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1 How should one think about the minimal surface?

In semiclassical gravity, surface areas are related to entropies



Bekenstein-Hawking ’74:

For black hole,

S =
1

4GN
area(horizon)

Why?

Possible answer:

Microstate bits “live” on horizon, 1 bit/4 Planck areas

A

m(A)

Ryu-Takayanagi ’06: For region in holographic field theory (clas-

sical Einstein gravity, static state)

S(A) =
1

4GN
area(m(A))

m(A) = bulk minimal surface homologous to A

Bulk geometry packages entanglement entropies in a simple & beautiful way

Do microstate bits of A “live” on m(A)?

Unlike horizon, m(A) is not a special place; by choosing A, we can put m(A) almost anywhere

Puzzles:



• Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions A,B

A B B

m(AB) = m(A) [ m(B)
m(AB) 6= m(A) [ m(B)

A

• Information-theoretic quantities are given by differences of areas of surfaces passing through different parts

of bulk:

Conditional entropy: H(A|B) = S(AB)− S(B)

Mutual information: I(A : B) = S(A) + S(B)− S(AB)

Conditional mutual information: I(A : B|C) = S(AB) + S(BC)− S(ABC)− S(C)

What do differences between areas of surfaces, passing through different parts of bulk, have to do with

these measures of information?



• RT obeys strong subadditivity [Headrick-Takayanagi ’07]

I(A : BC) ≥ I(A : C)

What does proof (by cutting & gluing minimal surfaces)

have to do with information-theoretic meaning of SSA

(monotonicity of correlations)?

BA C

To try to answer these questions, I will present a new formulation of RT

• Does not refer to minimal surfaces (demoted to a calculational device)

• Suggests a new way to think about the holographic principle & about the connection between spacetime

geometry and information

2 Reformulation of RT

Consider a Riemannian manifold with boundary

Flow: vector field v obeying ∇ · v = 0, |v| ≤ 1

Think of flow as a set of oriented threads (flow lines) beginning & ending on boundary,

transverse density = |v| ≤ 1

Let A be a subset of boundary



Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer ’74, Strang ’83, Nozawa ’90]):

max
v

∫
A
v = min

m∼A
area(m)

(Headrick-Hubeny ’17 contains exposition of proof:

Finding max flow is convex program, related by Lagrangian du-

ality & convex relaxation to finding minimal surface
A

v(A)

m(A)

Also prove a min flow-max cut theorem for Lorentzian spacetimes, relating maximal-volume slices to minimal-flux

flows, where a flow is a future-directed timelike vector field with norm ≥ 1)

Note that max flow is highly non-unique (except on m(A), where v = unit normal)

RT version 2.0:

S(A) = max
v

∫
A
v (4GN = 1)

= max # of threads beginning on A

A

BH horizon

A

BH horizon
Threads can end on Ac or horizon

Each thread has cross section of 4 Planck areas & is identified with 1 (independent) bit of A

Automatically incorporates homology & global minimization conditions of RT



A

BH horizon

A

BH horizon

A Threads are “floppy”: lots of freedom to move them around in bulk

& move where they attach to A

Also lots of room near boundary to add extra threads that begin &

end on A (don’t contribute to S(A))

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area

Holographic principle: entropy ∝ area because bits are carried by one-dimensional objects

Bekenstein-Hawking:

A

t

D(A)

m(A)

entanglement wedge

v(A)

3 Threads & information

Now we address conceptual puzzles with RT raised before

First: even when m(A) jumps, v(A) changes continuously with A



Next, consider two regions A, B

We can maximize flux through A or B, not in general both

But we can always maximize through A and AB (nesting property)

Call such a flow v(A,B)

v(A) v(AB)v(A, B)

Example 1: S(A) = S(B) = 2, S(AB) = 3⇒ I(A : B) = 1, H(A|B) = 1

BA

v(A, B)

BA

v(B, A)

A
B

Lesson 1:

• Threads that are stuck on A represent bits unique to A

• Threads that can be moved between A & B represent correlated pairs of bits

Example 2: S(A) = S(B) = 2, S(AB) = 1⇒ I(A : B) = 3, H(A|B) = −1⇒ entanglement

One thread leaving A must go to B, and vice versa



BA

v(A, B)

BA

v(B, A)

A
B

Lesson 2:

• Threads that connect A & B (switching orientation) represent entangled pairs of qubits

A

BH horizon

A

BH horizon

A
Apply lessons to single region:

• freedom to move beginning points around reflects correlations

within A

• freedom to add threads that begin & end on A reflects

entanglement within A

Equations:

Conditional entropy:



H(A|B) = S(AB)− S(B)

=

∫
AB

v(AB)−
∫
B
v(B)

=

∫
AB

v(B,A)−
∫
B
v(B,A)

=

∫
A
v(B,A)

= min flux on A (maximizing on AB)

Mutual information: I(A : B) = S(A)−H(A|B)

=

∫
A
v(A,B)−

∫
A
v(B,A)

= max−min flux on A (maximizing on AB)

= flux movable between A and B (maximizing on AB)

Subadditivity is clear

Max flow can be defined even when flux is infinite: flow that cannot be augmented

Regulator-free computation of mutual information:

I(A : B) =

∫
A
(v(A,B)− v(B,A))



Define

v(A : B) =
1

2
(v(A,B)− v(B,A))

Flow from A to B through homology region r(AB) w/flux 1
2I(A : B)

