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“Laws” of Entanglement Scaling

Ground States and other zero energy density states:  

Sn~ LAd-1 up to log corrections,  “Area Law”A
A

LA

Finite energy density eigenstates: (assuming system does not 
many-body localize) 

Sn ~ LAd,    “Volume Law”

“What would be called a conjecture in computer science,  
would be declared a “Law” in physics” - Scott Aaronson (KITP 2013)



Renyi Entanglement Entropies of ALL eigenstates
 of a chaotic, local Hamiltonian 

(Steve White’s favorite slide)
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Ground State Entanglement and 
Universal Data

1+1-d CFT:  S ~ c log(LA/𝜀)

2+1-d CFT or Topologically Ordered Phase:    S ~ LA/𝜀 - 𝜸 

Fermi Surface in d+1 dimensions: S ~ (kFLA)d-1 log(kFLA)

Holzhey, Wilczek, Larsen; Cardy, Calabrese; Casini, Huerta; Ryu, Takayanagi; 
Kitaev, Preskill; Wen, Levin; Swingle; Gioev, Klich, and many others.



Entanglement of 
Finite Energy Density States?

At finite energy density, temperature “T” or equivalently 
energy density “u” provide a new scale.

This allows the “volume law” entanglement to be
independent of the ultraviolet cutoff.

For example, for the thermal state of a 1+1-d CFT,

⇢A,thermal(�) =
trA

�
e��HCFT

�

tr (e��HCFT )
S1 =

⇡cLA

3�
+ terms subleading in LA



“Volume Law” Coefficient (Definition)

2

states of chaotic systems, owing to eigenstate thermalization,
follow a volume law scaling: SA

n ⇠ Ld
A

(see, e.g.,26). Since
we will often employ the term ‘volume law coe�cient’, it is
important to define it precisely. We define the volume law
coe�cient of an eigenstate as limV!1 SA

n /VA while keeping
the ratio VA/V fixed and less than 1/2. Note that in princi-
ple this coe�cient can depend on the ratio VA/V itself. For
a thermal density matrix, ⇢ = e��H/tr e��H , the volume law
coe�cient is given by n�(f(n�) � f(�))/(n � 1) where f(�) is
the free energy density at temperature ��1. Therefore, in this
example, the volume law coe�cient is independent of VA/V .
Owing to eigenstate thermalization, the volume law coe�cient
of the Renyi entropy corresponding to chaotic eigenstates is
also given by exactly the same expression, at least in the limit
VA/V ! 0. One of the basic questions that we will address in
this paper is: what is the volume law coe�cient corresponding
to chaotic eigenstates when VA/V = O(1)?

Ref.8 provided numerical evidence that the the volume law
coe�cient for the von Neumann entropy SA

1 corresponding to
chaotic eigenstates equals its thermal counterpart even when
the ratio VA/V (< 1/2) is of order unity. Furthermore, un-
der the assumption that for a fixed set of quantum numbers
in subsystem A, all allowed states in its complement A are
equally likely, Ref.8 provided an analytical expression for the
n’th Renyi entropy Sn for infinite temperature eigenstates of
a system with particle number conservation. This expression
curiously leads to the result that when n , 1, the Renyi en-
tropies SA

n do not equal their thermal counterpart for any fixed
non-zero VA/V in the thermodynamic limit.

In a related development, Ref.15 also studied reduced den-
sity matrix corresponding to chaotic eigenstates of a system
with only energy conservation. They found that the eigenval-
ues are proportional to the number of eigenstates of the rest
of the system consistent with energy conservation. This result
is very similar to the aforementioned result in Ref.8 for the
infinite temperature eigenstates with particle number conser-
vation - in that case the eigenvalues of the reduced density
matrix were proportional to the number of eigenstates of the
rest of the subsystem consistent with particle number conser-
vation. Given this correspondence, one might expect that for
chaotic systems with only energy conservation, only the von
Neumann entropies equal their thermal counterpart, similar to
the aforementioned example in Ref.8. This was already men-
tioned in Ref.15 although Renyi entropies were not calculated.

In another development, Ref.14 studied ‘Canonical Ther-
mal Pure Quantum states’ (CTPQ) which were introduced in
Ref.10. These states reproduce several features of a thermal
ensemble while being a pure state10. However, in contrast to
the aforementioned result for infinite temperature eigenstates
in Ref.8, the volume law coe�cient of the Renyi entropies for
CTPQ states is independent of VA/V and equals the thermal
Renyi entropy density. Ref.14 compared the Renyi entropy
of eigenstates of non-integrable Hamiltonians with a fitting
function based on CTPQ states.

In this paper, using a combination of arguments based on er-
godicity and eigenstate thermalization, we derive an analytical
expression for Renyi entropy of chaotic eigenstates. We follow
two di�erent arguments to arrive at the same result. Firstly,

we consider a translationally invariant ‘classical’ Hamiltonian
H0 (i.e. a Hamiltonian all of whose eigenstates are product
states) perturbed by an integrability breaking perturbation H1
so that energy is the only conserved quantity for the full Hamil-
tonian H = H0 + ✏H1. Physical arguments and numerical re-
sults strongly suggest that if one first takes the thermodynamic
limit, and only then takes ✏ ! 0, the eigenstates of H are fully
chaotic16–21. Following arguments inspired by Ref.3, where
eigenstates of a many-body chaotic system consisting of hard-
sphere balls were studied, we argue that for ETH to hold for
the eigenstates of H, they may be approximated by random
superposition of the eigenstates of H0 in an energy window
of order ✏ ⌧ V . This can be thought of as a many-body ver-
sion of the Berry’s conjecture for chaotic billiard ball system
where the eigenstates are given by random superposition of
plane waves3,22. We will use the moniker “many-body Berry”
(MBB) for such states.

In the second approach, we consider states of the form
| i = Õ

EA
i +E

A
j 2(E� 1

2�,E+
1
2�)

Ci j

��EA
i

↵
⌦
���EA

j

E
, with Ci j a ran-

dom complex number,
��EA

i

↵
an eigenstate of HA and

���EA
j

E
that of HA. These states are exactly of the form suggested
by ‘canonical typicality’ arguments23,24 and in the thermo-
dynamic limit, reproduce the results of Ref.15 for the matrix
elements of the reduced density matrix. Given the results in
Ref.15, it is very natural to conjecture that eigenstates of local
Hamiltonians mimic states drawn from such an ensemble. We
will call this “ergodic bipartition” conjecture. The advantage
of working with wavefunctions, in contrast to the average ma-
trix elements of the reduced density matrix is that it allows
us to calculate average of the Renyi entropy itself, which is a
much more physical quantity compared to the Renyi entropy
of the averaged reduced density matrix. This distinction is
particularly crucial in finite sized systems. We will compare
our analytical predictions with the exact diagonalization, as
well as directly with the CTPQ states.

We first provide numerical evidence for both the ‘many-
body Berry’ conjecture as well as the ‘ergodic bipartition’
conjecture by studying chaotic Hamiltonians of spin-chains.
Next, we analytically calculate the Renyi entropies for such
states. The analytical form of the results is identical in either
case.

Our main results are:

1. Renyi entropies are a universal function of the density
of states of the system.

2. Renyi entropy density SA
n /VA depends on VA/V when

n , 1 as thermodynamic limit is taken. For n > 1, SA
n

is always a convex (concave) function of VA/V . n = 1
corresponds to a transition point between concavity and
convexity, and correspondingly the von Neumann en-
tropy is linear in VA (see Fig.1). Consequently, in the
thermodynamic limit for any non-zero VA/V , the vol-
ume law coe�cient of the Renyi entropy SA

n di�ers from
the one derived from the thermal density matrix ⇢A

th
(�)

or equivalently the canonical thermal pure quantum state

while keeping VA/V fixed as V → ∞

S1 =
⇡cLA

3�
+ terms subleading in LAExample:

Volume law coefficient  = 
⇡c

3�



This Talk: 

Renyi Entropy of Eigenstates of Chaotic Hamiltonians.

What’s their volume law coefficient?

What universal information they encode?

Can one construct approximate chaotic eigenstates?



Summary of Main Result

⇢A = trA |EihE|

Sn = 1
1�n log (tr �n

A)

Let |Ei be an eigenstate of a chaotic Hamiltonian.

Consider

Assuming ergodicity (to be be made precise soon), one finds…
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Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
corresponding to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The expression is a
universal function of the density of states and is valid even when the subsystem is a finite fraction of the total
system - a regime in which the reduced density matrix is not thermal. We find that in the thermodynamic limit,
only the von Neumann entropy density is independent of the subsystem to the total system ratio VA/V , while the
Renyi entropy densities depend non-linearly on VA/V . Surprisingly, Renyi entropies Sn for n > 1 are convex
functions of the subsystem size, with a volume law coe�cient that depends on VA/V , and exceeds that of a
thermal mixed state at the same energy density. We provide two di�erent arguments to support our results:
the first one relies on a many-body version of Berry’s formula for chaotic quantum mechanical systems, and is
closely related to eigenstate thermalization hypothesis. The second argument relies on the assumption that for a
fixed energy in a subsystem, all states in its complement allowed by the energy conservation are equally likely.
We perform Exact Diagonalization study on quantum spin-chain Hamiltonians to test our analytical predictions,
and find good agreement.

I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing1–7. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quan-
tum Hamiltonian8. Specifically, consider a system of size V
described by Hamiltonian H. The eigenstate thermalization
hypothesis2–4 posits that the reduced density matrix for a finite
energy density eigenstate |Eni on subsystem A with VA ⌧ V
is thermal: trA |EnihEn | = trA

�
e��H

�
/tr

�
e��H

� def
= ⇢Ath(�)

where ��1 is the temperature corresponding to the eigenstate
|Eni and equals dS/dE

���
En

where S(E) is the microcanonical
entropy (= logarithm of the density of states).

One basic question is: do there exist observables O whose
support VO scales with the total system size V while their ex-
pectation value hEn |O|Eni continues to satisfy some version
of eigenstate thermalization? Standard analyses in statistical
mechanics9 do not provide answer to such global aspects of
thermalization. As pointed out in Ref.8, at any fixed, non-zero
VA/V , one can always find operators with operator norm of or-
der unity, for whom the di�erence |hEn |O|Eni � tr

�
⇢Ath(�)O

�
|

does not vanish and is of order unity. This implies that the

trace norm distance 1
2

���� trA |EnihEn | � ⇢Ath(�)
����
1

does not van-

ish and is of order unity when VA/V is held fixed while tak-
ing thermodynamic limit. Clearly, the expectation value of
operators which are constrained by global conservation laws
can’t behave thermally. As an example, consider the operator�
H2

A � hH2
Ai
�
/VA, where HA is the Hamiltonian restricted to

region A. Its expectation value in an eigenstate tends towards
zero when VA approaches V , while is non-zero and propor-
tional to the specific heat in a thermal state. This raises the
question whether conserved quantities exhaust the set of opera-

FIG. 1: The curvature dependence of the Renyi entropy
corresponding to chaotic eigenstates derived in the main text:
in the thermodynamic limit, Sn is convex (concave) function
of VA/V for n > 1 (n < 1) with a cusp singularity at
VA/V = 1/2.

tors that distinguish a pure state from a corresponding thermal
state at the same energy?

