Black holes and random matrices

Stephen Shenker

Stanford University
KITP October 12, 2017

A question

- What accounts for the finiteness of the black hole entropy-from the bulk point of view in AdS/CFT?
- The stakes are high here. Many approaches to understanding the bulk:
- Eternal black hole \leftrightarrow Thermofield double state
- Ryu-Takayanagi
- Geometry from entanglement
- Tensor networks
- $E R=E P R$
- Bulk reconstruction and error correction
- Complexity
- Bit threads
- ...
suggest that any complete bulk description of quantum gravity (if one exists) must be able to describe these states.
(e.g., what do the virtual indices in a tensor network represent?)

A diagnostic

- A simple diagnostic of a discrete spectrum [Maldacena]. Long time behavior of $\langle O(t) O(0)\rangle$. (O is a bulk (smeared boundary) operator)

$$
\left.\langle O(t) O(0)\rangle=\sum_{m, n} e^{-\beta E_{m}}|\langle m| O| n\right\rangle\left.\right|^{2} e^{i\left(E_{m}-E_{n}\right) t} / \sum_{n} e^{-\beta E_{n}}
$$

- At long times the phases from the chaotic discrete spectrum cause $\langle O(t) O(0)\rangle$ to oscillate in an erratic way. It becomes exponentially small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
- To focus on the oscillating phases remove the matrix elements. Use a related diagnostic: [Papadodimas-Raju]

$$
\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}=Z(\beta+i t) Z(\beta-i t)=Z(t) Z^{*}(t)
$$

- The "spectral form factor"

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$
- Assume the levels are discrete (finite entropy) and non-degenerate (generic, implied by chaos)
- At long times, after a bit of time averaging (or J averaging in SYK), the oscillating phases go to zero and only the $n=m$ terms contribute.
- $Z(\beta)^{2} \rightarrow Z(2 \beta)$. ($=L=e^{S}$ for $\beta=0$)
- $e^{2 S} \rightarrow e^{S}$, an exponential change. How does this occur?

SYK as a toy model

- The Sachdev-Ye-Kitaev model can serve as a toy model to address these questions.

$$
H=\sum_{a b c d} J_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}, \quad\left\langle J_{a b c d}^{2}\right\rangle \sim J^{2} / N^{3}
$$

- Maximally chaotic, discrete spectrum
- Has a sector dual to AdS_{2} dilaton gravity
- Has a collective field description: $G\left(t, t^{\prime}\right)=\frac{1}{N} \psi_{a}(t) \psi_{a}\left(t^{\prime}\right), \quad \Sigma\left(t, t^{\prime}\right)$. Reminiscent of a bulk description:
- $O(N)$ singlets
- nonlocal
- Nonperturbatively well defined (two replicas)

$$
\left\langle Z(t) Z^{*}(t)\right\rangle=\int d G_{a b} d \Sigma_{a b} \exp \left(-N I\left(G_{a b}, \Sigma_{a b}\right)\right)
$$

- (Of course many differences with bulk descriptions...)
- Finite dimensional Hilbert space, $D=L=2^{N / 2}$, amenable to numerics
- Guidance about what to look for
[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka] ([CGHPSSSST])

See also
[Garcia-Garcia-Verbaarschot]

Results

- The Slope \leftrightarrow Semiclassical quantum gravity
- The Ramp and Plateau \leftrightarrow Random Matrix Theory ([see You-Ludwig-Xu])
- The Dip \leftrightarrow crossover time

Slope, contd.

Slope is determined by semiclassical quantum gravity - nonuniversal.
In SYK slope $\sim 1 / t^{3}$. From sharp edge in
DOS. One loop exact Schwarzian result:
$\rho(E) \sim e^{S_{0}}\left(E-E_{0}\right)^{1 / 2}$.
([Bagrets-Altland-Kamenev; CGBPSSSSST;
Stanford-Witten])
In BTZ summing over geometries gives oscillating slope with power law envelope: nonperturbatively small oscillations in the density of states [Dyer-Gur-Ari]
In AdS_{5} "graviton gas" \rightarrow constant slope ([CGBPSSSST])
In each case the dip time is $\sim e^{a S}$ (with different a), exponentially shorter than the plateau time

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

$$
\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}
$$

[Dyson; Gaudin; Mehta]
The decrease before the plateau is due to repulsive anticorrelation of levels ("The correlation hole")
Conjecture that this pattern is universal in quantum black holes

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.
- $\sin ^{2}\left(L\left(E-E^{\prime}\right)\right) \rightarrow \exp \left(-2 L\left(E-E^{\prime}\right)\right)$, Altshuler-Andreev instanton
- $\sim \exp \left(-e^{c N}\right)$ in SYK (!)
- These effects must be realized in the G, Σ formulation. A research program...

