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1 How should one think about the minimal surface?

In semiclassical gravity, surface areas are related to entropies



Bekenstein-Hawking '74:
For black hole,

S

= 10n area(horizon)

Why?

Possible answer:

Microstate bits “live” on horizon, 1 bit/4 Planck areas

Ryu-Takayanagi '06: For region in holographic field theory (clas-

sical Einstein gravity, static state)
m(A)
1

S(A) area(m(A))

" 4Gx
m(A) = bulk minimal surface homologous to A

Bulk geometry packages entanglement entropies in a simple & beautiful way

Do microstate bits of A “live” on m(A)?

Unlike horizon, m(A) is not a special place; by choosing A, we can put m(A) almost anywhere
Puzzles:



e Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions A, B

A B A B

\\/m@“ﬂ’) = m(4) Um(B) T

m(AB) # m(A) Um(B)

e Information-theoretic quantities are given by differences of areas of surfaces passing through different parts
of bulk:

Conditional entropy: H(A|B) = S(AB) - S(B)
Mutual information: I(A:B)=S5(A)+ S(B)— S(AB)
Conditional mutual information: I(A: B|C)=S(AB) + S(BC) — S(ABC) — 5(C)

What do differences between areas of surfaces, passing through different parts of bulk, have to do with

these measures of information?



e RT obeys strong subadditivity [Headrick-Takayanagi '07]
I(A: BC)>I(A:C)

What does proof (by cutting & gluing minimal surfaces)
have to do with information-theoretic meaning of SSA
(monotonicity of correlations)?

To try to answer these questions, | will present a new formulation of RT
e Does not refer to minimal surfaces (demoted to a calculational device)

e Suggests a new way to think about the holographic principle & about the connection between spacetime
geometry and information

2 Reformulation of RT

Consider a Riemannian manifold with boundary

Flow: vector field v obeying V-v =0, |v| <1
Think of flow as a set of oriented threads (flow lines) beginning & ending on boundary,
transverse density = |v| <1

Let A be a subset of boundary



Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer '74, Strang '83, Nozawa '90]):

max/ v = min area(m)
v A m~A

(Headrick-Hubeny '17 contains exposition of proof:
Finding max flow is convex program, related by Lagrangian du-
ality & convex relaxation to finding minimal surface

Also prove a min flow-max cut theorem for Lorentzian spacetimes, relating maximal-volume slices to minimal-flux
flows, where a flow is a future-directed timelike vector field with norm > 1)

Note that max flow is highly non-unique (except on m(A), where v = unit normal)

RT version 2.0: A
'\\ /'
S(A) = mf,ix/ v 4Gy =1) . /
A - ~—"
= max # of threads beginning on A
BH horizon

Threads can end on A¢ or horizon
Each thread has cross section of 4 Planck areas & is identified with 1 (independent) bit of A

Automatically incorporates homology & global minimization conditions of RT



A Threads are “floppy”: lots of freedom to move them around in bulk

& move where they attach to A

Also lots of room near boundary to add extra threads that begin &
end on A (don't contribute to S(A))

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area

Holographic principle: entropy o< area because bits are carried by one-dimensional objects

Bekenstein-Hawking:

3 Threads & information

Now we address conceptual puzzles with RT raised before

First: even when m(A) jumps, v(A) changes continuously with A



Next, consider two regions A, B

We can maximize flux through A or B, not in general both
But we can always maximize through A and AB (nesting property)
Call such a flow v(A, B)

Example 1: S(A) =S(B) =2, S(AB)=3=1(A:B)=1, HA|B) =1

A B A B

As

v(A, B) v(B, A)

Lesson 1:
e Threads that are stuck on A represent bits unique to A
e Threads that can be moved between A & B represent correlated pairs of bits

Example 2: S(A) =S(B) =2, S(AB) =1= I(A: B) =3, H(A|B) = —1 = entanglement

One thread leaving A must go to B, and vice versa



Lesson 2:

e Threads that connect A & B (switching orientation) represent entangled pairs of qubits

Apply lessons to single region:

e freedom to move beginning points around reflects correlations
within A

e freedom to add threads that begin & end on A reflects
entanglement within A

Equations:

Conditional entropy:



H(A|B) = S(AB)- S(B)

= /ABU(AB)—/BU(B)
= /ABU(B,A)—/BU(B,A)
= /AU(B,A)

= min flux on A (maximizing on AB)
Mutual information: I(A:B) = S(A)— H(A|B)
— [ w4~ [ o
A A

= max — min flux on A (maximizing on AB)

= flux movable between A and B (maximizing on AB)

Subadditivity is clear
Max flow can be defined even when flux is infinite: flow that cannot be augmented
Regulator-free computation of mutual information:

I(A:B) = /A (v(A, B) — v(B, A))