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA
n =

1
1�n log

�
tr ⇢n

A

�
. In fact tr

�
⇢2
�
is one of the simplest mea-

sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation of the
expectation value of a cyclic permutation operator acting on
the n copies of the system. Due to this, SA

n can in principle be
measured in experiments, and remarkably, an implementation
for n = 2 was recently demonstrated in cold atomic systems11.

The ground states of quantum many-body systems typically
follow an area-law for Renyi entropies (upto multiplicative
logarithmic corrections): SA

n ⇠ Ld�1
A

where d is the spatial
dimension12,13. In strong contrast, finite energy density eigen-
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gn = universal function of VA/V
 and density of states at E/V

@2Sn

@(VA/V )2
> 0

@2Sn

@(VA/V )2
< 0

for n > 1

for n < 1

Sn = VA gn(VA/V,E/V )



Comparison with Thermal Density Matrix

Sthermal,n<1
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Sthermal,n>1

Sn(VA/V ! 0, E/V ) = Sthermal,n

⇢thermal = e��HA/ZA

Sn = VA gn(VA/V,E/V )
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Comparison with a “Typical State” in Hilbert Space
For a typical (Haar Random) State, Sn independent of n

 and equals log(size of the Hilbert space of region A). “Page Curve” (Lubkin 1978, Page 1993).

Sn = VA gn(VA/V,E/V )



Eigenstate Thermalization

� = E� � E�

O(E) = microcanonical expectation value of O,

fO(E,ω) smooth function,

R random complex variable with zero mean and unit variance.

�E�|O|E�� = O(E)��� + e�S(E)/2fO(E, �)R��

E = E�+E�

2

Srednicki 1994,
Deutsch 1991

Rigol, Dunjko, Olshanii 2008; Khatami, Pupillo, Srednicki, Rigol (2014).



First, consider a finite subsystem A of size VA

when the total system size V >>  VA.

If above equation holds for all
operators O with support only in region A, then

2

erator for which Eqn. 1 breaks down is the projection
operator | ih | onto the eigenstate | i that enters Eqn.
1—the left hand side of Eqn. 1 yields unity for this oper-
ator, while the right hand side is exponentially small in
the volume, a clear disagreement. On that note, it is of-
ten mentioned that in systems where Eqn. 1 does hold, it
does so only for “few body” operators12,22 where, to our
knowledge, the precise meaning of few-body operator has
not been fully clarified.In this paper, we conjecture and
provide numerical evidence that Eqn. 1 holds for all op-
erators within a subregion A, where the volume VA of
subregion A can be arbitrarily large as long as it satisfies
VA < f⇤V , where f⇤ 6= 0 (< 1/2) is an O(1) number, to
be defined later. In fact, we will make the case that for a
large class of non-local operators, as well as all local op-
erators (which we define as the operators whose support
does not scale with the subsystem size VA), the condition
VA < V/2 suffices.

The satisfaction of Eqn. 1 for all operators in a region
A is equivalent to the statement that the reduced den-
sity matrix ⇢A(| i�) = trA| i��h | corresponding to an
eigenstate | i� is given by

⇢A(| i�) = ⇢A,th(�) (2a)

where

⇢A,th(�) =
trA

�
e��H

�

tr (e��H)
,

A being the complement of A. Note that the trace in the
denominator is over the whole Hilbert space. |When VA

is held constant, the equality in Eqn. 2a means the den-
sity matrices become elementwise equal in any basis as
V ! 1. When the ratio VA/V is held constant, however,
the number of matrix elements increases exponentially as
V ! 1. In this case we consider the validity of Eqn. 2a
in terms of the trace norm distance of the density matri-
ces on either side raised to any power—a point which is
further explained in Sec. VII.

One immediate consequence of Eqn.2a is that the ther-
modynamical properties of a system at arbitrary temper-
atures can be calculated using a single eigenstate. For
example, Eq. 2a implies that to the leading order, the
Renyi entropies S↵ (= � 1

↵�1

log [trA(⇢↵A)]) for an eigen-
state | i� corresponding to a subregion A are given by

S↵ =
↵

↵� 1
VA� (f(↵�)� f(�)) , (3)

where f(�) is the free energy density at a temperature
��1. This allows one to access f at an arbitrary tem-
perarure by varying ↵. Note that Eq.3 holds only to the
leading order because Renyi entropies S↵ receive addi-
tional subleading contributions due to the conical singu-
larity induced at the boundary of region A1,2,4. In the
limit ↵ ! 1, one recovers the eqaulity between the von

Neumann entanglement entropy S
1

and the thermal en-
tropy Sth = VAsth(�) where sth(�) is the thermal entropy
density at a temperature ��1, a result which was argued
to hold in Ref.23 for the special case of two weakly cou-
pled ergodic systems. We emphasize that these results
cannot be derived from Eqn. 1 alone were it to hold for
only for local operators, since entanglement entropies do
not correspond to the expectation value of a local oper-
ator. We also note that Refs.24,25 simulated the thermal
Renyi entropy S↵ (starting with the expression on the
right hand side of Eqn. 2a) using Quantum Monte Carlo
to access the properties of the system at temperature
(↵�)�1. Of course, Quantum Monte Carlo methods are
not well suited to verifying ETH since they cannot ac-
cess properties of a single eigenstate (the left hand side
of Eqn. 2a).

We will also discuss an approximate, but more intuitive
form of ETH, given by

⇢A(| i�) ⇡ e��HA

trA (e��HA)
(2b)

where HA is the projection of the original Hamiltonian
onto region A. This form is approximate compared to
Eqn. 2a because generically, it does not capture the corre-
lations near the boundary correctly due to the somewhat
arbitrary truncation scheme used to obtain HA. Never-
theless, equations 2a and 2b both yield the same results
for all bulk quantities such as the Renyi entropy den-
sities, as well as correlation functions of operators that
have support only away from the boundary.

A central task of this paper is to check the validity of
Eqns. 2a and 2b and their consequences for model non-
integrable systems. As already advertised, we will argue
that ETH allows one to calculate thermodynamical quan-
tities as well as correlators at all temperatures/energy
densities using only a single eigenstate. We will demon-
strate this explicitly by studying a quantum 1D model
numerically.

As mentioned above, we find evidence that Eq.2a holds
even when VA/V is held constant with VA/V less than
some number f⇤ 6= 0. In particular, as we discuss later,
our results strongly indicate that f < 1/2 is sufficient
to gaurantee the equivalence between the von Neumann
entropy density of a pure eigenstate, and the thermal
entropy density at the corresponding temperature. This
is in contrast to Ref.34 where it was argued that such an
equivalence holds only in the limit f⇤ ! 0. Recently35,36,
the requirement f⇤ ! was substantiated using analytical
and large scale numerical calculations for free fermions,
an integrable system. Our results indicate that f⇤ !
0 requirement is likely a consequence of the integrable
nature of the models in Ref.35,36.

The paper is organized as follows. |Sec. II discusses
general considerations for the validity of ETH, and the
division of all operators in a given subregion into two dis-
tinct classes, which have different requirements for ETH
to hold. Sec. III illustrates some general features of ETH
by studying the entanglement entropies of a hardcore bo-
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Renyi Entropy of Chaotic Eigenstates
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Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
corresponding to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The expression is a
universal function of the density of states and is valid even when the subsystem is a finite fraction of the total
system - a regime in which the reduced density matrix is not thermal. We find that in the thermodynamic limit,
only the von Neumann entropy density is independent of the subsystem to the total system ratio VA/V , while the
Renyi entropy densities depend non-linearly on VA/V . Surprisingly, Renyi entropies Sn for n > 1 are convex
functions of the subsystem size, with a volume law coe�cient that depends on VA/V , and exceeds that of a
thermal mixed state at the same energy density. We provide two di�erent arguments to support our results:
the first one relies on a many-body version of Berry’s formula for chaotic quantum mechanical systems, and is
closely related to eigenstate thermalization hypothesis. The second argument relies on the assumption that for a
fixed energy in a subsystem, all states in its complement allowed by the energy conservation are equally likely.
We perform Exact Diagonalization study on quantum spin-chain Hamiltonians to test our analytical predictions,
and find good agreement.

I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing1–7. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quan-
tum Hamiltonian8. Specifically, consider a system of size V
described by Hamiltonian H. The eigenstate thermalization
hypothesis2–4 posits that the reduced density matrix for a finite
energy density eigenstate |Eni on subsystem A with VA ⌧ V
is thermal: trA |EnihEn | = trA

�
e��H

�
/tr

�
e��H

� def
= ⇢Ath(�)

where ��1 is the temperature corresponding to the eigenstate
|Eni and equals dS/dE

���
En

where S(E) is the microcanonical
entropy (= logarithm of the density of states).

One basic question is: do there exist observables O whose
support VO scales with the total system size V while their ex-
pectation value hEn |O|Eni continues to satisfy some version
of eigenstate thermalization? Standard analyses in statistical
mechanics9 do not provide answer to such global aspects of
thermalization. As pointed out in Ref.8, at any fixed, non-zero
VA/V , one can always find operators with operator norm of or-
der unity, for whom the di�erence |hEn |O|Eni � tr

�
⇢Ath(�)O

�
|

does not vanish and is of order unity. This implies that the

trace norm distance 1
2

���� trA |EnihEn | � ⇢Ath(�)
����
1

does not van-

ish and is of order unity when VA/V is held fixed while tak-
ing thermodynamic limit. Clearly, the expectation value of
operators which are constrained by global conservation laws
can’t behave thermally. As an example, consider the operator�
H2

A � hH2
Ai
�
/VA, where HA is the Hamiltonian restricted to

region A. Its expectation value in an eigenstate tends towards
zero when VA approaches V , while is non-zero and propor-
tional to the specific heat in a thermal state. This raises the
question whether conserved quantities exhaust the set of opera-

FIG. 1: The curvature dependence of the Renyi entropy
corresponding to chaotic eigenstates derived in the main text:
in the thermodynamic limit, Sn is convex (concave) function
of VA/V for n > 1 (n < 1) with a cusp singularity at
VA/V = 1/2.

tors that distinguish a pure state from a corresponding thermal
state at the same energy?

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA
n =

1
1�n log

�
tr ⇢n

A

�
. In fact tr

�
⇢2
�
is one of the simplest mea-

sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation of the
expectation value of a cyclic permutation operator acting on
the n copies of the system. Due to this, SA

n can in principle be
measured in experiments, and remarkably, an implementation
for n = 2 was recently demonstrated in cold atomic systems11.

The ground states of quantum many-body systems typically
follow an area-law for Renyi entropies (upto multiplicative
logarithmic corrections): SA

n ⇠ Ld�1
A

where d is the spatial
dimension12,13. In strong contrast, finite energy density eigen-
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ETH for VA/V << 1 predicts that

Sthermal,n<1

Sthermal,n>1

Sn(VA/V ! 0, E/V ) = Sthermal,n

⇢thermal = e��HA/ZA



What about the limit VA →∞, V →∞ such 
that VA/V is non-zero?



