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In this talk I will describe a provable, non-oracular, quantum speedup which is attained 

by constant-depth quantum circuits in a 2D architecture. 



I. Overview
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A depth-𝒅 quantum circuit consists of  𝑑 time steps.
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We are interested in constant-depth quantum circuits, for which 𝑑 = 𝑂(1).

A depth-𝒅 quantum circuit consists of  𝑑 time steps.

Each time step contains one- and two-qubit gates acting on disjoint qubits.



H

S

S

S

Constant-depth 

quantum circuits



Constant-time quantum 

computation

How much does parallelism 

buy us if  we only have a fixed 

computation time?
H

S

S

S

Constant-depth 

quantum circuits



Constant-time quantum 

computation

How much does parallelism 

buy us if  we only have a fixed 

computation time?
H

S

S

S

Constant-depth 

quantum circuits

Quantum algorithms for 

small quantum computers



Constant-time quantum 

computation
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Structure/Simulation

How much does parallelism 

buy us if  we only have a fixed 

computation time?

Cannot prepare codewords of  

good quantum codes 

[Eldar, Harrow 2015 ]

Efficient classical simulation of  

depth-2 circuits

[Terhal, Divincenzo 2002]

General simulation algorithms 

(superpolynomial) 

[Aaronson, Chen 2016]
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Constant-time quantum 
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Beat poly-time classical 

computation?

Constant-time quantum 

computation

Structure/Simulation

Constant-depth unlikely to be 

classically simulable.

[Terhal, Divincenzo 02]

Beat the best classical computers 

for some task?

[Gao et al. 17] 

[Bermejo-Vega et al. 17]

…uses IQP results…

[Bremner, Montanaro, Shepherd 16]

How much does parallelism 

buy us if  we only have a fixed 

computation time?

Cannot prepare codewords of  

good quantum codes 

[Eldar, Harrow 2015 ]

Efficient classical simulation of  

depth-2 circuits

[Terhal, Divincenzo 2002]

General simulation algorithms 

(superpolynomial) 

[Aaronson, Chen 2016]
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This talk: Are constant-depth quantum circuits more powerful than constant-

depth classical circuits? 
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Classical circuits

A classical gate computes a boolean function 𝑓: {0,1}𝑘 → {0,1}
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Constant-depth classical circuits

A depth-𝑑 classical circuit consists of  𝑑 layers (time steps) of  gates. 
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We consider constant-depth circuits composed of  bounded fan-in gates.

This class of  circuits is known as 𝑁𝐶0.
We also allow the circuit to be probabilistic (random input bits are provided).



Our result:

We describe a computational problem that is solved with certainty by a constant-

depth quantum circuit.

We prove that any classical circuit which solves the problem with high probability 

must have depth increasing logarithmically with input size.
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Our result:

We describe a computational problem that is solved with certainty by a constant-

depth quantum circuit (also: all gates act locally on a 2D grid).

We prove that any classical circuit which solves the problem with high probability 

must have depth increasing logarithmically with input size.

The quantum speedup is unconditional

(does not rely on complexity-theoretic conjectures and is non-oracular)
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II. The 2D Hidden Linear Function Problem
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Quadratic form on a grid

Let G = (V, E) be an N × N grid graph.   Write 𝑛 = 𝑁2 = 𝑉

Choose coefficients 𝐴𝑒 ∈ {0,1}
for each edge and 𝑏𝑣 ∈ {0,1} for each 

vertex.

