Bit Threads \& Holographic Entanglement

Matthew Headrick
Brandeis University

Frontiers of Quantum Information Physics KITP, October 2017

Mostly based on arXiv:1604.00354 [hep-th] with Michael Freedman
Contents
1 How should one think about the minimal surface? 2
2 Reformulation of RT 5
3 Threads \& information 7
4 Monogamy of mutual information 12
5 No time left 15
5.1 Quantum corrections 15
5.2 Covariant bit threads 15
1 How should one think about the minimal surface?
In semiclassical gravity, surface areas are related to entropies

Bekenstein-Hawking '74:
For black hole,

$$
S=\frac{1}{4 G_{\mathrm{N}}} \text { area(horizon) }
$$

Why?
Possible answer:
Microstate bits "live" on horizon, 1 bit/4 Planck areas

Ryu-Takayanagi '06: For region in holographic field theory (classical Einstein gravity, static state)

$$
S(A)=\frac{1}{4 G_{\mathrm{N}}} \operatorname{area}(m(A))
$$

$m(A)=$ bulk minimal surface homologous to A
Bulk geometry packages entanglement entropies in a simple \& beautiful way
Do microstate bits of A "live" on $m(A)$?
Unlike horizon, $m(A)$ is not a special place; by choosing A, we can put $m(A)$ almost anywhere Puzzles:

- Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions A, B

- Information-theoretic quantities are given by differences of areas of surfaces passing through different parts of bulk:

$$
\begin{aligned}
\text { Conditional entropy: } & H(A \mid B)=S(A B)-S(B) \\
\text { Mutual information: } & I(A: B)=S(A)+S(B)-S(A B) \\
\text { Conditional mutual information: } & I(A: B \mid C)=S(A B)+S(B C)-S(A B C)-S(C)
\end{aligned}
$$

What do differences between areas of surfaces, passing through different parts of bulk, have to do with these measures of information?

- RT obeys strong subadditivity [Headrick-Takayanagi '07]

$$
I(A: B C) \geq I(A: C)
$$

What does proof (by cutting \& gluing minimal surfaces) have to do with information-theoretic meaning of SSA
 (monotonicity of correlations)?
To try to answer these questions, I will present a new formulation of RT

- Does not refer to minimal surfaces (demoted to a calculational device)
- Suggests a new way to think about the holographic principle \& about the connection between spacetime geometry and information

2 Reformulation of RT

Consider a Riemannian manifold with boundary
Flow: vector field v obeying $\nabla \cdot v=0,|v| \leq 1$
Think of flow as a set of oriented threads (flow lines) beginning \& ending on boundary, transverse density $=|v| \leq 1$

Let A be a subset of boundary

Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer '74, Strang '83, Nozawa '90]):

$$
\max _{v} \int_{A} v=\min _{m \sim A} \operatorname{area}(m)
$$

(Headrick-Hubeny '17 contains exposition of proof: Finding max flow is convex program, related by Lagrangian duality \& convex relaxation to finding minimal surface

Also prove a min flow-max cut theorem for Lorentzian spacetimes, relating maximal-volume slices to minimal-flux flows, where a flow is a future-directed timelike vector field with norm ≥ 1)

Note that max flow is highly non-unique (except on $m(A)$, where $v=$ unit normal)

RT version 2.0:

$$
\begin{aligned}
S(A) & =\max _{v} \int_{A} v \quad\left(4 G_{\mathrm{N}}=1\right) \\
& =\max \# \text { of threads beginning on } A
\end{aligned}
$$

BH horizon

Threads can end on A^{c} or horizon
Each thread has cross section of 4 Planck areas \& is identified with 1 (independent) bit of A
Automatically incorporates homology \& global minimization conditions of RT

Threads are "floppy": lots of freedom to move them around in bulk \& move where they attach to A

Also lots of room near boundary to add extra threads that begin \& end on A (don't contribute to $S(A)$)

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area Holographic principle: entropy \propto area because bits are carried by one-dimensional objects

Bekenstein-Hawking:

3 Threads \& information

Now we address conceptual puzzles with RT raised before
First: even when $m(A)$ jumps, $v(A)$ changes continuously with A

Next, consider two regions A, B
We can maximize flux through A or B, not in general both But we can always maximize through A and $A B$ (nesting property) Call such a flow $v(A, B)$

Example 1: $S(A)=S(B)=2, S(A B)=3 \Rightarrow I(A: B)=1, H(A \mid B)=1$

Lesson 1:

- Threads that are stuck on A represent bits unique to A
- Threads that can be moved between $A \& B$ represent correlated pairs of bits

Example 2: $S(A)=S(B)=2, S(A B)=1 \Rightarrow I(A: B)=3, H(A \mid B)=-1 \Rightarrow$ entanglement
One thread leaving A must go to B, and vice versa

Lesson 2:

- Threads that connect $A \& B$ (switching orientation) represent entangled pairs of qubits

Apply lessons to single region:

- freedom to move beginning points around reflects correlations within A
- freedom to add threads that begin \& end on A reflects entanglement within A

Equations

Conditional entropy:

$$
\begin{aligned}
H(A \mid B) & =S(A B)-S(B) \\
& =\int_{A B} v(A B)-\int_{B} v(B) \\
& =\int_{A B} v(B, A)-\int_{B} v(B, A) \\
& =\int_{A} v(B, A) \\
& =\text { min flux on } A \text { (maximizing on } A B)
\end{aligned}
$$

Mutual information:

$$
\begin{aligned}
I(A: B) & =S(A)-H(A \mid B) \\
& =\int_{A} v(A, B)-\int_{A} v(B, A) \\
& =\max -\min \text { flux on } A \text { (maximizing on } A B) \\
& =\text { flux movable between } A \text { and } B \text { (maximizing on } A B)
\end{aligned}
$$