Berry’s Conjecture for Chaotic Quantum Billiard Balls

Berry 1977

|Ei =
R
d3p ↵(~p) �(p2/2m� E) |~pi

↵(~p) = random gaussian complex numbers



Berry’s Conjecture for a Many-body Hard-Sphere System

Leads to ETH equation

Srednicki 1994

|Ei =
R
d3Np ↵({~p}) �(

P
i p

2
i /2m� E) |{~p}i

�E�|O|E�� = O(E)��� + e�S(E)/2fO(E, �)R��

↵({~p}) = random gaussian complex numbers



Many-body Berry Eigenstates in General

Consider an integrable system perturbed by an
infinitesimal integrability-breaking term

H = H0 + ✏H1

Some properties of a random pure state
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1 Spontaneous integrability breaking?

Let’s consider a one dimensional non-integrable Hamiltonian for spins:

H =
L∑

i=1

−ZiZi+1 − hzZi + ϵXi, (1)

where ϵ measures the non-integrability of H When ϵ → 0, H is integrable and classical in
the sense that the eigenstates are the product states of local spin states, meaning there is no
entanglement between different local spins. Thus

lim
L→∞

lim
ϵ→0

|ψm⟩ = |s1⟩ ⊗ |s2⟩ ⊗ ...⊗ |sL⟩ = |sα⟩ , (2)

where |ψm⟩ denotes the eigenstate of the H with energy Em, and |sα⟩ denotes the product
state. On the other hand, if we consider exchange of the order of the above two limits, we can
see from perturbation theory that the eigenstate will be the superposition of the eigenstates.
The products in a small energy window would be accessible and thus we guess that a typical
eigenstate would be the random superposition of products states:

lim
ϵ→0

lim
L→∞

|ψm⟩ =
∑

Eα∈[Em− 1
2∆,Em+ 1

2∆]

Cα |sα⟩ (3)

where
P ({Cα}) ∼ δ(1−

∑

α

|Cα|2). (4)

Basically if we take thermodynamic limit first, any tiny ϵ will induce the chaotic wave
function. Based on the experience of spontaneous symmetry breaking in statistical mechanics,
we can call this spontaneous integrability breaking. It may be interesting to develop the method
of renormalization group to study the transition.

Now the density matrix of the whole system is

ρ = |ψm⟩ ⟨ψm| =
∑

α,β

CαC
∗
β |sα⟩ ⟨sβ| (5)

The typical density matrix can be obtained by performing average

ρ̄ =
1

N

∑

α

|sα⟩ ⟨sα| , (6)

1

e.g.,
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Ansatz
recovers ETH

4

where the last equation in the sequence is derived by taking
the saddle point from the one above. Clearly if OA and OA

are located close to the boundary between A and A (in units of
thermal correlation length), then there is no reason to expect
that OA(E/V) OA(E/V) is the correct answer for the expec-
tation of O with respect to an actual eigenstate of the system.
However, if OA and OA are located far from the boundary, then
the cluster decomposition of correlation functions implies that
the above answer is indeed correct to a good approximation.
Note that it is a smooth function of the energy, as required by
ETH. A similar calculation shows that the o�-diagonal ma-
trix element hEn | O |Emi is proportional to e�S(E)/2z where
E = (En + Em)/2 and z is a random complex number with
zero mean and unit variance.

Above considerations indicate that the state |Ei is a good
representative of an eigenstate of H, except for the correlation
functions of operators close to the boundary. Therefore, we
expect that it correctly captures the bulk quantities, such as
the volume law coe�cient of Renyi entropies. As already
noted, it correctly reproduces the energy fluctuations, as well
as the diagonal entropy for an eigenstate. Conversely, we do
not expect it to necessarily reproduce the subleading area-law
corrections to the Renyi entropies, which may be sensitive to
the precise way the eigenstates of HA and HA are ‘glued’.

In passing we note that Ref.26 considered a perturbative
treatment of the Hamiltonian H = HA+HA+ ✏HAA to the first
order in ✏ . The wavefunctions thus argued to be obtained have
some resemblance with the EB state (Eq.5). However, to really
obtain an EB state via this procedure, one would instead need
to carry out the perturbation theory to an order that scales with
the system size! This is because when VA/V is non-zero, the
EB state has extensive fluctuations of energy in subregion A,
unlike the states considered in Ref.26 which essentially have
no fluctuations since they mix eigenstates of HA in a small
energy window.

As a direct numerical test of Eq.5, consider a one dimen-
sional spin-1/2 chain with the Hamiltonian given by

H =
L’
i

�ZiZi+1 � Zi + Xi, (7)

where we impose the periodic boundary condition i ⌘ i + L.
Several works have already provided evidence in support of
the validity of ETH in this model8,15,27–30. By diagonalizing
H, we calculate the bipartite amplitude of eigenstates on the
bases of tensor product of all eigenstates of HA and HA with
A denotes the sites i = 1, 2, · · · , LA and A denotes the sites
i = LA + 1, LA + 2, · · · , L. As shown in Fig.2, the bipartite
amplitude indeed behaves like a Gaussian random variable.

A di�erent starting point to obtain states that mimic chaotic
eigenstates is provided by considering Hamiltonians H of the
form:

H = H0 + ✏H1 (8)

Here H0 denotes a translationally invariant many-body local
Hamiltonian whose eigenstates can be chosen as unentangled

FIG. 2: Probability distribution of the bipartite amplitudes
Ci j (Eq.5) when |Ei corresponds to a single, infinite
temperature eigenstate of the Hamiltonian in Eq.7. The
energy window � that appears in Eq.5 is chosen to be 2.

product states {|s↵i =
��s↵1 ↵ ⌦ ��s↵2 ↵ ⌦ ... ⌦ ��s↵L↵}, and therefore

corresponds to an integrable system with an infinite number
of conserved quantities. The H1 term breaks the integrability.
Physical arguments as well as numerics strongly suggest that
the system will show a cross-over behavior from an integrable
regime to a chaotic regime for ✏ ⇠ 1/L�16–21. In fact, fol-
lowing arguments similar to Ref.3, where eigenstates of a hard
sphere system were written as random superposition of many-
body plane waves so as to be consistent with ETH, in our case
an eigenstate |Ei of H in the limit ✏ ! 0 takes the form:

lim
✏!0

lim
V!1

|Ei =
’
↵

C↵ |s↵i (9)

with

P({C↵}) / �(1 �
’
↵

|C↵ |2)�(E↵ � E), (10)

where the first and second delta function constraints impose
the normalization and energy conservation respectively. This
form of eigenstates closely resembles the Berry’s conjecture
for the eigenstates of chaotic billiard ball systems22, and we
will call this ansatz “many-body Berry” (MBB) conjecture.
Again, similar to the case of ergodic bipartition conjecture
discussed above (Eq.5), one can readily verify that ETH holds
true for the state in Eq.9. Specifically, the diagonal matrix
elements of an operator O match the canonical expectation
value of O with respect to H0, while the o�-diagonal matrix
elements are proportional to e�S(E)/2z where z is a random
complex number with zero mean. Note that we take H0 to be
translationally invariant to avoid the possibility of many-body
localization31.

A quick demonstration of this conjecture is provided by
the Hamiltonian H = �ÕN

i=1 Zi + ✏H1, where H1 is a real
hermitian random matrix. The variance of the probability dis-
tribution function of the matrix element in H1 is chosen such

“Spontaneous
Integrability Breaking”



Non-perturbative Generalization
2 Entropy of a random pure state in a small energy window

2.1 Second Renyi entropy

Let’s consider a pure state in a small energy window I ≡
(
E − 1

2∆, E + 1
2∆
)

|ψ⟩ =
∑

i,j

Cij

∣∣∣EA
i , E

A
j

〉
(10)

where {Cij} is chosen from the probability distribution function

P ({Cij}) ∝ δ(1−
∑

ij

|Cij|2)
∏

i,j

δ(EA
i + EA

j − E). (11)

Note that the the first index i in Cij labels the state in A while the second index j labels the
states in A. Also the energy constraint is imposed by the delta function. Now we can calculate
the reduced density matrix of A:

ρA = TrA |ψ⟩ ⟨ψ|

=
∑

k

〈
EA

k

∣∣∣
∑

i,j

Cij

∣∣∣EA
i , E

A
j

〉∑

i′,j′

C∗
i′j′

〈
EA

i′ , E
A
j′

∣∣∣
∣∣∣EA

k

〉

=
∑

i,i′

∣∣EA
i

〉 〈
EA

i′

∣∣
∑

j

CijC
∗
i′j,

(12)

and ρ2A is

ρ2A =
∑

i,i′

∣∣EA
i

〉 〈
EA

i′

∣∣
∑

j

CijC
∗
i′j

∑

k,k′

∣∣EA
k

〉 〈
EA

k′

∣∣
∑

l

CklC
∗
k′l

=
∑

i,k′

∣∣EA
i

〉 〈
EA

k′

∣∣
∑

i′,j,l

CijC
∗
i′jCi′lC

∗
k′l.

(13)

Then it is straightforward to calculate Tr ρ2A :

Tr ρ2A =
∑

m

〈
EA

m

∣∣
∑

i,k′

∣∣EA
i

〉 〈
EA

k′

∣∣
∑

i′,j,l

CijC
∗
i′jCi′lC

∗
k′l

∣∣EA
m

〉

=
∑

m,i′,j,l

CmjC
∗
i′jCi′lC

∗
ml

=
∑

m,i′,j,l

CmjCi′lC
∗
i′jC

∗
ml

=
∑

i,j,k,l

CijCklC
∗
ilC

∗
kj,

(14)

where in the last line we relabel the indices. What we want to calculate is the average of the
second Renyi entropy:

SA
2 = −log [Tr ρ2A], (15)

which is difficult since we need to do average of logarithm. Instead, we calculate the average of
Tr ρ2A and then take the logarithm to calculate the second Renyi entropy. The difference of SA
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where α labels the states with energy Eα ∈ [Em − 1
2∆, Em + 1

2∆] and N denotes the number
of product state within this energy window. Notice that after average, we obtain a mixed
state with all product states in the energy window being equally likely, which is microcanonical
ensemble in the classical sense. Now let’s divide the system into A and Ā, and thus ρ can be
written as

ρ =
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N

∑

α,ᾱ

|sα, sᾱ⟩ ⟨sα, sᾱ| (7)

with Eα + Eᾱ ∈ [Em − 1
2∆, Em + 1

2∆]. Also note that we rewrite |sα⟩ as |sα, sᾱ⟩ to emphasize
the spin configuration in A and Ā. The reduced density matrix for subsystem A is

ρA = TrĀ ρ =
1

N

∑
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|sα⟩ ⟨sα| . (8)

with the constraint that Eα + Eᾱ still in the energy window. Therefore, for a given α,
∑

ᾱ
is equal to the number of state of Ā such that the energy constraint can still be satisfied.
Therefore,

ρA =
1

N

∑

α

|sα⟩ ⟨sα| eSMĀ(E−Eα) . (9)

Given this expression, basically the expression here is the same as the classical one, when
VA ≪ V , we can expand SMĀ(E−Eα) around E and we will get back to a thermal density
matrix.

When we say the typical eigenstate can be regarded as the superposition of product states
within a small energy window. We actually introduce the concept of ensemble. In a paper
by Srednicki, this kind of ensemble is called eigenstate ensemble which is expected to exhibit
the behavior of the eigenstate of a generic non-integrable system. Also, we may calculate the
expectation value of an operator given by this ensemble, then it is thermal. Notice that it does
not matter whether we average density matrix first or we take average after we calculate the
expectation of the operator since all the operations here are linear.