𝐴𝑒

𝑏𝑣

Any choice of  coefficients defines a quadratic form  𝑞: {0,1}𝑛 → ℤ4

𝑞 𝑥 = 

𝑒= 𝑣,𝑤 ∈𝐸

2𝐴𝑒𝑥𝑣𝑥𝑤 −

𝑣∈𝑉

𝑏𝑣𝑥𝑣



The quadratic form hides a linear function

Define a set

ℒ 𝑞 = {𝑥 ∈ 𝔽2
𝑛: 𝑞 𝑥 ⊕ 𝑦 = 𝑞 𝑥 + 𝑞 𝑦 for all 𝑦 ∈ 𝔽2

𝑛}
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Define a set

ℒ 𝑞 = {𝑥 ∈ 𝔽2
𝑛: 𝑞 𝑥 ⊕ 𝑦 = 𝑞 𝑥 + 𝑞 𝑦 for all 𝑦 ∈ 𝔽2
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Lemma

The set ℒ 𝑞 is a linear subspace of  𝔽2
𝑛.  Furthermore, there is a “secret” bit string 𝑧 ∈ {0,1}𝑛

such that

𝑞 𝑥 = 2𝑧𝑇𝑥 ∀𝑥 ∈ ℒ 𝑞

Define a computational problem where the goal is to find a secret bit string… 
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The 2D Hidden Linear Function Problem

Input:   Coefficients A ∈ {0,1}|E| and 𝑏 ∈ {0,1} V .

Output: A “secret” bit string 𝑧 ∈ {0,1}𝑛 such that

𝑞 𝑥 = 2𝑧𝑇𝑥 ∀𝑥 ∈ ℒ 𝑞

Can be viewed as a non-oracular version of the Bernstein-Vazirani problem.

[Bernstein Vazirani 1993]

In general each instance of  the 2D HLF has many valid solutions 𝑧 .

Specifies a quadratic form 𝒒(𝒙)
and a subspace 𝓛 𝒒 ⊆ 𝔽𝟐

𝒏
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the 𝑁 × 𝑁 grid

Output

Quantum algorithm
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|0𝑛⟩

|𝑏⟩

|𝐴⟩

𝑧 ∈ {0,1}𝑛

Apply CZv,w for edges 

𝑒 = 𝑣,𝑤 with Ae = 1

A qubit for 

each vertex of  

the 𝑁 × 𝑁 grid

Output

Quantum algorithm
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Apply CZv,w for edges 

𝑒 = 𝑣,𝑤 with Ae = 1
Apply phase gate 𝑆𝑣 to 

qubits with 𝑏𝑣 = 1
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Output
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|0𝑛⟩

|𝑏⟩

|𝐴⟩

𝑧 ∈ {0,1}𝑛

𝑆=
1 0
0 −𝑖

Apply CZv,w for edges 

𝑒 = 𝑣,𝑤 with Ae = 1
Apply phase gate 𝑆𝑣 to 

qubits with 𝑏𝑣 = 1

A qubit for 

each vertex of  

the 𝑁 × 𝑁 grid

Output

Quantum algorithm

Fact: The output  𝑧 is a uniformly random solution to the 2D HLF Problem.
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|𝑏⟩

|𝐴⟩

|0𝑛⟩

|𝑏⟩
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1 time-step 1 time-step 1 time-step

Four layers of  CCZ gates.  

(even/odd vertical/horizontal edges)

Decompose CCZ gates into 1- and 2-qubit gates.

The algorithm can be implemented in constant-depth
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The 2D HLF problem is solved by a constant-depth quantum circuit with gates acting 

locally in 2D. 

Next we show that it cannot be solved by a constant-depth classical circuit…



III. Classical lower bound 



Theorem: The following holds for all sufficiently large 𝑁. Let 𝒞𝑁 be a classical probabilistic

circuit composed of  gates of  fan-in ≤ 𝐾 which solves size-𝑁 instances of  the 2D HLF

Problem with probability greater than 7/8. Then

depth 𝒞𝑁 ≥
log(𝑁)

8log(𝐾)



𝒞𝑁

𝐴 ∈ {0,1}|𝐸|

𝑏 ∈ {0,1}|𝑉|

𝑟 ∈ {0,1}ℓ

𝑧 ∈ {0,1}|𝑉|

Solution with 

probability > 𝟕/𝟖
Random bits

(drawn from any

joint distribution)

Input 
(instance on 

N × N grid)

Output

Circuit must have 

depth 𝛀(𝐥𝐨𝐠 𝐍 )



Quantum nonlocality

Measurement statistics of  entangled 

quantum states cannot be reproduced 

by local hidden variable models 
Vs.

