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coherent evolution:
(isolated systems)

unitary CHANNEL
integrated

our framework: quantum maps

noisy evolution:
(open systems) generic CHANNEL . . . not necessarily local in time                 

dρ
dt

= − i[H, ρ]

Φ[ρin] = ρout

ρin ρout

S

Ξ

        depends on all the previous history,
and not only on
ρ(t)

ρ(t + dt)

⇢out = U [⇢in]
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-

Alice

Bob

A

B

⇢out = U [⇢in]



coherent evolution:
(isolated systems)

unitary CHANNEL
integrated

our framework: quantum maps

noisy evolution:
(open systems) generic CHANNEL . . . not necessarily local in time                 

dρ
dt

= − i[H, ρ]

Φ[ρin] = ρout

ρin ρout

      :  Stinespring representation�

ρout = Φ[ρin] = TrΞ [USΞ (ρin ⊗ |D⟩Ξ⟨D |) U†
SΞ]S

Ξ

⇢out = U [⇢in]



Part I: correlations trasmission
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-

Id,U
2

A

B

C

D E


CA

B

D


E

FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-

Entanglement-Breaking maps

�EB

2

A

B

C

D E


CA

B

D


E

FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
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min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
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min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =
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min
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F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
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state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
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mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
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Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
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The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,
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guaranteed usefulness of such a state for blind estimation of a
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product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
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guaranteed usefulness of such a state for blind estimation of a
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for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
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entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
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Quantum-enhanced measurements (QEM) use quantum
effects in order to measure physical quantities with larger
precision than what is possible classically with compar-

able resources. QEMs are therefore expected to have large impact
in many areas, such as improvement of frequency standards1–5,
gravitational wave detection6,7, navigation8, remote sensing9, or
measurement of very small magnetic fields10. A well-known
example is the use of so-called NOON states in an interferometer,
where a state with N photons in one arm of the interferometer
and zero in the other is superposed with the opposite situation11.
It was shown that the smallest phase shift that such an inter-
ferometer could measure scales as 1/N , a large improvement over
the standard 1=

ffiffiffiffi
N

p
behavior that one obtains from ordinary laser

light. The latter scaling is known as the standard quantum limit
(SQL), and the 1/N scaling as the Heisenberg limit (HL). So far
the SQL has been beaten only in few experiments, and only for
small N (see e.g., 3,12,13), as the required non-classical states are
difficult to prepare and stabilize and are prone to decoherence.

Sensing devices used in quantum metrology so far have been
based almost exclusively on integrable systems, such as precessing
spins (e.g., nuclear spins, NV centers, etc.) or harmonic oscillators
(e.g., modes of an electro-magnetic field or mechanical oscilla-
tors), prepared in non-classical states (see ref. 14 for a recent
review). The idea of the present work is to achieve enhanced
measurement precision with readily accessible input states by
disrupting the parameter coding by a sequence of controlled
pulses that renders the dynamics chaotic. At first sight this may
appear a bad idea, as measuring something precisely requires
well-defined, reproducible behavior, whereas classical chaos is
associated with unpredictible long-term behavior. However, the
extreme sensitivity to initial conditions underlying classically
chaotic behavior is absent in the quantum world with its unitary
dynamics in Hilbert space that preserves distances between states.
In turn, quantum-chaotic dynamics can lead to exponential
sensitivity with respect to parameters of the system15.

The sensitivity to changes of a parameter of quantum-chaotic
systems has been studied in great detail with the technique of
Loschmidt echo16, which measures the overlap between a state
propagated forward with a unitary operator and propagated
backward with a slightly perturbed unitary operator. In the limit
of infinitesimally small perturbation, the Loschmidt echo turns
out to be directly related to the quantum Fisher information
(QFI) that determines the smallest uncertainty with which a
parameter can be estimated. Hence, a wealth of known results
from quantum chaos can be immediately translated to study the
ultimate sensitivity of quantum-chaotic sensors. In particular,
linear response expressions for fidelity can be directly transfered
to the exact expressions for the QFI.

Ideas of replacing entanglement creation by dynamics were
proposed previously17–21, but focussed on initial state prepara-
tion, or robustness of the readout22,23, without introducing or
exploiting chaotic dynamics during the parameter encoding. They
are hence comparable to spin-squeezing of the input state24.
Quantum chaos is also favorable for state tomography of random
initial states with weak continuous time measurement25,26, but no
attempt was made to use this for precision measurements of a
parameter. A recent review of other approaches to quantum-
enhanced metrology that avoid initial entanglement can be found
in ref. 27.

We study quantum-chaotic enhancement of sensitivity at the
example of the measurement of a classical magnetic field with a
spin-precession magnetometer. In these devices that count
amongst the most sensitive magnetometers currently available28–
32, the magnetic field is coded in a precession frequency of atomic
spins that act as the sensor. We show that the precision of the
magnetic-field measurement can be substantially enhanced by

non-linearly kicking the spin during the precession phase and
driving it into a chaotic regime. The initial state can be chosen as
an essentially classical state, in particular a state without initial
entanglement. The enhancement is robust with respect to
decoherence or dissipation. We demonstrate this by modeling the
magnetometer on two different levels: firstly as a kicked top, a
well-known system in quantum chaos to which we add
dissipation through superradiant damping; and secondly with a
detailed realistic model of a spin-exchange-relaxation-free
atom-vapor magnetometer including all relevant decoherence
mechanisms28,33, to which we add non-linear kicks.

Results
Physical model of a quantum-chaotic sensor. As a sensor we
consider a kicked top (KT), a well-studied quantum-chaotic
system34–36 described by the time-dependent Hamiltonian

HKTðtÞ ¼ αJz þ
k
2J

J2y
X1

n¼% 1
τδðt % nτÞ; ð1Þ

where Ji (i= x, y, z) are components of the (pseudo-)angular
momentum operator, J≡ j+ 1/2, and we set ħ= 1. Jz generates a
precession of the (pseudo-)angular momentum vector about the
z-axis with precession angle α which is the parameter we want to
estimate. “Pseudo” refers to the fact that the physical system need
not be an actual physical spin, but can be any system with 2j+ 1
basis states on which the Ji act accordingly. For a physical spin-j
in a magnetic field B in z-direction, α is directly proportional to B.
The J2y -term is the non-linearity, assumed to act instantaneously
compared to the precession, controlled by the kicking strength k
and applied periodically with a period τ that leads to chaotic
behavior. The system can be described stroboscopically with
discrete time t in units of τ (set to τ= 1 in the following),