Question:

1. Can one show the matrix element of a local operator satisfied ETH?

2. This ensemble seems too ergodic in the sense that if we do the average the eigenstate
given by this ensemble, we obtain a density matrix showing that each of the products are
equally likely. Then it means that not only local operators look thermal, but any operator
is thermal, which is much stronger than ETH. Therefore, we should expect that it is only
valid to average over this eigenstate ensemble for a local operator. It may be interesting
to understand the deviation when we increase the support in real space for an operator.

3. Do exact diagonalization to check the conjecture.

4. Try to use perturbation theory to understand the how ϵ should scale with system.

Note: We also checked numerically that the entanglement entropy introduced by this en-
semble also obeys volume law, which is a stronger than Page’s prediction since we restrict the
state within a small energy window.
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in Dymarsky, Lashkari, Liu’s  “Subsystem ETH” (2016). 

Analogous result for systems with U(1) symmetry at infinite T (Garrison, TG (2015)).
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equally likely (“Ergodicity”).
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with the constraint that Eα + Eᾱ still in the energy window. Therefore, for a given α,
∑

ᾱ
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FIG. 3: Probability distribution of the amplitudes C↵ (Eq.9)
for a single eigenstate of the Hamiltonian
H = �ÕN

i=1 Zi + ✏H1, where H1 is a real hermitian random
matrix.

that the range of energy spectrum of H1 is L. As shown in
Fig.3, the coe�cients C↵ indeed behave as random Gaussian
variables. Furthermore, we verified that their variance equals
e�S , consistent with ETH. As we will discuss in detail in Sec.
IV, one can consider a local perturbation, but the finite size
e�ects are significantly larger with a local perturbation (i.e.
the ✏ required to see chaos is comparatively larger), making it
di�cult to compare the eigenstates of H with randomly super-
posed eigenstates of H0. We again emphasize that all equal
time correlation functions of the many-body Berry state (Eq.9)
are determined fully by the properties of the Hamiltonian H0 -
the role of perturbation H1 is ‘merely’ to generate chaos.

Relation between Ergodic Bipartition States and Many-
body Berry States:

The many-body Berry states can essentially be thought of
as a special case of ergodic bipartition states : if in Eq.5, one
substitutes for

��EA
i

↵
and

���EA
j

E
the eigenstates of H0,A and H0,A

respectively, where H0,A and H0,A are restrictions of the in-
tegrable Hamiltonian H0 in Eq.8 to region A and A, then the
resulting state essentially corresponds to the many-body Berry
state (Eq.9). However, there is a subtle distinction: the many-
body Berry state does not su�er from any boundary e�ects
due to the HAA term: the states |s↵i that enter the definition of
many-body Berry state in Eq.9 are eigenstates of the Hamilto-
nian H0 defined on the entire system. In contrast, the ergodic
bipartition states involve tensor products of the eigenstates of
HA and HA, and therefore do not reproduce the correlations
near the boundary between A and A correctly, as discussed
above. Relatedly, comparing Fig.2 (ergodic bipartition con-
jecture), and Fig.3 (many-body Berry conjecture), we notice
that the latter figure fits the predicted Gaussian distribution
better than the former. This is likely again related to the limi-
tation of ergodic bipartition states, Eq.5, that they su�er from
boundary e�ects. Since we will concern ourselves only with

the volume law coe�cient of the Renyi entropies, we do not
expect such boundary e�ects to be relevant.

Due to this relation between the ergodic bipartition states
and the many-body Berry states, it turns out that from a tech-
nical standpoint, the calculations of their Renyi entropies - the
central topic of our paper - are identical. This is the subject of
our next section.

III. RENYI ENTROPY OF CHAOTIC EIGENSTATES

In this section we calculate Renyi entropy corresponding
to the pure states in Eq.5 and Eq.9. We will not write sepa-
rate equations for these two set of states, because as already
mentioned, the calculation as well as all the results derived in
this section apply to either of them. We will be particularly
interested in the functional dependence of Renyi entropies on
the ratio VA/V .

A. Universal Dependence of Renyi Entropy on Many-body
Density of States

In principle, one can define three di�erent kinds of averages
to obtain Renyi entropies: (a) SA

n (⇢A) = 1
1�n log (tr ((⇢A)n)) (b)

SA
n (tr ⇢nA) =

1
1�n log

⇣
tr ⇢n

A

⌘
(c) SA

n,avg =
1

1�n log
�
tr
�
⇢n
A

� �
. The

physically most relevant measure is Sn,avg, however, it is also
the hardest one to calculate due to averaging over logarithm.
As shown in Appendix B, the di�erence |Sn,avg � SA

n (tr ⇢nA)|
is exponentially small in the volume of the total system. Due
to this result and the fact that SA

n (tr ⇢nA) is calculable using
standard tools, in this paper we will focus mainly on it, and
with a slight abuse of notation, denote it as Sn.

One may still wonder how good is the measure (a), i.e.,
SA
n (⇢A), since it’s the simplest one to calculate. Following

Ref.24, Levy’s lemma implies that the trace norm distance
between the average density matrix ⇢A, and a typical density
matrix of the ensemble vanishes exponentially in the total
volume of the system. Combining this result with Fannes’
inequality32, |S1(⇢)�S1(�)| < |⇢�� |1 log(H) where H is the
size of the Hilbert space, one finds that in the thermodynamic
limit, at least the von Neumann entropy for ⇢A should match
with the other two measures upto exponentially small terms.
This result doesn’t however constrain the Renyi entropies for
a general Renyi index. As we will discuss below, it turns
out that the volume law coe�cient corresponding to Renyi
entropies is same for all three measures. At the same time, as
discussed in detail in Sec.IV, for finite sized systems, SA

n (tr ⇢nA)
is always a better measure of Sn,avg compared to SA

n (⇢A) due to
the aforementioned result that their di�erence is exponentially
small in the volume (see Fig.5).

To begin with, let us briefly consider SA
n (⇢A) =

1
1�n log (tr ((⇢A)n)).
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(c) most relevant. (c) = (b) upto terms 
exponentially small in system size (recall: No Fannes’ 
inequality for Renyis).  Studying (b) requires wavefunction.
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by these two methods is small since the variance of SA
2 decreases exponentially with the size of

the system.
We do the average for CijCklC∗

ilC
∗
kj first (see Appendix for detailed calculation):

CijCklC∗
ilC

∗
kj =

1

N(N + 1)

[
δjlδEA

i +EA
j ,EδEA

k +EA
j ,E + δikδEA

i +EA
j ,EδEA

i +EA
l ,E

]
, (16)

where N is the dimension of the Hilbert space in the restricted energy window. Next we can
calculate Tr ρ2A :

Tr ρ2A =
1

N(N + 1)

[
∑

i,j,k

δEA
i +EA

j ,EδEA
k +EA

j ,E +
∑

i,j,l

δEA
i +EA

j ,EδEA
i +EA

l ,E

]

=
1

N(N + 1)

⎡

⎣
∑

EA

e2S
M
A (EA)+SM

A
(E−EA) +

∑

EA

e2S
M
A

(EA)+SM
A (E−EA)

⎤

⎦

=
1

N(N + 1)

[
∑

EA

e2S
M
A (EA)+SM

A
(E−EA) + eS

M
A (EA)+2SM

A
(E−EA)

]
,

(17)

where we make the change of variable for the last term. Note that the above equation is
manifestly symmetric between A and Ā. Finally we can derive the second Renyi entropy of a
random pure state:

SA
2 = − log

[
1

N2

[
∑

EA

e2S
M
A (EA)+SM

A
(E−EA) + eS

M
A (EA)+2SM

A
(E−EA)

]]

= − log

⎡

⎢⎣
∑

EA
e2S

M
A (EA)+SM

A
(E−EA) + eS

M
A (EA)+2SM

A
(E−EA)

[∑
EA

eS
M
A (EA)+SM

A
(E−EA)

]2

⎤

⎥⎦ ,

(18)

where we have assumed N is large such that N +1 ≈ N . Notice that when we take VA, V → ∞
with VA

V < 1
2 , the first term in the numerator can be neglected, and thus

SA
2 = − log

⎡

⎢⎣
∑

EA
eS

M
A (EA)+2SM

A
(E−EA)

[∑
EA

eS
M
A (EA)+SM

A
(E−EA)

]2

⎤

⎥⎦ . (19)

We will show below that this is exactly the second Renyi entropy of the reduced density matrix
of A obtained from maximally mixed state.

2.2 Renyi entropy of order n of the reduced density matrix of A obtained from
maximally mixed state

Suppose that the state of whole system is described by a mixed state in a small energy window
I ≡

(
E − 1

2∆, E + 1
2∆
)
:

Ω =
1

N
=

1

N

′∑

i,j

∣∣∣EA
i , E

A
j

〉〈
EA

i , E
A
j

∣∣∣ , (20)

4

S2 = � log Tr ⇢2A

H = HA +HA +HAA

Let density of States of HA at energy EA = eS
M
A (EA)

Similarly, density of States of HA at energy EA = eS
M
A

(EA)
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where
∑′

i,j means we sum over all the state with EA
i + EA

j ∈ I, we can then calculate the
reduced density of the subsystem A:

ΩA = TrA Ω

=
1

N

∑

k

〈
EA

i

∣∣∣
′∑

i,j

∣∣∣EA
i , E

A
j

〉〈
EA

i , E
A
j

∣∣∣
∣∣∣EA

i

〉

=
1

N

′∑

i,j

∣∣EA
i

〉 〈
EA

i

∣∣

=
1

N

∑

i

∣∣EA
i

〉 〈
EA

i

∣∣ eS
M
A

(E−EA
i ),

(21)

where exponential factor appears since when we specify a state in A labelled by i, summation
over j counts the number of state in A such that EA

i + EA
j ∈ I.

Next we can calculate Ωn
A:

Ωn
A =

1

N2

∑

i

∣∣EA
i

〉 〈
EA

i

∣∣ enS
M
A

(E−EA
i ), (22)

and then TrΩn
A can be calculated:

TrΩn
A =

1

N2

∑

i

enS
M
A

(E−EA
i )

=
1

N2

∑

EA

eS
M
A (EA)+nSM

A
(E−EA

i )

=

∑
EA

eS
M
A (EA)+nSM

A
(E−EA)

[∑
EA

eS
M
A (EA)+SM

A
(E−EA)

]n .

(23)

Finally we can obtain the Renyi entropy of order n:

SA
n =

1

1− n
log

⎡

⎣
∑

EA
eS

M
A (EA)+nSM

A
(E−EA)

[∑
EA

eS
M
A (EA)+SM

A
(E−EA)

]n

⎤

⎦ . (24)

Notice that when we take n = 2, this second Renyi entropy is exactly the same as what we
get in Eq.(19), meaning that the second Renyi entropy obtained from a random pure state and
maximally mixed state match up to half of the system size!