Define

1
/U(AB):i(v(AuB)_fU(BaA)) e
Flow from A to B through homology region r(AB) w/flux £I(A : B) \
Implies

%I(A : B) < cross section of r(AB)

(Takayanagi-Umemoto '17, Nguyen et al. "17 use this to interpret cross section as entanglement of purification)

Conditional mutual information:
I(A: B|C) = H(A|C)— H(A|BC)

A c B = /AU(C,A,B)—/AU(C,B,A)

= max — min flux on A (maximizing on C' & ABC)
flux movable between A & B (maximizing on C' & ABC)
(flux movable between A & BC') — (movable between A & C')
= I(A:BC)-I1(A:C)

Strong subadditivity I(A : B|C) > 0 is clear

In each case, clear connection to information-theoretic meaning of quantity/property



4 Monogamy of mutual information
Work in progress with Shawn Cui, Patrick Hayden, Temple He, Bogdan Stoica, Michael Walter

Given a 3-party state papc, define tripartite information:
S(AB) + S(BC) + S(AC) — S(A) — S(B) — S(C) — S(ABC)

—I3(A:B:C) =
= I(A:BC)—I(A:B)—-I(A:C)
Cases: .
PABC —I3(A:B:0)
pure 0
pA R pBC 0
marginal of higher-party GHZ, e.g. [¢) apcp = (]0000) + |1111))//2 <0
>0

marginal of 4-party perfect tensor (e.g. 4-qutrit code)

Hayden-Headrick-Maloney '11 used cutting-and-pasting of minimal surfaces to show that RT implies

—I3(A:B:C)>0

“Monogamy of mutual information” (MMI)
Suggests that perfect-tensor entanglement dominates over GHZ-type entanglement in holographic states

(also true in random stabilizer tensor networks [Nezami-Walter '16])



Can prove MMI using flows

Use multi-commodity flows to obtain a geometric decomposition of the bulk into parts representing different
kinds of entanglement

A
A
First consider simplest case where AB is pure (no C): ~L__

1
Bulk is “bridge” connecting A and B, /A B)
capacity = S(A) = S(B) = 3I(A: B)
B
B
Now suppose ABC' is pure
A
A Bulk can be decomposed into
\\\ L) | L\s e A — B bridge with capacity %I(A : B)
\\ // 1[(14 . C) %I(A :B) e B — C bridge with capacity %I(B :C)
B 2
\\ // e A — (C bridge with capacity %I(A : C)
C N\ C B

S1(B:C)



Now the general case: ABC is mixed; let D = rest of boundary, so ABCD is pure
Decomposition of bulk into 7 pieces:

e A — B bridge with capacity %I(A : B)

e A — C bridge with capacity 3I(A: C) A
e A — D bridge with capacity %I(A : D)
e B — (C bridge with capacity %I(B : C)
e B — D bridge with capacity %I(B : D)
C C B
e C — D bridge with capacity 2I(C : D)

4-way bridge with capacity on each leg —%Ig(A :B:O)

2-way bridges account for all pairwise Mls; 4-way bridge accounts for all of —I3(A: B: C)
These are the extremal rays of 4-party holographic entropy cone

Question:

Does the state enjoy a similar (approximate) decomposition, into pairwise Bell pairs and 4-party perfect tensors?



5 No time left

5.1 Quantum corrections

Faulkner-Lewkowycz-Maldacena '13:
Quantum (order GY;) correction to RT is from
entanglement of bulk fields

May be reproduced by allowing threads to jump from
one point to another

(or tunnel through microscopic wormholes, a la ER
= EPR [Maldacena-Susskind '13])

5.2 Covariant bit threads

Work in progress with Veronika Hubeny




Hubeny-Rangamani-Takayanagi ['07] covariant entanglement entropy formula:
S(A) = area(m(A))
» m(A) = minimal extremal surface homologous to A
9
S Generalization of max flow-min cut theorem to Lorentzian setting:
A flow is still a divergenceless vector field v
> Also have “clock function” ¢, with boundary condition
m(A)
$=0 onJ (9A), =1 on JT(0A4)
%%\ Density of threads in rest frame of observer with 4-velocity u is |v|, := \/v% + (u - v)?
ék Density constraint: |v], < u*0,¢ for any timelike unit vector u
Observer w/proper time 7 sees density < d¢/dr

Theorem (assuming NEC, using results of Wall '12 & Headrick-Hubeny-Lawrence-Rangamani '14):

max/ v = area(m(A)) D(A) = boundary causal domain of A
D(A)

v



Finding extremal surface area becomes convex optimization problem

HRT version 2.0:
S(A) = max/ v
v JD(A)

To maximize flux, threads seek out m(A), automatically confining
themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall's ['12]
maximin by standard max flow-min cut) or spread out in time

‘m'?A)

\entanglement wedge