ψðtÞj i ¼ UαðkÞ ψðt % 1Þj i ¼ U t
αðkÞ ψð0Þj i ð2Þ

with the unitary Floquet-operator

UαðkÞ ¼ T exp % i
Z tþ 1

t
dt′HKTðt′Þ

" #
¼ e% ik

J2y
2J e% iαJz ð3Þ

that propagates the state of the system from right after a kick to
right after the next kick34–36. T denotes time-ordering. The total
spin is conserved, and 1/J can be identified with an effective ħ,
such that the limit j →∞ corresponds to the classical limit, where
X= Jx/J, Y= Jy/J, Z= Jz/J become classical variables confined to
the unit sphere. (Z, ϕ) can be identified with classical phase space
variables, where ϕ is the azimuthal angle of X= (X, Y, Z)36. For
k= 0, the dynamics is integrable, as the precession conserves Z
and increases ϕ by α for each application of Uα(0). Phase space
portraits of the corresponding classical map show that for k≲ 2.5,
the dynamics remains close to integrable with large visible
Kolmogorov–Arnold–Moser tori, whereas for k≳ 3.0 the chaotic
dynamics dominates36.

States that correspond most closely to classical phase space
points located at (θ, ϕ) are SU(2)-coherent states (“spin-coherent
states”, or “coherent states” for short), defined as

j; θ; ϕj i ¼
Xj

m¼% j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

j % m

" #s

sinðθ=2Þj% mcosðθ=2Þjþ meiðj% mÞϕ jmj i

ð4Þ

in the usual notation of angular momentum states jmj i
(eigenbasis of J2 and Jz with eigenvalues j(j+ 1) and m, 2j 2 N,
m=−j, −j+ 1, …, j). They are localized at polar and azimuthal
angles θ, ϕ with smallest possible uncertainty of all spin-j states
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(associated circular area ~1/j in phase space). They remain
coherent states under the action of Uα(0), i.e., just get rotated,
ϕ7!ϕþ α. For the KT, the parameter encoding of α in the
quantum state breaks with the standard encoding scheme (initial
state preparation, parameter-dependent precession, measure-
ment) by periodically disrupting the coding evolution with
parameter-independent kicks that generate chaotic behavior
(see Fig. 1).

An experimental realization of the kicked top was proposed in
ref. 37, including superradiant dissipation. It has been realized
experimentally38 in cold cesium vapor using optical pulses (see
Supplementary Note 1 for details).

Quantum parameter estimation theory. Quantum measure-
ments are most conveniently described by a positive-operator
valued measure (POVM) {Πξ} with positive operators Πξ (POVM
elements) that fulfill ∫dξΠξ= 1. Measuring a quantum state
described by a density operator ρα yields for a given POVM and a
given parameter α encoded in the quantum state a probability
distribution pα(ξ)= tr(Πξρα) of measurement results ξ. The Fisher
information IFisher,α is then defined by

IFisher;α :¼
Z

dξ
dpαðξÞ=dαð Þ2

pαðξÞ
: ð5Þ

The minimal achievable uncertainty, i.e., the variance of the
estimator Var(αest), with which a parameter α of a state ρα can be
estimated for a given POVM with M independent measurements
is given by the Cramér–Rao bound, Var(αest) ≥ 1/(MIFisher,α).
Further optimization over all possible (POVM-)measurements
leads to the quantum-Cramér–Rao bound (QCRB),

Var αestð Þ % 1
MIα

; ð6Þ

which presents an ultimate bound on the minimal achievable
uncertainty, where Iα is the quantum Fisher information (QFI),
and M the number of independent measurements39.

The QFI is related to the Bures distance ds2Bures between the
states ρα and ρα+dα, separated by an infinitesimal change of the
parameter α, ds2Buresðρ; σ Þ≡ 2 1&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ρ; σð Þ

p" #
. The fidelity F(ρ , σ)

is defined as Fðρ; σ Þ ¼ ρ1=2σ 1=2
$$ $$2

1, and Ak k1' tr
ffiffiffiffiffiffiffiffiffi
AAy

p
denotes

the trace norm40. With this41,

Iα ¼ 4ds2Bures ρα; ραþdα

" #
=dα2: ð7Þ

For pure states ρ ¼ ψj i ψh j, σ ¼ ϕj i ϕh j, the fidelity is simply
given by Fðρ; σ Þ ¼ ψjϕh ij j2. A parameter coded in a pure state via
the unitary transformation ψα

%% &
¼ e&iαG ψð0Þj i with hermitian

generator G gives the QFI42

Iα ¼ 4VarðGÞ ' 4 G2' &
& Gh i2

" #
; ð8Þ

which holds for all α, and where (h i ' ψαj ( jψα

' &
.

Loschmidt echo. The sensitivity to changes of a parameter
of quantum-chaotic systems has been studied in great detail
with the technique of Loschmidt echo16, which measures the
overlap Fϵ(t) between a state propagated forward with a unitary
operator Uα(t) and propagated backward with a slightly perturbed

unitary operator Uαþϵð&tÞ ¼ U y
αþϵðtÞ, where UαðtÞ ¼

T exp & i
!h

R t
0dt′Hαðt′Þ

( )
with the time ordering operator T, the

Hamiltonian, Hαþϵ(t)=Hα(t)+ ϵV(t) and the perturbation V(t),

FϵðtÞ ¼ ψð0ÞjUαðtÞUαþϵð&tÞψð0Þh ij j2: ð9Þ

Fϵ is exactly the fidelity that enters via the Bures distance in the
definition Eq. (7) of the QFI for pure states, such that
IαðtÞ ¼ limϵ!04

1&FϵðtÞ
ϵ2 .

Benchmarks. In order to assess the influence of the kicking on
the QFI, we calculate as benchmarks the QFI for the (integrable)
top with Floquet operator Uα(0) without kicking, both for an
initial coherent state and for a Greenberger–Horne–Zeilinger
(GHZ) state ψGHZ

%% &
¼ j; jj iþ j;&jj ið Þ=

ffiffiffi
2

p
. The latter is the

equivalent of a NOON state written in terms of (pseudo-)angular
momentum states. The QFI for the time evolution Eq. (2) of a top
with Floquet operator Uα(0) is given by Eq. (8) with G= Jz. For
an initial coherent state located at θ, ϕ it results in a QFI

IαðtÞ ¼ 2t2jsin2θ: ð10Þ

As expected, Iα(t)= 0 for θ= 0 where the coherent state is an
eigenstate of Uα(0). The scaling ∝ t2 is typical of quantum
coherence, and Iα(t)∝ j signifies a SQL-type scaling with N = 2j,
when the spin-j is composed of N spin−1

2 particles in a state
invariant under permutations of particles. For the benchmark, we
use the optimal value θ= π/2 in Eq. (10), i.e., Itop,CS≡ 2t2j. For a
GHZ state, the QFI becomes

IαðtÞ ¼ 4t2j2 ' Itop;GHZ ; ð11Þ

which clearly displays the HL-type scaling ∝ (2j)2≡ N 2.

