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A question

What accounts for the finiteness of the black hole entropy–from the
bulk point of view in AdS/CFT?

The stakes are high here. Many approaches to understanding the
bulk:

Eternal black hole ↔ Thermofield double state
Ryu-Takayanagi
Geometry from entanglement
Tensor networks
ER = EPR
Bulk reconstruction and error correction
Complexity
Bit threads
. . .

suggest that any complete bulk description of quantum gravity (if one
exists) must be able to describe these states.
(e.g., what do the virtual indices in a tensor network represent?)
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A diagnostic

A simple diagnostic of a discrete spectrum [Maldacena]. Long time
behavior of 〈O(t)O(0)〉. (O is a bulk (smeared boundary) operator)

〈O(t)O(0)〉 =
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/
∑
n

e−βEn

At long times the phases from the chaotic discrete spectrum cause
〈O(t)O(0)〉 to oscillate in an erratic way. It becomes exponentially
small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]∑

m,n

e−β(Em+En)e i(Em−En)t = Z (β + it)Z (β − it) = Z (t)Z ∗(t)

The “spectral form factor”
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Properties of Z (t)Z ∗(t)

Z (t)Z ∗(t) =
∑
m,n

e−β(Em+En)e i(Em−En)t

Z (β, 0)Z ∗(β, 0) = Z (β)2 (= L2 = e2S for β = 0)

Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

At long times, after a bit of time averaging (or J averaging in SYK),
the oscillating phases go to zero and only the n = m terms contribute.

Z (β)2 → Z (2β). (= L = eS for β = 0)

e2S → eS , an exponential change. How does this occur?
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SYK as a toy model

The Sachdev-Ye-Kitaev model can serve as a toy model to address
these questions.

H =
∑
abcd

Jabcdψaψbψcψd , 〈J2
abcd〉 ∼ J2/N3

Maximally chaotic, discrete spectrum

Has a sector dual to AdS2 dilaton gravity

Has a collective field description: G (t, t ′) = 1
Nψa(t)ψa(t ′), Σ(t, t ′).

Reminiscent of a bulk description:

O(N) singlets
nonlocal
Nonperturbatively well defined (two replicas)

〈Z (t)Z∗(t)〉 =

∫
dGabdΣab exp(−N I (Gab,Σab))

(Of course many differences with bulk descriptions...)
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ZZ ∗(t) in SYK

Finite dimensional Hilbert space, D = L = 2N/2, amenable to
numerics

Guidance about what to look for

[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen

Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka]

([CGHPSSSST])

See also
[Garcia-Garcia–Verbaarschot]
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Results
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The Slope ↔ Semiclassical
quantum gravity

The Ramp and Plateau ↔
Random Matrix Theory
([see You-Ludwig-Xu])

The Dip ↔ crossover time
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Slope, contd.
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Slope is determined by semiclassical
quantum gravity – nonuniversal.

In SYK slope ∼ 1/t3. From sharp edge in
DOS. One loop exact Schwarzian result:
ρ(E ) ∼ eS0(E − E0)1/2.
([Bagrets-Altland-Kamenev; CGBPSSSST;

Stanford-Witten])

In BTZ summing over geometries gives
oscillating slope with power law envelope:
nonperturbatively small oscillations in the
density of states [Dyer–Gur-Ari]

In AdS5 “graviton gas” → constant slope
([CGBPSSSST])

In each case the dip time is ∼ eaS (with
different a), exponentially shorter than the
plateau time
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The Ramp and Plateau
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The Ramp and Plateau are signatures of
Random Matrix Statistics, believed to be
universal in quantum chaotic systems

〈ZZ ∗(t)〉 is essentially the Fourier transform
of ρ(2)(E ,E ′), the pair correlation function

ρ(2)(E ,E ′) ∼ 1− sin2(L(E − E ′))

(L(E − E ′))2

[Dyson; Gaudin; Mehta]

The decrease before the plateau is due to
repulsive anticorrelation of levels (“The
correlation hole”)

Conjecture that this pattern is universal in
quantum black holes
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N versus L

ρ(2)(E ,E ′) ∼ 1− sin2(L(E−E ′))
(L(E−E ′))2

t � tp, ρ(2)(E ,E ′) ∼ 1− 1
L2(E−E ′)2 , “spectral rigidity”

1
L2 perturbative in RMT, 1

L2 ∼ e−cN , nonperturbative in 1
N , SYK.

sin2(L(E − E ′))→ exp(−2L(E − E ′)), Altshuler-Andreev instanton

∼ exp(−ecN) in SYK (!)

These effects must be realized in the G ,Σ formulation. A research
program...
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Onset of RMT behavior

[Hrant Gharibyan (Stanford), Masanori Hanada (Kyoto), SS, Masaki Tezuka (Kyoto)]

[In progress]
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At how large an energy eigenvalue separation
does spectral rigidity end?