Implies
1

2
I(A : B) ≤ cross section of r(AB)

BA

v(A : B)

(Takayanagi-Umemoto ’17, Nguyen et al. ’17 use this to interpret cross section as entanglement of purification)

Conditional mutual information:

BA C

I(A : B|C) = H(A|C)−H(A|BC)

=

∫
A
v(C,A,B)−

∫
A
v(C,B,A)

= max−min flux on A (maximizing on C & ABC)

= flux movable between A & B (maximizing on C & ABC)

= (flux movable between A & BC)− (movable between A & C)

= I(A : BC)− I(A : C)

Strong subadditivity I(A : B|C) ≥ 0 is clear

In each case, clear connection to information-theoretic meaning of quantity/property



4 Monogamy of mutual information

Work in progress with Shawn Cui, Patrick Hayden, Temple He, Bogdan Stoica, Michael Walter

Given a 3-party state ρABC , define tripartite information:

−I3(A : B : C) := S(AB) + S(BC) + S(AC)− S(A)− S(B)− S(C)− S(ABC)
= I(A : BC)− I(A : B)− I(A : C)

Cases: ρABC −I3(A : B : C)

pure 0

ρA ⊗ ρBC 0

marginal of higher-party GHZ, e.g. |ψ〉ABCD = (|0000〉+ |1111〉)/
√
2 < 0

marginal of 4-party perfect tensor (e.g. 4-qutrit code) > 0

Hayden-Headrick-Maloney ’11 used cutting-and-pasting of minimal surfaces to show that RT implies

−I3(A : B : C) ≥ 0

“Monogamy of mutual information” (MMI)

Suggests that perfect-tensor entanglement dominates over GHZ-type entanglement in holographic states

(also true in random stabilizer tensor networks [Nezami-Walter ’16])



Can prove MMI using flows

Use multi-commodity flows to obtain a geometric decomposition of the bulk into parts representing different

kinds of entanglement

First consider simplest case where AB is pure (no C):

Bulk is “bridge” connecting A and B,

capacity = S(A) = S(B) = 1
2I(A : B)

A

BC 1

2
I(B : C)

1

2
I(A : C)

1

2
I(A : B)

B

C

A

1

2
I(B : C)

A

BC
D

A

BC
D

B

A
A

B

1

2
I(A : B)

Now suppose ABC is pure

A

BC 1

2
I(B : C)

1

2
I(A : C)

1

2
I(A : B)

B

C

A

A

BC
D

A

BC
D

B

A
A

B

1

2
I(A : B)

Bulk can be decomposed into

• A−B bridge with capacity 1
2I(A : B)

• B − C bridge with capacity 1
2I(B : C)

• A− C bridge with capacity 1
2I(A : C)



Now the general case: ABC is mixed; let D = rest of boundary, so ABCD is pure

Decomposition of bulk into 7 pieces:

• A−B bridge with capacity 1
2I(A : B)

• A− C bridge with capacity 1
2I(A : C)

• A−D bridge with capacity 1
2I(A : D)

• B − C bridge with capacity 1
2I(B : C)

• B −D bridge with capacity 1
2I(B : D)

• C −D bridge with capacity 1
2I(C : D)

• 4-way bridge with capacity on each leg −1
2I3(A : B : C)

A

BC 1

2
I(B : C)

1

2
I(A : C)

1

2
I(A : B)

B

C

A

1

2
I(A : B)

1

2
I(A : C)

1

2
I(B : C)

A

BC

D

A

BC
D

A

BC
D

2-way bridges account for all pairwise MIs; 4-way bridge accounts for all of −I3(A : B : C)

These are the extremal rays of 4-party holographic entropy cone

Question:

Does the state enjoy a similar (approximate) decomposition, into pairwise Bell pairs and 4-party perfect tensors?



5 No time left

5.1 Quantum corrections

Faulkner-Lewkowycz-Maldacena ’13:

Quantum (order G0
N) correction to RT is from

entanglement of bulk fields

May be reproduced by allowing threads to jump from

one point to another

(or tunnel through microscopic wormholes, à la ER

= EPR [Maldacena-Susskind ’13])

A

m(A) v(A)

A

m(A) v(A)

5.2 Covariant bit threads

Work in progress with Veronika Hubeny
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Hubeny-Rangamani-Takayanagi [’07] covariant entanglement entropy formula:

S(A) = area(m(A))

m(A) = minimal extremal surface homologous to A

Generalization of max flow-min cut theorem to Lorentzian setting:

A flow is still a divergenceless vector field v

Also have “clock function” φ, with boundary condition

φ = 0 on J−(∂A) , φ = 1 on J+(∂A)

Density of threads in rest frame of observer with 4-velocity u is |v|u :=
√
v2 + (u · v)2

Density constraint: |v|u ≤ uµ∂µφ for any timelike unit vector u

Observer w/proper time τ sees density ≤ dφ/dτ

Theorem (assuming NEC, using results of Wall ’12 & Headrick-Hubeny-Lawrence-Rangamani ’14):

max
v

∫
D(A)

v = area(m(A)) D(A) = boundary causal domain of A



Finding extremal surface area becomes convex optimization problem

HRT version 2.0:

S(A) = max
v

∫
D(A)

v

To maximize flux, threads seek out m(A), automatically confining

themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall’s [’12]

maximin by standard max flow-min cut) or spread out in time

A

t

D(A)

m(A)

entanglement wedge

v(A)