Also notice that we can calculate the entanglement entropy SA by taking n → 1 from Eq.(24)
or starting from the definition SA = −Tr ρA log ρA. Either way SA can be shown:

SA = logN − 1

N

∑
eSA(EA)+SA(E−EA)SA(E − EA). (25)

5

2.3 Renyi entropy of order n of a random pure state in a small energy window

Eq.(12) shows the reduced density matrix from a random pure state subjected to a energy
constraint:

ρA =
∑

i,j,k

|Ei⟩ ⟨Ej|CikC
∗
jk, (26)

where as usual the first index of C label the state in HA and the second index of C labels the
state in HA.

Next we can calculate ρnA:

ρnA =
∑

i1,j1,k1

|Ei1⟩ ⟨Ej1 |Ci1k1C
∗
j1k1

∑

i2,j2,k2

|Ei2⟩ ⟨Ej2 |Ci2k2C
∗
j2k2

...
∑

in,jn,kn

|Ein⟩ ⟨Ejn |CinknC
∗
jnkn .

(27)

By taking the trace of the above formula, we can get

Tr ρnA =
∑

i1,j1,k1

∑

i2,j2,k2

...
∑

in,jn,kn

δj1,i2δj2,i3 ...δjn,i1Ci1k1C
∗
j1k1Ci2k2C

∗
j2k2 ...CinknC

∗
jnkn . (28)

Right now we are going calculate the 2n point correlation function, which contains n! terms:

Ci1k1C
∗
j1k1

Ci2k2C
∗
j2k2

...CinknC
∗
jnkn

= Ci1k1C
∗
j1k1

...CinknC
∗
jnkn

+All the other possible pairing.,
(29)

Note that the above equality is only true when the dimension of the restricted Hilbert space
N → ∞ with n being finite such that wick’s theorem can hold. When we sum all the indices to
calculate Tr ρnA, the term with the maximal number of summation for the state in HA (labelled
by k) will exponentially dominates all the other terms. Looking back to Eq.(29), only first term
contains no delta function constraint for k, and thus

Tr ρnA =
∑

i1,j1,k1

∑

i2,j2,k2

...
∑

in,jn,kn

δj1,i2δj2,i3 ...δjn,i1
1

Nn
δi1,j1 ...δin,jn

. =
1

Nn

∑

i

∑

k1,...kn

δEA
i +EA

k1
=E ... δEA

i +EA
kn

=E

=
1

Nn

∑

EA

eS
M
A (EA)+nSM

A
(E−EA).

(30)

Finally we can obtain the Renyi entropy of order n in thermodynamic limit:

SA
n =

1

1− n
log

⎡

⎣
∑

EA
eS

M
A (EA)+nSM

A
(E−EA)

[∑
EA

eS
M
A (EA)+SM

A
(E−EA)

]n

⎤

⎦ . (31)

6
at the leading order as V ➞∞, VA➞∞ while VA/V is fixed.



Renyi Entropies in Thermodynamic limit

SA
n = V

1�n

h
fs(✏A) + n(1� f)s( ✏�✏Af

1�f )� ns(✏)
i

V = total volume, f = VA/V,  s = thermal entropy density,

𝝐 = E/V = energy density of the eigenstate

@s
@✏

���
✏A

= n@s
@✏

��� ✏�✏Af
1�f

where ✏A satisfies

Only when n = 1 (von Neumann entropy), 𝝐A= 𝝐, and then SA/VA is 

independent of f = VA/V (⇒ no curvature i.e. “Page curve”)



Curvature dependence of Renyi Entropies

@2Sn

@(VA/V )2
> 0 for n > 1

@2Sn

@(VA/V )2
< 0 for n < 1

Using above equations, one can prove that



Renyi Entropy of Chaotic Eigenstates

Tsung-Cheng Lu1 and Tarun Grover1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
corresponding to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The expression is a
universal function of the density of states and is valid even when the subsystem is a finite fraction of the total
system - a regime in which the reduced density matrix is not thermal. We find that in the thermodynamic limit,
only the von Neumann entropy density is independent of the subsystem to the total system ratio VA/V , while the
Renyi entropy densities depend non-linearly on VA/V . Surprisingly, Renyi entropies Sn for n > 1 are convex
functions of the subsystem size, with a volume law coe�cient that depends on VA/V , and exceeds that of a
thermal mixed state at the same energy density. We provide two di�erent arguments to support our results:
the first one relies on a many-body version of Berry’s formula for chaotic quantum mechanical systems, and is
closely related to eigenstate thermalization hypothesis. The second argument relies on the assumption that for a
fixed energy in a subsystem, all states in its complement allowed by the energy conservation are equally likely.
We perform Exact Diagonalization study on quantum spin-chain Hamiltonians to test our analytical predictions,
and find good agreement.

I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing1–7. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quan-
tum Hamiltonian8. Specifically, consider a system of size V
described by Hamiltonian H. The eigenstate thermalization
hypothesis2–4 posits that the reduced density matrix for a finite
energy density eigenstate |Eni on subsystem A with VA ⌧ V
is thermal: trA |EnihEn | = trA

�
e��H

�
/tr

�
e��H

� def
= ⇢Ath(�)

where ��1 is the temperature corresponding to the eigenstate
|Eni and equals dS/dE

���
En

where S(E) is the microcanonical
entropy (= logarithm of the density of states).

One basic question is: do there exist observables O whose
support VO scales with the total system size V while their ex-
pectation value hEn |O|Eni continues to satisfy some version
of eigenstate thermalization? Standard analyses in statistical
mechanics9 do not provide answer to such global aspects of
thermalization. As pointed out in Ref.8, at any fixed, non-zero
VA/V , one can always find operators with operator norm of or-
der unity, for whom the di�erence |hEn |O|Eni � tr

�
⇢Ath(�)O

�
|

does not vanish and is of order unity. This implies that the

trace norm distance 1
2

���� trA |EnihEn | � ⇢Ath(�)
����
1

does not van-

ish and is of order unity when VA/V is held fixed while tak-
ing thermodynamic limit. Clearly, the expectation value of
operators which are constrained by global conservation laws
can’t behave thermally. As an example, consider the operator�
H2

A � hH2
Ai
�
/VA, where HA is the Hamiltonian restricted to

region A. Its expectation value in an eigenstate tends towards
zero when VA approaches V , while is non-zero and propor-
tional to the specific heat in a thermal state. This raises the
question whether conserved quantities exhaust the set of opera-

FIG. 1: The curvature dependence of the Renyi entropy
corresponding to chaotic eigenstates derived in the main text:
in the thermodynamic limit, Sn is convex (concave) function
of VA/V for n > 1 (n < 1) with a cusp singularity at
VA/V = 1/2.

tors that distinguish a pure state from a corresponding thermal
state at the same energy?

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA
n =

1
1�n log

�
tr ⇢n

A

�
. In fact tr

�
⇢2
�
is one of the simplest mea-

sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation of the
expectation value of a cyclic permutation operator acting on
the n copies of the system. Due to this, SA

n can in principle be
measured in experiments, and remarkably, an implementation
for n = 2 was recently demonstrated in cold atomic systems11.

The ground states of quantum many-body systems typically
follow an area-law for Renyi entropies (upto multiplicative
logarithmic corrections): SA

n ⇠ Ld�1
A

where d is the spatial
dimension12,13. In strong contrast, finite energy density eigen-
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On the other hand, the denominator is

’
EA

eS
M
A

(EA)+SM

A
(E�EA) =

’
uA

eVAs(uA)+VAs(uA)

= eVs(u),

(20)

where we have used the fact that the saddle point for the de-
nominator is u⇤A = u⇤

A
= u, i.e., it is unchanged from the energy

density of the eigenstate under consideration.
Combining the above results, Sn is therefore given by:

Sn =
V

1 � n

h
f s(u⇤A) + n(1 � f )s(u⇤

A
) � ns(u)

i
(21)

where u⇤A and u⇤
A

are obtained by solving the saddle point
condition Eq.19.

This is the central result of our paper. Several observations
can be made immediately:

1. When n = 1, u⇤A = u i.e. the von Neumann entanglement
entropy S1 depends only on the density of states at the energy
density corresponding to the eigenstate for all values of f =
VA/V . Furthermore, the volume law coe�cient of S1 is strictly
linear with VA, i.e., S1 = s(u)VA for f < 1/2. We will call
such linear dependence ‘Page Curve’34,35, as is conventional.
As discussed in the Introduction, this result was also argued
for in Ref.8 and Ref.15.

2. When n , 1, the Renyi entropy density Sn/VA as V ! 1
for fixed f = VA/V depends on f , and thus the Renyi entropies
have a non-trivial curvature dependence when plotted as a
function of VA/V . Perhaps most interestingly, as shown in

Appendix E, the curvature d2Sn
df 2 depends only on the sign of

n � 1:

Sn( f ) is convex for n > 1

Sn( f ) is concave for n < 1.
(22)

3. The saddle point equation (Eq.19) implies that for a
fixed Renyi index n, the energy density u⇤A that determines
the volume law coe�cient of Sn depends on f . Therefore,
di�erent values of f encode thermodynamical information at
di�erent temperatures. Recall that in contrast, as f ! 0, the
n’th Renyi entropy depends only on the free energy densities
at temperature ��1 and (n�)�1.

We recall that the Renyi entanglement entropies Sn corre-
sponding to a typical state in the Hilbert space34–38 equals
log(HA) where HA is the size of the Hilbert space in region A
(assuming HA < HA). For a system with a local Hilbert space
dimension Hlocal, this translates as a volume law for Renyi
entropies i.e. Sn

A
= VA log(Hlocal) as long as f < 1/2 (e.g.

in a spin-1/2 system, Sn
A
= VA log(2)). This result matches

the entropy corresponding to a thermal ensemble at infinite

temperature. Based on this, one might have expected that for
an eigenstate of a physical Hamiltonian at temperature ��1,
the Renyi entropies are perhaps given by their canonical coun-
terparts i.e. Sn = VAn�(f(n�) � f(�))/(n � 1) for all f < 1/2,
a finite temperature version of Page Curve (f(�) is the free
energy density). Our result indicates that this is not the case,
and Renyi entropies for n , 1 do not follow such a Page Curve.

An Example:
Renyi Entropy for System with Gaussian Density of States

Let’s study an example where one can solve the saddle point
Eq.19, and solve for the Renyi entropies explicitly. Consider
a system with volume V where the density of states g(E) is a
Gaussian as a function of the energy E:

g(E) = eV log 2� E2
2V , (23)

Thus, the microcanonical entropy density is given by

s(u) = log 2 � 1
2

u2 (24)

where u ⌘ E/V denotes the energy density. This expression
also implies that the temperature �(u) = �u. As a practical
application, all systems whose energy-entropy relation s(u) is
symmetric under u ! �u, a Gaussian density of states will be
a good approximation to the function s(u) close to the infinite
temperature. Therefore, the results derived can be thought of as
a leading correction to the Renyi entropy in a high temperature
series expansion for such systems.