Results for the kicked top without dissipation. In the fully
chaotic case, known results for the Loschmidt echo suggest a QFI
of the KT ∝ tj2 for times t with tE < t < tH, where tE ¼ 1

λ ln
ΩV
hd

" #
is

the Ehrenfest time, and tH= ħ/Δ the Heisenberg time; λ is the
Lyapunov exponent, ΩV the volume of phase-space, hd with d the
number of degrees of freedom the volume of a Planck cell, and Δ
the mean energy level spacing16,36,43. For the kicked top,
hd ’ ΩV=ð2JÞ. More precisely, we find for t ’ tE a QFI Iα∝ tj2

and for t ) tH (see Methods)

IðtÞ ¼ 8sσ clt2J ; ð12Þ

where s denotes the number of invariant subspaces s of the Hil-
bert space (s= 3 for the kicked top with α= π/2, see page 359 in
ref. 15), and σcl is a transport coefficient that can be calculated
numerically. The infinitesimally small perturbation relevant for
the QFI makes that one is always in the perturbative regime44,45.
The Gaussian decay of Loschmidt echo characteristic of that
regime becomes the slower the smaller the perturbation and goes
over into a power law in the limit of infinitesimally small
perturbation16.

The numerical results for the QFI in Fig. 2 illustrate a cross-
over of power-law scalings in the fully chaotic case (k= 30) for an
initial coherent state located on the equator (θ, ϕ)= (π/2, π/2).
The analytical Loschmidt echo results are nicely reproduced: a
smooth transition in scaling from tj2 → t2j for t= tE → t≳ tH can
be observed and confirms Eqs. (15) and (16) in the Methods for
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Fig. 1 Schematic representation of the parameter encoding: propagation
starts on the left with an initial state ρ and ends on the right with a
measurement (semi-circle symbol). The encoding through linear
precession Rz(α) about the z-axis by an angle α is periodically disrupted
through parameter independent, non-linear, controlled kicks (blue
triangles) that can render the system chaotic
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FIG. 1. Scheme of the experimental setup. A source of polariza-
tion entangled qubits sends the a photon directly to the tomography
stage, while the s photon is transmitted by a SMF to the simulation
of ! = " ◦ " or !′ = " ◦ F ◦ " and then measured in the same
temporally synchronized bipartite tomography. The maps " = "PD

or " = "AD are represented by the black boxes, while F = #ϕ is
represented by the transparent-gray box enclosing a half-wave plate
HWP(ϕ). Finally, we specify that ! (!′) corresponds to the absence
(presence) of HWP(ϕ).

or presence of a half-wave plate (HWP) fixed at 0◦ in the optical
path of the photon, respectively. To simulate #θ another HWP
is permanently placed after &, but with a rotation degree of
freedom in the angle θ [as shown in Fig. 2(a)] [6,18].

Since both #θ plates are synchronized in their rotation
angle, there are only four combinations of Pauli operations;
when the first "PD is applying I, the second "PD can apply I
or σz; when the first "PD is applying σz, the second "PD can
apply I or σz. Then the statistical mixture between I and σz

is obtained by extracting a fraction PII = (1 − p
2 )2 of coinci-

dences from the I + I tomography, a fraction PIσz
= (1 − p

2 )p
2

of coincidences from the I + σz and σz + I tomographies, and
a fraction Pσzσz

= (p
2 )2 from the σz + σz tomography. Once the

tomography registry fractions are combined, the new registry
will be equivalent to a tomography of the state under the action
of !PD = "PD ◦ "PD.

B. Rotating amplitude-damping channel

To simulate each ( channel, we use a displaced Sagnac
interferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) [as shown in Fig. 2(b)]. The parallel trajec-
tories of |V ⟩ and |H ⟩ projections inside the SI are temporally
compensated and go in the clockwise and counterclockwise
directions, respectively. Both trajectories are intercepted by

FIG. 2. Single-channel modules. (a) Plot of "PD: The unrotated
yellow plate HWP(0) constitutes the PD channel &, since I is applied
when it is absent or σz when it is present. (b) Plot of "AD: The
SI and MZI constitute the AD channel (, transforming the vertical
polarization into horizontal by a rotation of HWP(α). In both (a) and
(b), the rotating red plate HWP(θ ) represents #θ .

independent HWPs: a rotating one, HWP(α), for |V ⟩ and
another unrotated one, HWP(0), for |H ⟩. The rotation angle
α is related to the damping parameter η by the expression
α(η) = arccos(−

√
1− η)

2 [6,10].
After the SI there is an unbalanced Mach-Zehnder inter-

ferometer (MZI) that allows to couple in the same trajectory
the damped and undamped polarizations as they pass through
a beam splitter (BS). The temporal difference between the
MZI arms is set to a value larger than the coherence length
of the photons in order to simulate random-phase fluctuations
that destroy quantum interferences at its output. The action
of !AD = "AD ◦ "AD is then obtained by selecting the same
damping η in both (, while both HWPs corresponding to #ϕ

rotate in a synchronous way.

C. Filtering

The protocol first requires us to fix the damping parameter p
for !PD or η for !AD to scan the channel in the rotation angle
θ and verify the location of periodic EB regions. It results
that these regions are located around θPD = π

8 ± nπ
4 for the

(!PD,s ⊗ Ia)(ρsa) experiment and around θAP = π
4 ± nπ

2 for
the (!AD,s ⊗ Ia)(ρsa) experiment, in both cases with n ∈ N.
Once this condition is experimentally certified, one proceeds
to fix the angle θ = θPD or θ = θAD. Then the operation of F is
studied by scanning the rotation ϕ of an extra HWP (as shown
in Fig. 1). As a consequence, either !′

PD = "PD ◦ #ϕ ◦ "PD
or !′

AD = "AD ◦ #ϕ ◦ "AD will no longer be EB in a region
where !PD and !AD are EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the channels
!PD and !′

PD acting over the s photon of a pair of entangled
photons, with the damping parameter set to the value p = 0.65.
Figure 3(a) shows the EB behavior of !PD around θPD = ± π

8
as predicted by the simulated model, while Fig. 3(b) shows an
entanglement revival of !′

PD for ϕ = ± π
8 . Similarly, in Fig. 4

we report the results of !AD and !′
AD channels acting over

the s photon from a pair of entangled photons, having set the
damping parameter to the value η = 0.66 ± 0.017. Figure 4(a)
shows the EB behavior of !AD around θAD = ± π

8 as predicted
by the simulated model, while Fig. 4(b) shows an entanglement
revival of !′

AD for ϕ = π
8 .