Onset of RMT behavior

[Hrant Gharibyan (Stanford), Masanori Hanada (Kyoto), SS, Masaki Tezuka (Kyoto)] [In progress]

At how large an energy eigenvalue separation does spectral rigidity end?
At what time t_{r} does the ramp begin?
The Thouless time [Garcia-Garcia-Verbaarschot]
The dip is just a crossover: edge versus bulk dynamics, $t_{r} \neq t_{d}$
Follow the ramp below the slope: use Gaussian filter [Stanford]

$$
Y(\alpha, t) Y^{*}(\alpha, t)=\sum_{m, n} e^{-\alpha\left(E_{n}^{2}+E_{m}^{2}\right)} e^{+i\left(E_{m}-E_{n}\right) t}
$$

Dip time $t_{d} \sim 200, N=34$
Onset of ramp $t_{r} \lesssim 10, N=34$
(The ramp is an exponentially subleading effect in $Z Z^{*}$ and correlation functions before the dip)
An upper bound. Very little variation in N for $N \leq 34$
$\log N$? scrambling?
Maybe; no.
Simplify problem by looking at nearest neighbor qubit chain, random couplings, n qubits. Scrambling time $\sim n$, easier to study.

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit
- $e^{-i H t} \rightarrow e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t} \ldots e^{-i H_{1} \Delta t}$
- H_{m} drawn from an ensemble
- Unitary gates $U=U_{m} U_{m-1} \ldots U_{1}$ (random quantum circuit)
- Can analyze dynamics including scrambling analytically [Oliveira-Dahlsten-Plenio; Lashkari-Stanford-Hastings-Osborne-Hayden; Harrow-Low; Brandao-Harrow-Horodecki; Brown-Fawzi ...]
- Theory of approximate unitary k designs. Approximations to Haar ensemble that accurately compute monomials of $k U^{\prime} s, k U^{\dagger}$'s [Denkert et al. ...]

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \sigma_{p}$ a string of Paulis
- (Need k copies for k design)
- Defines a Markov process on on Pauli strings e.g., I I I Z Z I I X I I...
- Two qubit Haar random gates and $k=2:$ I I \rightarrow I I; AB $\rightarrow 15$ other possibilities, uniformly [Harrow-Low]
- Initial condition for an OTOC: Z I I I I I I I I I I
- Time to randomize last qubit $\sim n$, scrambling time [Nahum-Vijay-Haah; Keyserlingk-Rakovszky-Pollmann-Sondhi]

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|00 \ldots 00\rangle$
- $|00 \ldots 00\rangle\langle 00 \ldots 00|=\left(\frac{1}{2}\right)^{n}(\mathrm{I}+\mathrm{Z})^{\otimes n}$
- Z I Z Z I I Z Z I... Easy to equilibrate

Markov chain, contd.

- Z I Z Z I I Z Z I...
- Length of longest run of Is in typical string $\sim \log n$. Equilibrates in $\sim \log n$
- n rare strings I I I I Z I I.... Contribution decays like $n e^{-t}$. Order one at $t \sim \log n$.
- At long times the system relaxes at a rate determined by the gap of the Markov chain. The gap is independent of n [Brandao-Harrow-Horodecki]
- Equilibration time $\sim \log n$, shorter than scrambling!
- Correlation functions of very complicated operators [Roberts-Yoshida; Cotler-Hunter-Jones-Liu-Yoshida]
- For nonlocal pair interactions (2 local, analogous to SYK), get a time of order $\log \log n$, (for non Haar random gates goes back to $\log n$)

Hamiltonian systems (geometrically local)

n geometrically local qubits
$H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random
Gaussian density of states \rightarrow slope $\sim \exp \left(-N t^{2}\right)$, rapid decay

Scrambling time $\sim n$
$t_{r} \sim n^{2}$
Slower than scrambling ??

Diffusion

- Crucial difference between Hamiltonian and random quantum circuit systems - conserved quantities (energy)
- $t_{r} \sim n^{2}$ is the time for something to diffuse across the n qubit chain.
- For a single particle described by a random hopping H (a banded matrix) the ramp time is just the time to for the particle to diffuse across the system, the Thouless time [Altshuler-Shklovskii, Efetov...].
- Same here, for energy?
- A new tool: Random quantum circuit with a conserved quantity S_{z}. Analytically tractable [Khemani-Vishwanath-Huse]. Small diffusive corrections to OTOCs.
- Plan: compute spectral form factor quantities using this circuit. Large effect because signal is so small.

The Thouless time for black holes

- Assume geometrically local d dimensional Hamiltonians have t_{r} governed by diffusion, $t_{r} \sim n^{2 / d}$
- q-local systems like SYK correspond to $d \rightarrow \infty$. Then $n^{2 / d} \rightarrow \log n$ [Susskind]
- $t_{r} \sim \log n$ but with a different coefficient than the scrambling time.
- Important because the black hole evaporation time is of order $S \sim n \gg \log n$.
- So these phenomena would appear in small black holes as well, although as an exponentially subleading effect
- We need to know what they mean in quantum gravity...