Directly evaluating the expression in Eq.12, one finds the
following expression for S2 (see Appendix F):

S2 = � log

"
1p

1 � f 2
e�V�( f ,u) +

1p
1 � (1 � f )2

e�V�(1� f ,u)
#
,

(25)
where

�( f , u) = f log 2 � f
1 + f

u2 (26)

When 0 < f < 1
2 ( 1

2 < f < 1), the first (second) term
dominates in the thermodynamic limit.Thus, for 0 < f < 1

2 ,

S2 = f V
✓
log 2 � u2

1 + f

◆
= f V

✓
log 2 � �2

1 + f

◆
. (27)

Similarly, one can obtain Renyi entropy for arbitrary Renyi
index n for 0 < f < 1

2 in the thermodynamic limit:

Sn = f V

log 2 � n�2

2(1 + (n � 1) f )

�
. (28)

This expression illustrates several of the general properties
discussed in the previous subsection. First we notice that Sn is
linear for arbitrary � only when n = 1, and therefore the von
Neumann entropy follows the finite temperature Page curve.

=
1

(1� n)f

@s
@✏

���
✏A

= n@s
@✏

��� ✏�✏Af
1�f

where ✏A satisfies

Sn = VA gn(VA/V,E/V )

gn(VA/V,E/V )



Example: H0 with Gaussian density of states.

Sn = V f
h
log(2)� n

2[1+(n�1)f ]�
2
i

S2 S1/2

Convex for n >1, 
Concave for n < 1.

(f = VA/V ) No Page Curve for Sn, n ≠1



“Ergodic 
Bipartition”

“Thermal
 Pure State”

Comparison of theory with Numerics

“Thermal Pure State” = e-βH/2|Haar random state〉
(Fujita et al 2017)



Demonstration of Many-body Berry Conjecture

Many-body Berry
Thermal Pure State

H =
L∑

i=1

Zi + ϵ×

5

FIG. 3: Probability distribution of the amplitudes C↵ (Eq.9)
for a single eigenstate of the Hamiltonian
H = �ÕN

i=1 Zi + ✏H1, where H1 is a real hermitian random
matrix.

that the range of energy spectrum of H1 is L. As shown in
Fig.3, the coe�cients C↵ indeed behave as random Gaussian
variables. Furthermore, we verified that their variance equals
e�S , consistent with ETH. As we will discuss in detail in Sec.
IV, one can consider a local perturbation, but the finite size
e�ects are significantly larger with a local perturbation (i.e.
the ✏ required to see chaos is comparatively larger), making it
di�cult to compare the eigenstates of H with randomly super-
posed eigenstates of H0. We again emphasize that all equal
time correlation functions of the many-body Berry state (Eq.9)
are determined fully by the properties of the Hamiltonian H0 -
the role of perturbation H1 is ‘merely’ to generate chaos.

Relation between Ergodic Bipartition States and Many-
body Berry States:

The many-body Berry states can essentially be thought of
as a special case of ergodic bipartition states : if in Eq.5, one
substitutes for

��EA
i

↵
and

���EA
j

E
the eigenstates of H0,A and H0,A

respectively, where H0,A and H0,A are restrictions of the in-
tegrable Hamiltonian H0 in Eq.8 to region A and A, then the
resulting state essentially corresponds to the many-body Berry
state (Eq.9). However, there is a subtle distinction: the many-
body Berry state does not su�er from any boundary e�ects
due to the HAA term: the states |s↵i that enter the definition of
many-body Berry state in Eq.9 are eigenstates of the Hamilto-
nian H0 defined on the entire system. In contrast, the ergodic
bipartition states involve tensor products of the eigenstates of
HA and HA, and therefore do not reproduce the correlations
near the boundary between A and A correctly, as discussed
above. Relatedly, comparing Fig.2 (ergodic bipartition con-
jecture), and Fig.3 (many-body Berry conjecture), we notice
that the latter figure fits the predicted Gaussian distribution
better than the former. This is likely again related to the limi-
tation of ergodic bipartition states, Eq.5, that they su�er from
boundary e�ects. Since we will concern ourselves only with

the volume law coe�cient of the Renyi entropies, we do not
expect such boundary e�ects to be relevant.

Due to this relation between the ergodic bipartition states
and the many-body Berry states, it turns out that from a tech-
nical standpoint, the calculations of their Renyi entropies - the
central topic of our paper - are identical. This is the subject of
our next section.

III. RENYI ENTROPY OF CHAOTIC EIGENSTATES

In this section we calculate Renyi entropy corresponding
to the pure states in Eq.5 and Eq.9. We will not write sepa-
rate equations for these two set of states, because as already
mentioned, the calculation as well as all the results derived in
this section apply to either of them. We will be particularly
interested in the functional dependence of Renyi entropies on
the ratio VA/V .

A. Universal Dependence of Renyi Entropy on Many-body
Density of States

In principle, one can define three di�erent kinds of averages
to obtain Renyi entropies: (a) SA

n (⇢A) = 1
1�n log (tr ((⇢A)n)) (b)

SA
n (tr ⇢nA) =

1
1�n log

⇣
tr ⇢n

A

⌘
(c) SA

n,avg =
1

1�n log
�
tr
�
⇢n
A

� �
. The

physically most relevant measure is Sn,avg, however, it is also
the hardest one to calculate due to averaging over logarithm.
As shown in Appendix B, the di�erence |Sn,avg � SA

n (tr ⇢nA)|
is exponentially small in the volume of the total system. Due
to this result and the fact that SA

n (tr ⇢nA) is calculable using
standard tools, in this paper we will focus mainly on it, and
with a slight abuse of notation, denote it as Sn.

One may still wonder how good is the measure (a), i.e.,
SA
n (⇢A), since it’s the simplest one to calculate. Following

Ref.24, Levy’s lemma implies that the trace norm distance
between the average density matrix ⇢A, and a typical density
matrix of the ensemble vanishes exponentially in the total
volume of the system. Combining this result with Fannes’
inequality32, |S1(⇢)�S1(�)| < |⇢�� |1 log(H) where H is the
size of the Hilbert space, one finds that in the thermodynamic
limit, at least the von Neumann entropy for ⇢A should match
with the other two measures upto exponentially small terms.
This result doesn’t however constrain the Renyi entropies for
a general Renyi index. As we will discuss below, it turns
out that the volume law coe�cient corresponding to Renyi
entropies is same for all three measures. At the same time, as
discussed in detail in Sec.IV, for finite sized systems, SA

n (tr ⇢nA)
is always a better measure of Sn,avg compared to SA

n (⇢A) due to
the aforementioned result that their di�erence is exponentially
small in the volume (see Fig.5).

To begin with, let us briefly consider SA
n (⇢A) =

1
1�n log (tr ((⇢A)n)).

4

where the last equation in the sequence is derived by taking
the saddle point from the one above. Clearly if OA and OA

are located close to the boundary between A and A (in units of
thermal correlation length), then there is no reason to expect
that OA(E/V) OA(E/V) is the correct answer for the expec-
tation of O with respect to an actual eigenstate of the system.
However, if OA and OA are located far from the boundary, then
the cluster decomposition of correlation functions implies that
the above answer is indeed correct to a good approximation.
Note that it is a smooth function of the energy, as required by
ETH. A similar calculation shows that the o�-diagonal ma-
trix element hEn | O |Emi is proportional to e�S(E)/2z where
E = (En + Em)/2 and z is a random complex number with
zero mean and unit variance.

Above considerations indicate that the state |Ei is a good
representative of an eigenstate of H, except for the correlation
functions of operators close to the boundary. Therefore, we
expect that it correctly captures the bulk quantities, such as
the volume law coe�cient of Renyi entropies. As already
noted, it correctly reproduces the energy fluctuations, as well
as the diagonal entropy for an eigenstate. Conversely, we do
not expect it to necessarily reproduce the subleading area-law
corrections to the Renyi entropies, which may be sensitive to
the precise way the eigenstates of HA and HA are ‘glued’.

In passing we note that Ref.26 considered a perturbative
treatment of the Hamiltonian H = HA+HA+ ✏HAA to the first
order in ✏ . The wavefunctions thus argued to be obtained have
some resemblance with the EB state (Eq.5). However, to really
obtain an EB state via this procedure, one would instead need
to carry out the perturbation theory to an order that scales with
the system size! This is because when VA/V is non-zero, the
EB state has extensive fluctuations of energy in subregion A,
unlike the states considered in Ref.26 which essentially have
no fluctuations since they mix eigenstates of HA in a small
energy window.

As a direct numerical test of Eq.5, consider a one dimen-
sional spin-1/2 chain with the Hamiltonian given by

H =
L’
i

�ZiZi+1 � Zi + Xi, (7)

where we impose the periodic boundary condition i ⌘ i + L.
Several works have already provided evidence in support of
the validity of ETH in this model8,15,27–30. By diagonalizing
H, we calculate the bipartite amplitude of eigenstates on the
bases of tensor product of all eigenstates of HA and HA with
A denotes the sites i = 1, 2, · · · , LA and A denotes the sites
i = LA + 1, LA + 2, · · · , L. As shown in Fig.2, the bipartite
amplitude indeed behaves like a Gaussian random variable.

A di�erent starting point to obtain states that mimic chaotic
eigenstates is provided by considering Hamiltonians H of the
form:

H = H0 + ✏H1 (8)

Here H0 denotes a translationally invariant many-body local
Hamiltonian whose eigenstates can be chosen as unentangled

FIG. 2: Probability distribution of the bipartite amplitudes
Ci j (Eq.5) when |Ei corresponds to a single, infinite
temperature eigenstate of the Hamiltonian in Eq.7. The
energy window � that appears in Eq.5 is chosen to be 2.

product states {|s↵i =
��s↵1 ↵ ⌦ ��s↵2 ↵ ⌦ ... ⌦ ��s↵L↵}, and therefore

corresponds to an integrable system with an infinite number
of conserved quantities. The H1 term breaks the integrability.
Physical arguments as well as numerics strongly suggest that
the system will show a cross-over behavior from an integrable
regime to a chaotic regime for ✏ ⇠ 1/L�16–21. In fact, fol-
lowing arguments similar to Ref.3, where eigenstates of a hard
sphere system were written as random superposition of many-
body plane waves so as to be consistent with ETH, in our case
an eigenstate |Ei of H in the limit ✏ ! 0 takes the form:

lim
✏!0

lim
V!1

|Ei =
’
↵

C↵ |s↵i (9)

with

P({C↵}) / �(1 �
’
↵

|C↵ |2)�(E↵ � E), (10)

where the first and second delta function constraints impose
the normalization and energy conservation respectively. This
form of eigenstates closely resembles the Berry’s conjecture
for the eigenstates of chaotic billiard ball systems22, and we
will call this ansatz “many-body Berry” (MBB) conjecture.
Again, similar to the case of ergodic bipartition conjecture
discussed above (Eq.5), one can readily verify that ETH holds
true for the state in Eq.9. Specifically, the diagonal matrix
elements of an operator O match the canonical expectation
value of O with respect to H0, while the o�-diagonal matrix
elements are proportional to e�S(E)/2z where z is a random
complex number with zero mean. Note that we take H0 to be
translationally invariant to avoid the possibility of many-body
localization31.