The experimental data were obtained by averaging and
calculating the standard deviation over five values per point.
The blue lines were calculated by considering perfect input
state and optical conditions. The simulated shaded green areas
correspond to the regions of all possible experimental results
within one standard deviation of Fexp = 0.980 ± 0.016 for
!PD and !′

PD and also consider the error propagation of 0.5◦

of uncertainty in θ for !AD and !′
AD. This difference in the

data analysis between PD and AD channels originates from
the negligible error contribution of 0.5◦ of uncertainty in PD
channels. All Cexp = 0 values have error bars within the size
of the point.

The simulated data considered two scenarios: one with
perfect optical elements (POEs) and a maximally pure en-
tangled input state, and another with realistic optical elements
(ROEs), a nonmaximally pure entangled input state, and error
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FIG. 1. Scheme of the experimental setup. A source of polariza-
tion entangled qubits sends the a photon directly to the tomography
stage, while the s photon is transmitted by a SMF to the simulation
of ! = " ◦ " or !′ = " ◦ F ◦ " and then measured in the same
temporally synchronized bipartite tomography. The maps " = "PD

or " = "AD are represented by the black boxes, while F = #ϕ is
represented by the transparent-gray box enclosing a half-wave plate
HWP(ϕ). Finally, we specify that ! (!′) corresponds to the absence
(presence) of HWP(ϕ).

or presence of a half-wave plate (HWP) fixed at 0◦ in the optical
path of the photon, respectively. To simulate #θ another HWP
is permanently placed after &, but with a rotation degree of
freedom in the angle θ [as shown in Fig. 2(a)] [6,18].

Since both #θ plates are synchronized in their rotation
angle, there are only four combinations of Pauli operations;
when the first "PD is applying I, the second "PD can apply I
or σz; when the first "PD is applying σz, the second "PD can
apply I or σz. Then the statistical mixture between I and σz

is obtained by extracting a fraction PII = (1 − p
2 )2 of coinci-

dences from the I + I tomography, a fraction PIσz
= (1 − p

2 )p
2

of coincidences from the I + σz and σz + I tomographies, and
a fraction Pσzσz

= (p
2 )2 from the σz + σz tomography. Once the

tomography registry fractions are combined, the new registry
will be equivalent to a tomography of the state under the action
of !PD = "PD ◦ "PD.

B. Rotating amplitude-damping channel

To simulate each ( channel, we use a displaced Sagnac
interferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) [as shown in Fig. 2(b)]. The parallel trajec-
tories of |V ⟩ and |H ⟩ projections inside the SI are temporally
compensated and go in the clockwise and counterclockwise
directions, respectively. Both trajectories are intercepted by

FIG. 2. Single-channel modules. (a) Plot of "PD: The unrotated
yellow plate HWP(0) constitutes the PD channel &, since I is applied
when it is absent or σz when it is present. (b) Plot of "AD: The
SI and MZI constitute the AD channel (, transforming the vertical
polarization into horizontal by a rotation of HWP(α). In both (a) and
(b), the rotating red plate HWP(θ ) represents #θ .

independent HWPs: a rotating one, HWP(α), for |V ⟩ and
another unrotated one, HWP(0), for |H ⟩. The rotation angle
α is related to the damping parameter η by the expression
α(η) = arccos(−

√
1− η)

2 [6,10].
After the SI there is an unbalanced Mach-Zehnder inter-

ferometer (MZI) that allows to couple in the same trajectory
the damped and undamped polarizations as they pass through
a beam splitter (BS). The temporal difference between the
MZI arms is set to a value larger than the coherence length
of the photons in order to simulate random-phase fluctuations
that destroy quantum interferences at its output. The action
of !AD = "AD ◦ "AD is then obtained by selecting the same
damping η in both (, while both HWPs corresponding to #ϕ

rotate in a synchronous way.

C. Filtering

The protocol first requires us to fix the damping parameter p
for !PD or η for !AD to scan the channel in the rotation angle
θ and verify the location of periodic EB regions. It results
that these regions are located around θPD = π

8 ± nπ
4 for the

(!PD,s ⊗ Ia)(ρsa) experiment and around θAP = π
4 ± nπ

2 for
the (!AD,s ⊗ Ia)(ρsa) experiment, in both cases with n ∈ N.
Once this condition is experimentally certified, one proceeds
to fix the angle θ = θPD or θ = θAD. Then the operation of F is
studied by scanning the rotation ϕ of an extra HWP (as shown
in Fig. 1). As a consequence, either !′

PD = "PD ◦ #ϕ ◦ "PD
or !′

AD = "AD ◦ #ϕ ◦ "AD will no longer be EB in a region
where !PD and !AD are EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the channels
!PD and !′

PD acting over the s photon of a pair of entangled
photons, with the damping parameter set to the value p = 0.65.
Figure 3(a) shows the EB behavior of !PD around θPD = ± π

8
as predicted by the simulated model, while Fig. 3(b) shows an
entanglement revival of !′

PD for ϕ = ± π
8 . Similarly, in Fig. 4

we report the results of !AD and !′
AD channels acting over

the s photon from a pair of entangled photons, having set the
damping parameter to the value η = 0.66 ± 0.017. Figure 4(a)
shows the EB behavior of !AD around θAD = ± π

8 as predicted
by the simulated model, while Fig. 4(b) shows an entanglement
revival of !′

AD for ϕ = π
8 .

The experimental data were obtained by averaging and
calculating the standard deviation over five values per point.
The blue lines were calculated by considering perfect input
state and optical conditions. The simulated shaded green areas
correspond to the regions of all possible experimental results
within one standard deviation of Fexp = 0.980 ± 0.016 for
!PD and !′

PD and also consider the error propagation of 0.5◦

of uncertainty in θ for !AD and !′
AD. This difference in the

data analysis between PD and AD channels originates from
the negligible error contribution of 0.5◦ of uncertainty in PD
channels. All Cexp = 0 values have error bars within the size
of the point.