Subadditivity is clear
Max flow can be defined even when flux is infinite: flow that cannot be augmented Regulator-free computation of mutual information:

$$
I(A: B)=\int_{A}(v(A, B)-v(B, A))
$$

Define

$$
v(A: B)=\frac{1}{2}(v(A, B)-v(B, A))
$$

Flow from A to B through homology region $r(A B) \mathrm{w} /$ flux $\frac{1}{2} I(A: B)$ Implies

$$
\frac{1}{2} I(A: B) \leq \text { cross section of } r(A B)
$$

(Takayanagi-Umemoto '17, Nguyen et al. '17 use this to interpret cross section as entanglement of purification)
Conditional mutual information:

Strong subadditivity $I(A: B \mid C) \geq 0$ is clear
In each case, clear connection to information-theoretic meaning of quantity/property

4 Monogamy of mutual information

Work in progress with Shawn Cui, Patrick Hayden, Temple He, Bogdan Stoica, Michael Walter
Given a 3-party state $\rho_{A B C}$, define tripartite information:

$$
\begin{aligned}
-I_{3}(A: B: C) & :=S(A B)+S(B C)+S(A C)-S(A)-S(B)-S(C)-S(A B C) \\
& =I(A: B C)-I(A: B)-I(A: C)
\end{aligned}
$$

Cases:

$\rho_{A B C}$	$-I_{3}(A: B: C)$
pure	0
$\rho_{A} \otimes \rho_{B C}$	0
marginal of higher-party GHZ e.g. $\|\psi\rangle_{A B C D}=(\|0000\rangle+\|1111\rangle) / \sqrt{2}$	<0
marginal of 4-party perfect tensor (e.g. 4-qutrit code)	>0

Hayden-Headrick-Maloney '11 used cutting-and-pasting of minimal surfaces to show that RT implies

$$
-I_{3}(A: B: C) \geq 0
$$

"Monogamy of mutual information" (MMI)
Suggests that perfect-tensor entanglement dominates over GHZ-type entanglement in holographic states (also true in random stabilizer tensor networks [Nezami-Walter '16])

Can prove MMI using flows

Use multi-commodity flows to obtain a geometric decomposition of the bulk into parts representing different kinds of entanglement

First consider simplest case where $A B$ is pure (no C):
Bulk is "bridge" connecting A and B,

$$
\text { capacity }=S(A)=S(B)=\frac{1}{2} I(A: B)
$$

Now suppose $A B C$ is pure

Bulk can be decomposed into

- $A-B$ bridge with capacity $\frac{1}{2} I(A: B)$
- $B-C$ bridge with capacity $\frac{1}{2} I(B: C)$
- $A-C$ bridge with capacity $\frac{1}{2} I(A: C)$

Now the general case: $A B C$ is mixed; let $D=$ rest of boundary, so $A B C D$ is pure Decomposition of bulk into 7 pieces:

- $A-B$ bridge with capacity $\frac{1}{2} I(A: B)$
- $A-C$ bridge with capacity $\frac{1}{2} I(A: C)$
- $A-D$ bridge with capacity $\frac{1}{2} I(A: D)$
- $B-C$ bridge with capacity $\frac{1}{2} I(B: C)$
- $B-D$ bridge with capacity $\frac{1}{2} I(B: D)$

- $C-D$ bridge with capacity $\frac{1}{2} I(C: D)$
- 4-way bridge with capacity on each leg $-\frac{1}{2} I_{3}(A: B: C)$

2-way bridges account for all pairwise MIs; 4-way bridge accounts for all of $-I_{3}(A: B: C)$
These are the extremal rays of 4-party holographic entropy cone
Question:
Does the state enjoy a similar (approximate) decomposition, into pairwise Bell pairs and 4-party perfect tensors?

5 No time left

5.1 Quantum corrections

Faulkner-Lewkowycz-Maldacena '13:
Quantum (order G_{N}^{0}) correction to RT is from entanglement of bulk fields

May be reproduced by allowing threads to jump from one point to another
(or tunnel through microscopic wormholes, à la ER

$=$ EPR [Maldacena-Susskind '13])

5.2 Covariant bit threads

Work in progress with Veronika Hubeny

Hubeny-Rangamani-Takayanagi ['07] covariant entanglement entropy formula:

$$
S(A)=\operatorname{area}(m(A))
$$

$m(A)=$ minimal extremal surface homologous to A
Generalization of max flow-min cut theorem to Lorentzian setting:
A flow is still a divergenceless vector field v
Also have "clock function" ϕ, with boundary condition

$$
\phi=0 \quad \text { on } J^{-}(\partial A), \quad \phi=1 \quad \text { on } J^{+}(\partial A)
$$

Density of threads in rest frame of observer with 4-velocity u is $|v|_{u}:=\sqrt{v^{2}+(u \cdot v)^{2}}$ Density constraint: $|v|_{u} \leq u^{\mu} \partial_{\mu} \phi$ for any timelike unit vector u Observer w/proper time τ sees density $\leq d \phi / d \tau$

Theorem (assuming NEC, using results of Wall '12 \& Headrick-Hubeny-Lawrence-Rangamani '14):

$$
\max _{v} \int_{D(A)} v=\operatorname{area}(m(A)) \quad D(A)=\text { boundary causal domain of } A
$$

Finding extremal surface area becomes convex optimization problem
HRT version 2.0:

$$
S(A)=\max _{v} \int_{D(A)} v
$$

To maximize flux, threads seek out $m(A)$, automatically confining themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall's ['12] maximin by standard max flow-min cut) or spread out in time