A quick demonstration of this conjecture is provided by
the Hamiltonian H = �ÕN

i=1 Zi + ✏H1, where H1 is a real
hermitian random matrix. The variance of the probability dis-
tribution function of the matrix element in H1 is chosen such
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FIG. 11: Finite size scaling for of �Sn/LA for ergodic
bipartition (EB) states and CTPQ states where �Sn is defined
as the di�erence between the analytical expressions for the
corresponding states (EB or CTPQ) and the exact
diagonalization results. The Hamiltonian is given by Eq.7
and eigenstates correspond to � = 0.06. LA is chosen to be
L/2 for all L. Note that in the middle panel, “EB (leading
order)” refers to the expression in Eq.16 while “EB (exact)”
refers to the Eq.15. In the top panel we use the exact
expression for EB states (Eq.12) while in the bottom panel,
we use the leading order result (Eq.16) for EB states.

quite di�erent than the Renyi entropies corresponding to (a)
Thermal density matrix as well as CTPQ state10,14, for which
the Renyi entropies densities are independent of f (b) Free
fermion systems for which the von Neumann entropies (and
hence all Renyi entropies n > 1) are concave functions of
f 41,42 (c) A random state in the Hilbert state34,35, or systems
without any conservation laws43 for which all Sn are simply
given by V f log(2) ( f < 1/2) and do not have any curvature
dependence. Our theoretical prediction matches rather well

FIG. 12: Evolution of the shape of the Renyi entropy S2 as
the total system is increased for a system with Gaussian
density of states (Eq.25). Note that as L ! 1, the Renyi
entropy is a convex function for all f , and has a cusp
singularity at f = 1/2.

FIG. 13: The density of states as a function of the
temperature of the eigenstates for a 18 site spin-chain. The
temperature for individual eigenstates |Eni is evaluated by
solving the equation tr(He��(En )H )

tr(e��(En )H ) = En.

with the exact diagonalization results on quantum spin chains.
In exact diagonalization studies on finite systems, the curva-

ture dependence characteristic of the thermodynamic limit can
be a bit challenging to observe. In fact, most of the curvature
seen in finite size systems can be attributed to the subleading
terms in Sn (e.g., the second term in the numerator of Eq.12)
which do not contribute to the volume law coe�cient at any
fixed VA/V in the thermodynamic limit. The presence of these
terms in finite size systems can lead to the appearance that Sn
for n > 1 is a concave function of VA/V (see, e.g., Fig.12).
Further, the magnitude of the curvature vanishes at infinite
temperature, and is proportional to �2 at high temperatures.
In exact diagonalization studies on finite systems, most states
have |� | below O(1) (see Fig.13), which also makes it harder
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n (⇢A) =

1
1 � n

log

2666664

Õ
EA

eS
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A

(EA)+nSM

A
(E�EA)hÕ

EA
eS

M
A

(EA)+SM

A
(E�EA)

in
3777775
, (11)

where SM
A (EA) (SM

A
(E � EA)) denotes the logarithm of the

density of states of HA at energy EA. Similarly, SM

A
(E � EA)

denotes the logarithm of the density of states of HA at energy
E �EA. Below, we will show that this expression matches that
for SA

n at the leading order in the thermodynamic limit when
VA/V is held fixed.

For brevity, from now on we will drop the superscript ‘A’
on the Renyi entropies SA

n for the rest of paper. To analyze Sn,
our main focus, let us first consider the second Renyi entropy
S2. One finds (see Appendix C):

S2 = � log

2666664

Õ
EA

eS
M
A

(EA)+2SM

A
(E�EA) + e2SM

A
(EA)+SM

A
(E�EA)

hÕ
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eS
M
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(EA)+SM

A
(E�EA)

i2

3777775
.

(12)
Unlike SA

n (⇢A), this expression is manifestly symmetric be-
tween A and A. Most importantly, S2 is a universal function of
the microcanonical entropy (= logarithm of density of states)
for the system. Furthermore, when VA/V < 1/2 is held fixed,

in the thermodynamic limit (i.e. V ! 1), S2 can be simplified
as

S2 = � log

2666664

Õ
EA

eS
M
A

(EA)+2SM

A
(E�EA)

hÕ
EA

eS
M
A

(EA)+SM

A
(E�EA)

i2

3777775
. (13)

Let’s consider the limit f ! 0. Taylor expanding SM

A
(E �EA)

as SM

A
(E � EA) = SM

A
(E) � �EA, one finds

S2 = � log

"
tr e�2�HA

(tr e��HA)2

#
= � log

"
ZA(2�)
Z2
A
(�)

#
(14)

= 2� [FA(2�) � FA(�)] . where FA(�) is the free energy of
HA at temperature ��1. This is exactly what one expects
when the reduced density matrix is canonically thermal i.e.
⇢A = e��HA/tr

�
e��HA

 
. Evidently, this result is true only

when VA/V ! 0 and does not hold true for general values
of VA/V and we will explore this and related aspects in much
detail below.

Following the same procedure as above, one can also derive
the universal formula for the Renyi entropy at an arbitrary
Renyi index n. For example, the explicit expression for the
third Renyi entropy is (Appendix D):

S3 = �1
2

log
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3777775
(15)

The explicit expression of n’th Renyi entropy can be ex-
pressed as a logarithm of the sum of n! terms. In the thermo-
dynamic limit, however, only one of these terms is dominant,
and the expression becomes (for VA/V < 1/2):

Sn =
1

1 � n
log

2666664

Õ
EA

eS
M
A

(EA)+nSM

A
(E�EA)hÕ

EA
eS

M
A

(EA)+SM

A
(E�EA)

in
3777775
. (16)

Note that this is identical to the Renyi entropy SA
n (⇢A),

Eq.11. See Appendix D for details of the calculation.

B. Curvature of Renyi Entropies and the Failure of Page Curve

Let us evaluate Eq.16, in thermodynamic limit V ! 1
with f = VA/V(< 1/2) held fixed. The thermodynamic limit
allows one to use the saddle point approximation technique.

The numerator can be written as,
’
EA

eS
M
A

(EA)+nSM

A
(E�EA) =

’
uA

eVAs(uA)+nVAs(uA) (17)

where uA denotes the energy density in A while uA denotes
the energy density in A consistent with energy conservation,
and s(u) is the entropy density at energy density u. Thus,

uA =
u

1 � f
� f

1 � f
uA. (18)

where u = E/V is the energy density corresponding to the
eigenstate under consideration. At the saddle point, the sum
over uA is dominated by the solution to the equation:

@s(u)
@u

����
u=u⇤

A

= n
@s(u)
@u

����
u=u⇤

A

(19)

and therefore the numerator equals eV
h
f s(u⇤

A
)+n(1� f )s(u⇤

A
)
i

in
thermodynamic limit.

SA
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h
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where ✏A satisfies

Exact:

Asymptotic:

Entanglement Scaling: 
Ground State Vs Excited States

Sn ~  L
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“Area Law”
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Consequences

Renyi entropies can tell the difference between a 
pure state and a thermal state even when VA << V.

Renyi Entropy of Chaotic Eigenstates

Tsung-Cheng Lu1 and Tarun Grover1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
corresponding to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The expression is a
universal function of the density of states and is valid even when the subsystem is a finite fraction of the total
system - a regime in which the reduced density matrix is not thermal. We find that in the thermodynamic limit,
only the von Neumann entropy density is independent of the subsystem to the total system ratio VA/V , while the
Renyi entropy densities depend non-linearly on VA/V . Surprisingly, Renyi entropies Sn for n > 1 are convex
functions of the subsystem size, with a volume law coe�cient that depends on VA/V , and exceeds that of a
thermal mixed state at the same energy density. We provide two di�erent arguments to support our results:
the first one relies on a many-body version of Berry’s formula for chaotic quantum mechanical systems, and is
closely related to eigenstate thermalization hypothesis. The second argument relies on the assumption that for a
fixed energy in a subsystem, all states in its complement allowed by the energy conservation are equally likely.
We perform Exact Diagonalization study on quantum spin-chain Hamiltonians to test our analytical predictions,
and find good agreement.

I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing1–7. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quan-
tum Hamiltonian8. Specifically, consider a system of size V
described by Hamiltonian H. The eigenstate thermalization
hypothesis2–4 posits that the reduced density matrix for a finite
energy density eigenstate |Eni on subsystem A with VA ⌧ V
is thermal: trA |EnihEn | = trA

�
e��H

�
/tr

�
e��H

� def
= ⇢Ath(�)

where ��1 is the temperature corresponding to the eigenstate
|Eni and equals dS/dE

���
En

where S(E) is the microcanonical
entropy (= logarithm of the density of states).

One basic question is: do there exist observables O whose
support VO scales with the total system size V while their ex-
pectation value hEn |O|Eni continues to satisfy some version
of eigenstate thermalization? Standard analyses in statistical
mechanics9 do not provide answer to such global aspects of
thermalization. As pointed out in Ref.8, at any fixed, non-zero
VA/V , one can always find operators with operator norm of or-
der unity, for whom the di�erence |hEn |O|Eni � tr

�
⇢Ath(�)O

�
|

does not vanish and is of order unity. This implies that the

trace norm distance 1
2

���� trA |EnihEn | � ⇢Ath(�)
����
1

does not van-

ish and is of order unity when VA/V is held fixed while tak-
ing thermodynamic limit. Clearly, the expectation value of
operators which are constrained by global conservation laws
can’t behave thermally. As an example, consider the operator�
H2

A � hH2
Ai
�
/VA, where HA is the Hamiltonian restricted to

region A. Its expectation value in an eigenstate tends towards
zero when VA approaches V , while is non-zero and propor-
tional to the specific heat in a thermal state. This raises the
question whether conserved quantities exhaust the set of opera-

FIG. 1: The curvature dependence of the Renyi entropy
corresponding to chaotic eigenstates derived in the main text:
in the thermodynamic limit, Sn is convex (concave) function
of VA/V for n > 1 (n < 1) with a cusp singularity at
VA/V = 1/2.

tors that distinguish a pure state from a corresponding thermal
state at the same energy?

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA
n =

1
1�n log

�
tr ⇢n

A

�
. In fact tr

�
⇢2
�
is one of the simplest mea-

sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation of the
expectation value of a cyclic permutation operator acting on
the n copies of the system. Due to this, SA

n can in principle be
measured in experiments, and remarkably, an implementation
for n = 2 was recently demonstrated in cold atomic systems11.

The ground states of quantum many-body systems typically
follow an area-law for Renyi entropies (upto multiplicative
logarithmic corrections): SA

n ⇠ Ld�1
A

where d is the spatial
dimension12,13. In strong contrast, finite energy density eigen-
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Sthermal,n>1

Sthermal,n<1

⇢thermal = e��HA/ZA

Consequences for decoding information from Hawking radiation?



Consequences

Prediction for Renyi entropy of eigenstates of 
chaotic CFTs (e.g. holographic CFTs).

Sn =
n

n� 1
c u↵ V

⇥
{(1� f) + fn1/(↵�1)}1�↵ � 1

⇤

In a CFTd+1, the entropy density s(u) = c u𝜶 
where u is the energy density, and 𝜶 = d/(d+1).

Solving the saddle point equations,

Can this be checked for large central charge CFTs?
 (S1 already matches up, as worked out by Hartman and collaborators).



Consequences

The dependence of Renyi entropy on VA/V allows
 one to extract free energy at all temperatures from a 

single Renyi entropy.

S2

Different values of VA/V encode free energy data at
different temperatures.

VA/V

S2 = VA g2(VA/V,E/V )



Consequences

In contrast, if one restricts to VA/V << 1, then one needs 
Sn for ALL n to get the free energy at all temperatures.