The simulated data considered two scenarios: one with
perfect optical elements (POEs) and a maximally pure en-
tangled input state, and another with realistic optical elements
(ROEs), a nonmaximally pure entangled input state, and error
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FIG. 1. Scheme of the experimental setup. A source of polariza-
tion entangled qubits sends the a photon directly to the tomography
stage, while the s photon is transmitted by a SMF to the simulation
of ! = " ◦ " or !′ = " ◦ F ◦ " and then measured in the same
temporally synchronized bipartite tomography. The maps " = "PD

or " = "AD are represented by the black boxes, while F = #ϕ is
represented by the transparent-gray box enclosing a half-wave plate
HWP(ϕ). Finally, we specify that ! (!′) corresponds to the absence
(presence) of HWP(ϕ).

or presence of a half-wave plate (HWP) fixed at 0◦ in the optical
path of the photon, respectively. To simulate #θ another HWP
is permanently placed after &, but with a rotation degree of
freedom in the angle θ [as shown in Fig. 2(a)] [6,18].

Since both #θ plates are synchronized in their rotation
angle, there are only four combinations of Pauli operations;
when the first "PD is applying I, the second "PD can apply I
or σz; when the first "PD is applying σz, the second "PD can
apply I or σz. Then the statistical mixture between I and σz

is obtained by extracting a fraction PII = (1 − p
2 )2 of coinci-

dences from the I + I tomography, a fraction PIσz
= (1 − p

2 )p
2

of coincidences from the I + σz and σz + I tomographies, and
a fraction Pσzσz

= (p
2 )2 from the σz + σz tomography. Once the

tomography registry fractions are combined, the new registry
will be equivalent to a tomography of the state under the action
of !PD = "PD ◦ "PD.

B. Rotating amplitude-damping channel

To simulate each ( channel, we use a displaced Sagnac
interferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) [as shown in Fig. 2(b)]. The parallel trajec-
tories of |V ⟩ and |H ⟩ projections inside the SI are temporally
compensated and go in the clockwise and counterclockwise
directions, respectively. Both trajectories are intercepted by

FIG. 2. Single-channel modules. (a) Plot of "PD: The unrotated
yellow plate HWP(0) constitutes the PD channel &, since I is applied
when it is absent or σz when it is present. (b) Plot of "AD: The
SI and MZI constitute the AD channel (, transforming the vertical
polarization into horizontal by a rotation of HWP(α). In both (a) and
(b), the rotating red plate HWP(θ ) represents #θ .

independent HWPs: a rotating one, HWP(α), for |V ⟩ and
another unrotated one, HWP(0), for |H ⟩. The rotation angle
α is related to the damping parameter η by the expression
α(η) = arccos(−

√
1− η)

2 [6,10].
After the SI there is an unbalanced Mach-Zehnder inter-

ferometer (MZI) that allows to couple in the same trajectory
the damped and undamped polarizations as they pass through
a beam splitter (BS). The temporal difference between the
MZI arms is set to a value larger than the coherence length
of the photons in order to simulate random-phase fluctuations
that destroy quantum interferences at its output. The action
of !AD = "AD ◦ "AD is then obtained by selecting the same
damping η in both (, while both HWPs corresponding to #ϕ

rotate in a synchronous way.

C. Filtering

The protocol first requires us to fix the damping parameter p
for !PD or η for !AD to scan the channel in the rotation angle
θ and verify the location of periodic EB regions. It results
that these regions are located around θPD = π

8 ± nπ
4 for the

(!PD,s ⊗ Ia)(ρsa) experiment and around θAP = π
4 ± nπ

2 for
the (!AD,s ⊗ Ia)(ρsa) experiment, in both cases with n ∈ N.
Once this condition is experimentally certified, one proceeds
to fix the angle θ = θPD or θ = θAD. Then the operation of F is
studied by scanning the rotation ϕ of an extra HWP (as shown
in Fig. 1). As a consequence, either !′

PD = "PD ◦ #ϕ ◦ "PD
or !′

AD = "AD ◦ #ϕ ◦ "AD will no longer be EB in a region
where !PD and !AD are EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the channels
!PD and !′

PD acting over the s photon of a pair of entangled
photons, with the damping parameter set to the value p = 0.65.
Figure 3(a) shows the EB behavior of !PD around θPD = ± π

8
as predicted by the simulated model, while Fig. 3(b) shows an
entanglement revival of !′

PD for ϕ = ± π
8 . Similarly, in Fig. 4

we report the results of !AD and !′
AD channels acting over

the s photon from a pair of entangled photons, having set the
damping parameter to the value η = 0.66 ± 0.017. Figure 4(a)
shows the EB behavior of !AD around θAD = ± π

8 as predicted
by the simulated model, while Fig. 4(b) shows an entanglement
revival of !′

AD for ϕ = π
8 .

The experimental data were obtained by averaging and
calculating the standard deviation over five values per point.
The blue lines were calculated by considering perfect input
state and optical conditions. The simulated shaded green areas
correspond to the regions of all possible experimental results
within one standard deviation of Fexp = 0.980 ± 0.016 for
!PD and !′

PD and also consider the error propagation of 0.5◦

of uncertainty in θ for !AD and !′
AD. This difference in the

data analysis between PD and AD channels originates from
the negligible error contribution of 0.5◦ of uncertainty in PD
channels. All Cexp = 0 values have error bars within the size
of the point.

The simulated data considered two scenarios: one with
perfect optical elements (POEs) and a maximally pure en-
tangled input state, and another with realistic optical elements
(ROEs), a nonmaximally pure entangled input state, and error
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tion entangled qubits sends the a photon directly to the tomography
stage, while the s photon is transmitted by a SMF to the simulation
of ! = " ◦ " or !′ = " ◦ F ◦ " and then measured in the same
temporally synchronized bipartite tomography. The maps " = "PD

or " = "AD are represented by the black boxes, while F = #ϕ is
represented by the transparent-gray box enclosing a half-wave plate
HWP(ϕ). Finally, we specify that ! (!′) corresponds to the absence
(presence) of HWP(ϕ).

or presence of a half-wave plate (HWP) fixed at 0◦ in the optical
path of the photon, respectively. To simulate #θ another HWP
is permanently placed after &, but with a rotation degree of
freedom in the angle θ [as shown in Fig. 2(a)] [6,18].

Since both #θ plates are synchronized in their rotation
angle, there are only four combinations of Pauli operations;
when the first "PD is applying I, the second "PD can apply I
or σz; when the first "PD is applying σz, the second "PD can
apply I or σz. Then the statistical mixture between I and σz

is obtained by extracting a fraction PII = (1 − p
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dences from the I + I tomography, a fraction PIσz
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of coincidences from the I + σz and σz + I tomographies, and
a fraction Pσzσz

= (p
2 )2 from the σz + σz tomography. Once the

tomography registry fractions are combined, the new registry
will be equivalent to a tomography of the state under the action
of !PD = "PD ◦ "PD.