Locality in shallow classical circuits

Each output bit can only depend on 

𝑂(1) input bits. 

Proof  Ideas
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Locality in classical circuits
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𝑥1
𝑥2

𝑥3
𝑥4

input output

AND
𝑥5
𝑥6

The lightcone 𝐿 𝑧𝑘 of  an output bit 𝑧𝑘 is the set of  input bits 𝑥𝑖 that are causually

connected to 𝑧𝑘.
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Locality in classical circuits

𝑧1
𝑥1
𝑥2

𝑥3
𝑥4

AND
𝑥5
𝑥6

input output

The lightcone 𝐿 𝑧𝑘 of  an output bit 𝑧𝑘 is the set of  input bits 𝑥𝑖 that are causually

connected to 𝑧𝑘.



Locality in classical circuits

𝐿 𝑧𝑘 ≤ 𝐾𝑑

“Constant-depth locality”:   Lightcones of  output bits have constant size

𝒞
depth 𝑑,

fan-in ≤ 𝐾

𝑥 𝑧 = 𝐹(𝑥)
(Includes random bits)

We’ll see that the 2D Hidden Linear Function problem cannot be solved by “constant-

depth local” circuits. First consider simpler forms of  locality…



Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990][Mermin 1990]
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[Greenburger et al. 1990][Mermin 1990]

𝐺𝐻𝑍 =
1

√2
000 + |111⟩

𝑃 𝐺𝐻𝑍 = 𝐺𝐻𝑍

𝑃 ∈ {𝑋𝑋𝑋,−𝑋𝑌𝑌,−𝑌𝑋𝑌,−𝑌𝑌𝑋}

satisfies:

Choose bits 𝑏1, 𝑏2, 𝑏3 and then measure each qubit of  |GHZ⟩ in either the X basis (if  𝑏𝑗 =

0) or the Y basis (if  𝑏𝑗 = 1). Outcomes 𝑧𝑗 ∈ −1,+1 satisfy:

𝑖𝑏1+𝑏2+𝑏3𝑧1𝑧2𝑧3 = 1 𝑏1 ⊕𝑏2 ⊕𝑏3 = 0whenever

The GHZ relation cannot be satisfied by a completely local classical probabilistic circuit 

where each output bit 𝒛𝒋 is correlated with at most one of  the input bits 𝒃𝒌.

“GHZ relation”
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Graph state on an 𝑀-cycle (𝑀 even): Φ𝑀 = ෑ

𝑗=1

𝑀

𝐶𝑍𝑗,𝑗+1 𝐻⊗𝑀|0𝑀⟩

Choose 3 qubits 𝑢, 𝑣, 𝑤 on the even sublattice. Measure 
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Choosing 𝑨 to describe the adjacency matrix of  a cycle and choosing 𝒃 appropriately 

we infer (from Barrett et al.) a cycle relation satisfied by input/output.  

A classical circuit which solves the 2D HLF problem must also satisfy all such cycle 

relations….
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Open problems

Recursive HLF problems? The recursive version of  Bernstein-Vazirani gives a 

superpolynomial speedup in query complexity. 

Noisy constant-depth quantum circuits vs noiseless constant-depth classical circuits ?

Sampling problems? Can constant-depth quantum circuits sample from a distribution that 

can’t be sampled by classical constant depth circuits? A recent characterization of  distributions 

sampled by 𝑁𝐶0 circuits might be useful [Viola 2014].

Polynomial speed-up ? Constant-depth quantum algorithm solves the 2D HLF Problem in 

linear time. Best known classical algorithm takes time 𝑂(𝑛2).