S2

VA/V

S2,thermal

8

Figure 5: Scaling of the entropy deviation �Sn ⌘
Sn(⇢A,th(�)) � Sn(⇢A(| i�)) with 1/L for constant LA av-
eraged over all eigenstates in the range 0.28 < � < 0.32, for
S1 (top panel) and S2 (bottom panel). The error bars rep-
resent one standard deviation away from the mean. For S1

this deviation is strictly non-negative, but for higher Renyi
entropies it can oscillate and become negative before tending
to zero as L ! 1.

Sn = � 1

n� 1
ln

✓
Z(A, n,�)

Z(1,�)n

◆
(27)

where Z(A, n,�) is the partition function of the system
on a n-sheeted Reimann surface, such that the region A
has an effective temperature n� while the region A has an
effective temperature �. Z(1,�) is the regular partition
function of the system. Therefore, keeping terms only to
the leading order in the system and subsystem size, the
above expression becomes

Sn = � 1

n� 1
ln

✓
e�VA�f(n�)�nVA�f(�)

e�nVA�f(�)�nVA�f(�)

◆
(28)

=
n

n� 1
VA� (f(n�)� f(�)) (29)

where f is the free energy density. Therefore, the wave-
function at temperature � can be used to calculate the
free energy at temperature n�. Indeed, the same result
also follows using the approximate form in Eq.2b. Tak-
ing the limit n ! 1 leads to the conclusion that von
Neumann entanglement entropy S

1

satisfies

S
1

= VAsth(�) (30)

where s
th

(�) is the thermal entropy density at tempera-
ture ��1.

B. Numerical Results for von Neumann and Renyi
Entropies

Fig.3 shows the scaling of von Neumann entropy S
1

as
a function of subsystem size LA for the eigenstates | i�
of our model (Eq.25). As discussed in Sec.II C 1, since S

1

is the expectation value of a Class I operator in our no-
tation, we expect Eqn.30 to hold as long as VA  VA, in
the limit VA, VA ! 1. This implies, that in the thermo-
dynamic limit, the function S

1

(VA) is expected to form
an inverted triangle shape, similar to the behavior of a
random pure state (Eq.5). However, in a finite total sys-
tem at any non-infinite temperature, S

1

is an analytic

Figure 6: Scaling of the entropy deviation �S1 with 1/L for
constant ratio LA/L averaged over all eigenstates in the range
0.28 < � < 0.32. As in Fig.5, the error bars represent one
standard deviation away from the mean. Even though this
plot considers the case where the subsystem size LA becomes
infinite as L ! 1, the entropy deviations are going to zero
rapidly as L becomes larger.

Sn(|���)VA/V << 1:



Consequences

von Neumann entropy S1, at the leading order,
is additive: S1= VA sthermal(β).

In contrast Sn, for n ≠1, is not additive.

Renyi Entropy of Chaotic Eigenstates

Tsung-Cheng Lu1 and Tarun Grover1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

Using arguments built on ergodicity, we derive an analytical expression for the Renyi entanglement entropies
corresponding to the finite-energy density eigenstates of chaotic many-body Hamiltonians. The expression is a
universal function of the density of states and is valid even when the subsystem is a finite fraction of the total
system - a regime in which the reduced density matrix is not thermal. We find that in the thermodynamic limit,
only the von Neumann entropy density is independent of the subsystem to the total system ratio VA/V , while the
Renyi entropy densities depend non-linearly on VA/V . Surprisingly, Renyi entropies Sn for n > 1 are convex
functions of the subsystem size, with a volume law coe�cient that depends on VA/V , and exceeds that of a
thermal mixed state at the same energy density. We provide two di�erent arguments to support our results:
the first one relies on a many-body version of Berry’s formula for chaotic quantum mechanical systems, and is
closely related to eigenstate thermalization hypothesis. The second argument relies on the assumption that for a
fixed energy in a subsystem, all states in its complement allowed by the energy conservation are equally likely.
We perform Exact Diagonalization study on quantum spin-chain Hamiltonians to test our analytical predictions,
and find good agreement.

I. INTRODUCTION

The observation that the quantum evolution of a closed
quantum system can lead to thermalization of local observ-
ables puts the foundations of equilibrium statistical mechanics
on a firmer footing1–7. In strong contrast to classical me-
chanics, where one often refers to an ensemble of identically
prepared systems, quantum mechanics allows for the possibil-
ity that a single quantum state can encode the full equilibrium
probability distribution function, and in fact, the full quan-
tum Hamiltonian8. Specifically, consider a system of size V
described by Hamiltonian H. The eigenstate thermalization
hypothesis2–4 posits that the reduced density matrix for a finite
energy density eigenstate |Eni on subsystem A with VA ⌧ V
is thermal: trA |EnihEn | = trA

�
e��H

�
/tr

�
e��H

� def
= ⇢Ath(�)

where ��1 is the temperature corresponding to the eigenstate
|Eni and equals dS/dE

���
En

where S(E) is the microcanonical
entropy (= logarithm of the density of states).

One basic question is: do there exist observables O whose
support VO scales with the total system size V while their ex-
pectation value hEn |O|Eni continues to satisfy some version
of eigenstate thermalization? Standard analyses in statistical
mechanics9 do not provide answer to such global aspects of
thermalization. As pointed out in Ref.8, at any fixed, non-zero
VA/V , one can always find operators with operator norm of or-
der unity, for whom the di�erence |hEn |O|Eni � tr

�
⇢Ath(�)O

�
|

does not vanish and is of order unity. This implies that the

trace norm distance 1
2

���� trA |EnihEn | � ⇢Ath(�)
����
1

does not van-

ish and is of order unity when VA/V is held fixed while tak-
ing thermodynamic limit. Clearly, the expectation value of
operators which are constrained by global conservation laws
can’t behave thermally. As an example, consider the operator�
H2

A � hH2
Ai
�
/VA, where HA is the Hamiltonian restricted to

region A. Its expectation value in an eigenstate tends towards
zero when VA approaches V , while is non-zero and propor-
tional to the specific heat in a thermal state. This raises the
question whether conserved quantities exhaust the set of opera-

FIG. 1: The curvature dependence of the Renyi entropy
corresponding to chaotic eigenstates derived in the main text:
in the thermodynamic limit, Sn is convex (concave) function
of VA/V for n > 1 (n < 1) with a cusp singularity at
VA/V = 1/2.

tors that distinguish a pure state from a corresponding thermal
state at the same energy?

One set of quantities that are particularly relevant to probe
the global aspects of chaotic eigenstates are Renyi entropies:
SA
n =

1
1�n log

�
tr ⇢n

A

�
. In fact tr

�
⇢2
�
is one of the simplest mea-

sures of how close to a pure state a potentially mixed quantum
state is. For integer values of n, SA

n has the interpretation of the
expectation value of a cyclic permutation operator acting on
the n copies of the system. Due to this, SA

n can in principle be
measured in experiments, and remarkably, an implementation
for n = 2 was recently demonstrated in cold atomic systems11.

The ground states of quantum many-body systems typically
follow an area-law for Renyi entropies (upto multiplicative
logarithmic corrections): SA

n ⇠ Ld�1
A

where d is the spatial
dimension12,13. In strong contrast, finite energy density eigen-
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In fact, for n >1, Sn is not even subadditive:  Sn,A + Sn,B < Sn,A∪B



Why positive curvature of Sn for n > 1 is interesting.

Consider increasing the total system size of a 
translationally invariant Hamiltonian.

L1 L2LA

S1

Strong subadditivity implies that S1 is non-convex 

Increasing the “heat-bath” size increases 
entanglement of a subsystem.=) @SA

1

@L
� 0



Why positive curvature of Sn for n > 1 is interesting.

Consider increasing the total system size of a 
translationally invariant Hamiltonian.

L1 L2LA

S1

In contrast,

Increasing the “heat-bath” size decreases 
S2 of a subsystem.

=) @SA
2

@L
< 0



Summary and Questions
• Ergodicity based arguments seemingly explain several universal features of 

entanglement scaling. Numerical evidence seems good. Specifically:

a.  von Neumann entropy density for an eigenstates equals thermal entropy 
density as long as VA<V/2 (“finite T Page Curve”). One doesn’t need VA << V. 

b. Renyi entropies Sn have a universal dependence on the subsystem to system 
ratio VA/V and the density of states. For n > 1 (n<1), the Renyi entropy 
densities (= Sn/VA) are bigger (smaller) than those for the corresponding 
thermal state.

• Holographic/large-c checks for the chaotic CFT Renyi expressions? (alert: 
we are dealing with pure eigenstates).

• Implications for black hole physics? Renyi entropies as a diagnosis of non-
thermal correlations in Hawking radiation?

• Quantum dynamics using Berry’s conjecture?

• Consequences for experimentally measured Renyis under quantum quench? 

• Towards random matrix like theory with locality built-in.
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FIG. 11: Finite size scaling for of �Sn/LA for ergodic
bipartition (EB) states and CTPQ states where �Sn is defined
as the di�erence between the analytical expressions for the
corresponding states (EB or CTPQ) and the exact
diagonalization results. The Hamiltonian is given by Eq.7
and eigenstates correspond to � = 0.06. LA is chosen to be
L/2 for all L. Note that in the middle panel, “EB (leading
order)” refers to the expression in Eq.16 while “EB (exact)”
refers to the Eq.15. In the top panel we use the exact
expression for EB states (Eq.12) while in the bottom panel,
we use the leading order result (Eq.16) for EB states.

quite di�erent than the Renyi entropies corresponding to (a)
Thermal density matrix as well as CTPQ state10,14, for which
the Renyi entropies densities are independent of f (b) Free
fermion systems for which the von Neumann entropies (and
hence all Renyi entropies n > 1) are concave functions of
f 41,42 (c) A random state in the Hilbert state34,35, or systems
without any conservation laws43 for which all Sn are simply
given by V f log(2) ( f < 1/2) and do not have any curvature
dependence. Our theoretical prediction matches rather well

FIG. 12: Evolution of the shape of the Renyi entropy S2 as
the total system is increased for a system with Gaussian
density of states (Eq.25). Note that as L ! 1, the Renyi
entropy is a convex function for all f , and has a cusp
singularity at f = 1/2.

FIG. 13: The density of states as a function of the
temperature of the eigenstates for a 18 site spin-chain. The
temperature for individual eigenstates |Eni is evaluated by
solving the equation tr(He��(En )H )

tr(e��(En )H ) = En.

with the exact diagonalization results on quantum spin chains.
In exact diagonalization studies on finite systems, the curva-

ture dependence characteristic of the thermodynamic limit can
be a bit challenging to observe. In fact, most of the curvature
seen in finite size systems can be attributed to the subleading
terms in Sn (e.g., the second term in the numerator of Eq.12)
which do not contribute to the volume law coe�cient at any
fixed VA/V in the thermodynamic limit. The presence of these
terms in finite size systems can lead to the appearance that Sn
for n > 1 is a concave function of VA/V (see, e.g., Fig.12).
Further, the magnitude of the curvature vanishes at infinite
temperature, and is proportional to �2 at high temperatures.
In exact diagonalization studies on finite systems, most states
have |� | below O(1) (see Fig.13), which also makes it harder