At what time tr does the ramp begin?

The Thouless time [Garcia-Garcia–Verbaarschot]

The dip is just a crossover: edge versus bulk
dynamics, tr 6= td

Follow the ramp below the slope: use Gaussian
filter [Stanford]

Y (α, t)Y ∗(α, t) =
∑
m,n

e−α(E2
n +E2

m)e+i(Em−En)t
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YY ∗
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Dip time td ∼ 200, N = 34

Onset of ramp tr . 10, N = 34

(The ramp is an exponentially subleading
effect in ZZ ∗ and correlation functions
before the dip)

An upper bound. Very little variation in N
for N ≤ 34

logN? scrambling?

Maybe; no.

Simplify problem by looking at nearest
neighbor qubit chain, random couplings, n
qubits. Scrambling time ∼ n, easier to
study.
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Brownian circuits

Scrambling describes the growth of a simple operator
[Roberts-Stanford-Susskind; Lieb-Robinson]

Generic. Also happens in Brownian circuit

e−iHt → e−iHm∆te−iHm−1∆t . . . e−iH1∆t

Hm drawn from an ensemble

Unitary gates U = UmUm−1 . . .U1 (random quantum circuit)

Can analyze dynamics including scrambling analytically
[Oliveira-Dahlsten-Plenio; Lashkari-Stanford-Hastings-Osborne-Hayden;

Harrow-Low; Brandao-Harrow-Horodecki; Brown-Fawzi ...]

Theory of approximate unitary k designs. Approximations to Haar
ensemble that accurately compute monomials of k U’s , k U†’s
[Denkert et al. ...]
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Markov chain

Study UρU†, ρ =
∑

p γpσp, σp a string of Paulis

(Need k copies for k design)

Defines a Markov process on on Pauli strings e.g.,
I I I Z Z I I X I I . . .

Two qubit Haar random gates and k = 2: I I→ I I; AB→ 15 other
possibilities, uniformly [Harrow-Low]

Initial condition for an OTOC: Z I I I I I I I I I I

Time to randomize last qubit ∼ n, scrambling time [Nahum-Vijay-Haah;

Keyserlingk-Rakovszky-Pollmann-Sondhi]
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Markov chain, contd.

For spectral statistics study 〈tr(Uk)tr((U†)k)〉, k = 1, 2 . . .

RMT statistics 〈tr(Uk)tr((U†)k)〉 → Haar average value

For k = 2 (two design) slowest terms are like UaaU
∗
aaUaaU

∗
aa (no sum)

Study U|a〉〈a|U† where |a〉 = |00 . . . 00〉

|00 . . . 00〉〈00 . . . 00| = ( 1
2 )n(I + Z)⊗n

Z I Z Z I I Z Z I . . . Easy to equilibrate
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Markov chain, contd.

Z I Z Z I I Z Z I . . .

Length of longest run of I s in typical string ∼ log n. Equilibrates in
∼ log n

n rare strings I I I I Z I I . . .. Contribution decays like ne−t . Order
one at t ∼ log n.

At long times the system relaxes at a rate determined by the gap of
the Markov chain. The gap is independent of n
[Brandao-Harrow-Horodecki]

Equilibration time ∼ log n, shorter than scrambling !

Correlation functions of very complicated operators [Roberts-Yoshida;

Cotler-Hunter-Jones-Liu-Yoshida]

For nonlocal pair interactions (2 local, analogous to SYK), get a time
of order log log n, (for non Haar random gates goes back to log n )
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Hamiltonian systems (geometrically local)
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Gaussian density of states →
slope ∼ exp(−Nt2), rapid decay

Scrambling time ∼ n

tr ∼ n2

Slower than scrambling ??
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Diffusion

Crucial difference between Hamiltonian and random quantum circuit
systems – conserved quantities (energy)

tr ∼ n2 is the time for something to diffuse across the n qubit chain.

For a single particle described by a random hopping H (a banded
matrix) the ramp time is just the time to for the particle to diffuse
across the system, the Thouless time [Altshuler-Shklovskii, Efetov...].

Same here, for energy?

A new tool: Random quantum circuit with a conserved quantity Sz .
Analytically tractable [Khemani-Vishwanath-Huse]. Small diffusive
corrections to OTOCs.

Plan: compute spectral form factor quantities using this circuit. Large
effect because signal is so small.
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The Thouless time for black holes

Assume geometrically local d dimensional Hamiltonians have tr
governed by diffusion, tr ∼ n2/d

q-local systems like SYK correspond to d →∞. Then n2/d → log n
[Susskind]

tr ∼ log n but with a different coefficient than the scrambling time.

Important because the black hole evaporation time is of order
S ∼ n� log n.

So these phenomena would appear in small black holes as well,
although as an exponentially subleading effect

We need to know what they mean in quantum gravity...
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