B. Rotating amplitude-damping channel

To simulate each ( channel, we use a displaced Sagnac
interferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) [as shown in Fig. 2(b)]. The parallel trajec-
tories of |V ⟩ and |H ⟩ projections inside the SI are temporally
compensated and go in the clockwise and counterclockwise
directions, respectively. Both trajectories are intercepted by
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yellow plate HWP(0) constitutes the PD channel &, since I is applied
when it is absent or σz when it is present. (b) Plot of "AD: The
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independent HWPs: a rotating one, HWP(α), for |V ⟩ and
another unrotated one, HWP(0), for |H ⟩. The rotation angle
α is related to the damping parameter η by the expression
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After the SI there is an unbalanced Mach-Zehnder inter-

ferometer (MZI) that allows to couple in the same trajectory
the damped and undamped polarizations as they pass through
a beam splitter (BS). The temporal difference between the
MZI arms is set to a value larger than the coherence length
of the photons in order to simulate random-phase fluctuations
that destroy quantum interferences at its output. The action
of !AD = "AD ◦ "AD is then obtained by selecting the same
damping η in both (, while both HWPs corresponding to #ϕ

rotate in a synchronous way.

C. Filtering

The protocol first requires us to fix the damping parameter p
for !PD or η for !AD to scan the channel in the rotation angle
θ and verify the location of periodic EB regions. It results
that these regions are located around θPD = π

8 ± nπ
4 for the

(!PD,s ⊗ Ia)(ρsa) experiment and around θAP = π
4 ± nπ

2 for
the (!AD,s ⊗ Ia)(ρsa) experiment, in both cases with n ∈ N.
Once this condition is experimentally certified, one proceeds
to fix the angle θ = θPD or θ = θAD. Then the operation of F is
studied by scanning the rotation ϕ of an extra HWP (as shown
in Fig. 1). As a consequence, either !′

PD = "PD ◦ #ϕ ◦ "PD
or !′

AD = "AD ◦ #ϕ ◦ "AD will no longer be EB in a region
where !PD and !AD are EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the channels
!PD and !′

PD acting over the s photon of a pair of entangled
photons, with the damping parameter set to the value p = 0.65.
Figure 3(a) shows the EB behavior of !PD around θPD = ± π

8
as predicted by the simulated model, while Fig. 3(b) shows an
entanglement revival of !′

PD for ϕ = ± π
8 . Similarly, in Fig. 4

we report the results of !AD and !′
AD channels acting over

the s photon from a pair of entangled photons, having set the
damping parameter to the value η = 0.66 ± 0.017. Figure 4(a)
shows the EB behavior of !AD around θAD = ± π

8 as predicted
by the simulated model, while Fig. 4(b) shows an entanglement
revival of !′

AD for ϕ = π
8 .

The experimental data were obtained by averaging and
calculating the standard deviation over five values per point.
The blue lines were calculated by considering perfect input
state and optical conditions. The simulated shaded green areas
correspond to the regions of all possible experimental results
within one standard deviation of Fexp = 0.980 ± 0.016 for
!PD and !′

PD and also consider the error propagation of 0.5◦

of uncertainty in θ for !AD and !′
AD. This difference in the

data analysis between PD and AD channels originates from
the negligible error contribution of 0.5◦ of uncertainty in PD
channels. All Cexp = 0 values have error bars within the size
of the point.

The simulated data considered two scenarios: one with
perfect optical elements (POEs) and a maximally pure en-
tangled input state, and another with realistic optical elements
(ROEs), a nonmaximally pure entangled input state, and error
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FIG. 1. Scheme of the experimental setup A source of
polarization entangled qubits sends the a-photon directly to
the tomography stage, while the s-photon is transmitted by
a SMF to the simulation of ⇧ = ⌅ �⌅ or ⇧0 = ⌅ � F �⌅ and
then measured in the same temporally synchronized bipartite
tomography. ⌅ = ⌅PD or ⌅ = ⌅AD are represented by the
black boxes, while F = ⇥⇥ is represented by the transparent-
gray box enclosing a half wave plate HWP (⌅). Finally, we
specify that ⇧ (⇧0) corresponds to the absence (presence) of
HWP (⌅).

a rotation degree of freedom in the angle ⇤ (as seen in
Fig. 2 a)) [6, 21].

Since both �⇥ plates are synchronized in their rotation
angle, there are only four combinations of Pauli opera-
tions; when the first ⇤PD is applying I, the second ⇤PD

can apply I or ⇧z; when the first ⇤PD is applying ⇧z,
the second ⇤PD can apply I or ⇧z. Then, the statisti-
cal mixture between I and ⇧z is obtained by extracting
a fraction PII = (1 � p

2 )
2 of coincidences from the I + I

tomography, a fraction PI⌅z = (1� p
2 ) ·

p
2 of coincidences

from the I+ ⇧z and ⇧z + I tomographies, and a fraction
P⌅z⌅z = (p2 )

2 from the ⇧z + ⇧z tomography.
Once the tomography registry fractions are combined,

the new registry will be equivalent to a tomography of
the state under a the action of ⌅PD = ⇤PD ⇤ ⇤PD.

a) b)

FIG. 2. Single channel modules. a) ⌅PD: The unrotated
yellow plate HWP (0) constitutes the PD channel �, since I
is applied when it is absent or ⇤z when it is present. b) ⌅AD:
The SI and MZI constitute the AD channel ⇤, since trans-
form the vertical polarization into horizontal by a rotation of
HWP (�). Either in a) or b), the rotating red plate HWP (⇥)
represents ⇥�.

