(R) \leq S(Z)
$$

Fig 2
Take identity state on code space

$$
S(R)=k \log (2) \quad \text { and } \quad S(Z) \leq c n / d^{2} \quad \Rightarrow \quad k d^{2} \leq c n
$$

Finite anyon types

If the unitaries that commute with the code space are "flexible strings", then the code space has bounded degeneracy.

Thus we can derive one of the key assumptions of the algebraic theory of anyons, namely that there are only a bounded number of simple objects (anyon types).

Definition 14. A subspace Π on a two-dimensional system admits flexible (logical) operators if for any logical unitary operator $U^{X Y Z}$ there exist operators $V_{1}^{Y Z}$ supported on $Y Z$ and $V_{2}^{X Z}$ on $X Z$ such that $\left\|V_{i}\right\| \leq 1,\left\|\Pi\left(U-V_{i}\right)\right\| \leq \epsilon_{\ell}$, and $\left\|\left(U-V_{i}\right) \Pi\right\| \leq \epsilon_{\ell}$, where $i=1,2$ and ϵ_{ℓ} is independent of system size and vanishes as $\ell \rightarrow \infty$.

Assuming flexible logical operators, we find that:

$$
\operatorname{dim} \mathcal{C} \leq \exp \left(O\left(\ell^{2}\right)\right)
$$

Further applications

Support of logical operators

Theorem: For any (δ, ℓ)-correctable code \mathcal{C} with $\operatorname{dim} \mathcal{C}>1$ on a D-dimensional lattice of linear size L, if $10 L \delta<\ell$, then the code distance is bounded from above by $5 \ell L^{D-1}$.

Theorem , For any (δ, ℓ)-correctable code of code distance d on a D-dimensional lattice with Euclidean geometry of linear size L, there exists a region Y that contains \tilde{d} qubits such that every logical operator U can be approximated by an operator V on Y where

$$
\begin{aligned}
& \|(U-V) \Pi\| \leq O(\sqrt{n \delta / d}) \\
& \tilde{d} d^{\frac{1}{D-1}} \leq O\left(n \ell^{\frac{D}{D-1}}\right)
\end{aligned}
$$

Saturating these bounds：From Circuits to Codes

蜢 Begin with a stabilizer code of your choice
＊Write a Clifford quantum circuit for measuring the stabilizers of this code．

蛙 Turn the circuit elements into input／output qubits
．Add gauge generators via Pauli circuit identities

紜 This defines the code

Circuit element
Gauge generators

$$
\begin{array}{ll}
\sqrt{-} & X X, Z Z \\
H & Z X, X Z
\end{array}
$$

$$
-P
$$

$$
\begin{array}{cccc}
X X \\
X I
\end{array}, \begin{aligned}
& I I \\
& X X
\end{aligned}, \begin{gathered}
Z Z \\
I I
\end{gathered}, Z Z
$$

$\langle 0|-$
$-|0\rangle$
Z

Circuits to codes

*. Concatenation of codes, localized on a 3D lattice

䗉 Local subsystem codes exist with

$$
d=\mathrm{O}\left(L^{D-1-\varepsilon}\right)
$$

and

$$
\varepsilon=O(1 / \sqrt{\log n})
$$

槹 These codes reliably encode almost as much information as there is on the boundary.

Holographic information encoding

Highest level of concatenation
Total volume is $n=L^{D}$

Conclusions

Consistent definition of approximate topological quantum codes
Geometry alone constrains information storage, even with an ε.
Fractional quantum Hall states?
Applications to Holography? (MERA codes, Kastoryano \& Kim?)
Approximate Eastin-Knill theorem?
Subsystem code version?
SF, J. Haah, M. Kastoryano, I. Kim, Quantum 1, 4 (2017), arXiv:1610.06169
Bacon, SF, A. Harrow, J. Shi, IEEE Tr. Inf. Th. 63, 2464 (2017), arXiv:1411.3334