Rotating Amplitude Damping Channel: To sim-
ulate each ⇥ channel, we use a displaced Sagnac inter-
ferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) (as seen in Fig. 2 b)). The par-
allel trajectories of |V ⇧ and |H⇧ projections inside the
SI are temporally compensated and go in clockwise and
counter-clockwise directions, respectively. Both trajec-

tories are intercepted by independent HWPs, a rotating
one HWP (�) for |V ⇧ and another unrotated HWP (0)
for |H⇧. The rotation angle � is related to the damp-

ing parameter ⇥ by the expression �(⇥) = arccos(�
⇤
1��)

2
[6, 10].
After the SI there is an unbalanced Mach-Zehnder in-

terferometer (MZI), that allows to couple in the same
trajectory the damped and undamped polarizations as
they pass through a beam splitter (BS). The temporal
di⇧erence between the MZI arms is set to a value larger
than the coherence length of the photons in order to sim-
ulate random phase fluctuations that destroy quantum
interferences at its output.
The action of ⌅AD = ⇤AD ⇤ ⇤AD is then obtained

by selecting the same damping ⇥ in both ⇥, while both
HWPs corresponding to �⇧ rotate in a synchronous way.
Filtering: The protocol firstly requires to fix the

damping parameter p for ⌅PD or ⇥ for ⌅AD, to scan
the channel in the rotation angle ⇤ and verify the lo-
cation of periodic EB regions. It results that these
regions are located around ⇤PD = ⇤

8 ± n⇤
4 for the

(⌅PD,s ⇥ Ia)(⌅sa) experiment and around ⇤AP = ⇤
4 ±n⇤

2
for the (⌅AD,s ⇥ Ia)(⌅sa) experiment, in both cases with
n ⌅ N. Once this condition is experimentally certified,
one proceeds to fix the angle ⇤ = ⇤PD or ⇤ = ⇤AD. Then,
the operation of F is studied by scanning the rotation ⌃
of an extra HWP (as seen in Fig. 1).
As a consequence, either ⌅⇥

PD = ⇤PD ⇤ �⇧ ⇤ ⇤PD or
⌅⇥

AD = ⇤AD ⇤�⇧ ⇤⇤AD will be no more EB, in a region
where, on the contrary, ⌅PD and ⌅AD were EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the
channels ⌅PD and ⌅⇥

PD acting over the s-photon of a
pair of entangled photons, with the damping parameter
set to the value p = 0.65. Fig. 3 a) shows the EB be-
haviour of ⌅PD around ⇤PD = ±⇤

8 as predicted by the
simulated model, while Fig.3 b) shows an entanglement
revival of ⌅⇥

PD for ⌃ = ±⇤
8 . Similarly, in Fig. 4 we report

the results of ⌅AD and ⌅⇥
AD channels acting over the s-

photon from a pair of entangled photons, having set the
damping parameter to the value ⇥ = 0.66± 0.017. Fig. 4
a) shows the EB behavior of ⌅AD around ⇤AD = ±⇤

8 as
predicted by the simulated model, while Fig.4 b) shows
an entanglement revival of ⌅⇥

AD for ⌃ = ⇤
8 .

The experimental data were obtained by averaging
and calculating the standard deviation over 5 values per
point. The blue lines were calculated considering per-
fect input state and optical conditions. The simulated
shaded green areas correspond to the regions of all pos-
sible experimental results within one standard deviation
of Fexp = 0.980 ± 0.016 for ⌅PD and ⌅⇥

PD, and also
considering the error propagation of 0.5 degrees of un-
certainty in ⇤ for ⌅AD and ⌅⇥

AD. This di⇧erence in the
data analysis between PD and AD channel origins from
the negligible error contribution of 0.5 degrees of uncer-

amendable maps

Classification of Quantum Channels

A. De Pasquale and V. Giovannetti,
Phys. Rev. A 86, 052302 (2012)

2

A

B

C

D E


CA

B

D


E

FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
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bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).
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state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).
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imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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setting [10] where Alice is asked to monitor a remote (unco-
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the spot and rotates the probe by ' according to the generator
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state ⇢A and the Bloch sphere direction ~n are fixed by the first
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ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
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as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
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and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
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where we inserted a normalization factor 1
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We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
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FIG. 3. Concurrence vs PD mapping for p = 0.65. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within one
standard deviation of the fidelity Fexp = 0.980 ± 0.016. (a) Plot of
!PD, obtained by rotating θ , with EB behavior around θ = ± π

8 .
(b) Plot of !′

PD, obtained by rotating ϕ, with a revival of entanglement
around ϕ = ± π

8 , while θ is fixed at π
8 .

propagation. The differences between these two cases are
described in Table I.

In both PD (Fig. 3) and AD (Fig. 4) cases there is a
good agreement between experimental and simulated data.

TABLE I. Optical parameters and state fidelities. The acronyms
TH and TV represent the transmissivities in the horizontal and vertical
polarizations, respectively; RH and RV represent the reflectivities in
the horizontal and vertical polarizations, respectively.

Parameter POE Average ROE

Fidelity (F) 1 0.980 ± 0.016
THBS 0.5 0.507 ± 0.016
RHBS 0.5 0.407 ± 0.011
TVBS 0.5 0.495 ± 0.018
RVBS 0.5 0.410 ± 0.001
THPBS 1 0.965 ± 0.001
RHPBS 0 0.008 ± 0.004
TVPBS 0 0.024 ± 0.014
RVPBS 1 0.928 ± 0.035

FIG. 4. Concurrence vs AD mapping for η = 0.66. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within
one standard deviation of the fidelity Fexpt = 0.980 ± 0.016 and the
propagated error of the damping η = 0.66 ± 0.017. (a) Plot of !AD,
obtained by rotating θ , with EB behavior around θ = ± π

4 . (b) Plot of
!′

AD, obtained by rotating ϕ, with a revival of entanglement around
ϕ = ± π

4 , while θ is fixed at π
4 .

The discrepancies existing between !PD and !′
PD and their

simulations could be attributed to the postprocessing genera-
tion of the channel, since their action has been simulated by
combining I and σz operations with unstable photon counts
during long-time scans varying θ and ϕ rotation angles. On
the other hand, discrepancies between !AD and !′

AD and their
simulations are strongly related to the difficulty of coupling
the 16 possible spatial modes within a unique SMF at the end
of the entire channel.

Our results constitute an experimental validation of the
entanglement recovery effect summarized by Eqs. (2) and (3).
As discussed in the Introduction, the iteration of the same
filtering method beyond two repetitions (q > 2) of the map
' is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered 'PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered 'AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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' is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered 'PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered 'AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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FIG. 1. Scheme of the experimental setup A source of
polarization entangled qubits sends the a-photon directly to
the tomography stage, while the s-photon is transmitted by
a SMF to the simulation of ⇧ = ⌅ �⌅ or ⇧0 = ⌅ � F �⌅ and
then measured in the same temporally synchronized bipartite
tomography. ⌅ = ⌅PD or ⌅ = ⌅AD are represented by the
black boxes, while F = ⇥⇥ is represented by the transparent-
gray box enclosing a half wave plate HWP (⌅). Finally, we
specify that ⇧ (⇧0) corresponds to the absence (presence) of
HWP (⌅).

a rotation degree of freedom in the angle ⇤ (as seen in
Fig. 2 a)) [6, 21].

Since both �⇥ plates are synchronized in their rotation
angle, there are only four combinations of Pauli opera-
tions; when the first ⇤PD is applying I, the second ⇤PD

can apply I or ⇧z; when the first ⇤PD is applying ⇧z,
the second ⇤PD can apply I or ⇧z. Then, the statisti-
cal mixture between I and ⇧z is obtained by extracting
a fraction PII = (1 � p

2 )
2 of coincidences from the I + I

tomography, a fraction PI⌅z = (1� p
2 ) ·

p
2 of coincidences

from the I+ ⇧z and ⇧z + I tomographies, and a fraction
P⌅z⌅z = (p2 )

2 from the ⇧z + ⇧z tomography.
Once the tomography registry fractions are combined,

the new registry will be equivalent to a tomography of
the state under a the action of ⌅PD = ⇤PD ⇤ ⇤PD.

a) b)

FIG. 2. Single channel modules. a) ⌅PD: The unrotated
yellow plate HWP (0) constitutes the PD channel �, since I
is applied when it is absent or ⇤z when it is present. b) ⌅AD:
The SI and MZI constitute the AD channel ⇤, since trans-
form the vertical polarization into horizontal by a rotation of
HWP (�). Either in a) or b), the rotating red plate HWP (⇥)
represents ⇥�.

Rotating Amplitude Damping Channel: To sim-
ulate each ⇥ channel, we use a displaced Sagnac inter-
ferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) (as seen in Fig. 2 b)). The par-
allel trajectories of |V ⇧ and |H⇧ projections inside the
SI are temporally compensated and go in clockwise and
counter-clockwise directions, respectively. Both trajec-

tories are intercepted by independent HWPs, a rotating
one HWP (�) for |V ⇧ and another unrotated HWP (0)
for |H⇧. The rotation angle � is related to the damp-

ing parameter ⇥ by the expression �(⇥) = arccos(�
⇤
1��)

2
[6, 10].
After the SI there is an unbalanced Mach-Zehnder in-

terferometer (MZI), that allows to couple in the same
trajectory the damped and undamped polarizations as
they pass through a beam splitter (BS). The temporal
di⇧erence between the MZI arms is set to a value larger
than the coherence length of the photons in order to sim-
ulate random phase fluctuations that destroy quantum
interferences at its output.
The action of ⌅AD = ⇤AD ⇤ ⇤AD is then obtained

by selecting the same damping ⇥ in both ⇥, while both
HWPs corresponding to �⇧ rotate in a synchronous way.
Filtering: The protocol firstly requires to fix the

damping parameter p for ⌅PD or ⇥ for ⌅AD, to scan
the channel in the rotation angle ⇤ and verify the lo-
cation of periodic EB regions. It results that these
regions are located around ⇤PD = ⇤

8 ± n⇤
4 for the

(⌅PD,s ⇥ Ia)(⌅sa) experiment and around ⇤AP = ⇤
4 ±n⇤

2
for the (⌅AD,s ⇥ Ia)(⌅sa) experiment, in both cases with
n ⌅ N. Once this condition is experimentally certified,
one proceeds to fix the angle ⇤ = ⇤PD or ⇤ = ⇤AD. Then,
the operation of F is studied by scanning the rotation ⌃
of an extra HWP (as seen in Fig. 1).
As a consequence, either ⌅⇥

PD = ⇤PD ⇤ �⇧ ⇤ ⇤PD or
⌅⇥

AD = ⇤AD ⇤�⇧ ⇤⇤AD will be no more EB, in a region
where, on the contrary, ⌅PD and ⌅AD were EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the
channels ⌅PD and ⌅⇥

PD acting over the s-photon of a
pair of entangled photons, with the damping parameter
set to the value p = 0.65. Fig. 3 a) shows the EB be-
haviour of ⌅PD around ⇤PD = ±⇤

8 as predicted by the
simulated model, while Fig.3 b) shows an entanglement
revival of ⌅⇥

PD for ⌃ = ±⇤
8 . Similarly, in Fig. 4 we report

the results of ⌅AD and ⌅⇥
AD channels acting over the s-

photon from a pair of entangled photons, having set the
damping parameter to the value ⇥ = 0.66± 0.017. Fig. 4
a) shows the EB behavior of ⌅AD around ⇤AD = ±⇤

8 as
predicted by the simulated model, while Fig.4 b) shows
an entanglement revival of ⌅⇥

AD for ⌃ = ⇤
8 .

The experimental data were obtained by averaging
and calculating the standard deviation over 5 values per
point. The blue lines were calculated considering per-
fect input state and optical conditions. The simulated
shaded green areas correspond to the regions of all pos-
sible experimental results within one standard deviation
of Fexp = 0.980 ± 0.016 for ⌅PD and ⌅⇥

PD, and also
considering the error propagation of 0.5 degrees of un-
certainty in ⇤ for ⌅AD and ⌅⇥

AD. This di⇧erence in the
data analysis between PD and AD channel origins from
the negligible error contribution of 0.5 degrees of uncer-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).
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duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
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min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
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guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
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where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).
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be repeated an arbitrarily high number ⌫ of times to improve
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state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
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or not su�ciently a↵ected for the task purposes, resulting in
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enough. The minimum precision over all ~n vanishes as it is in
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output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
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assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,
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of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
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then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
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classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
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output stage, Alice and Bob are allowed to perform the best
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possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,
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of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 3. Concurrence vs PD mapping for p = 0.65. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within one
standard deviation of the fidelity Fexp = 0.980 ± 0.016. (a) Plot of
!PD, obtained by rotating θ , with EB behavior around θ = ± π

8 .
(b) Plot of !′

PD, obtained by rotating ϕ, with a revival of entanglement
around ϕ = ± π

8 , while θ is fixed at π
8 .

propagation. The differences between these two cases are
described in Table I.

In both PD (Fig. 3) and AD (Fig. 4) cases there is a
good agreement between experimental and simulated data.

TABLE I. Optical parameters and state fidelities. The acronyms
TH and TV represent the transmissivities in the horizontal and vertical
polarizations, respectively; RH and RV represent the reflectivities in
the horizontal and vertical polarizations, respectively.

Parameter POE Average ROE

Fidelity (F) 1 0.980 ± 0.016
THBS 0.5 0.507 ± 0.016
RHBS 0.5 0.407 ± 0.011
TVBS 0.5 0.495 ± 0.018
RVBS 0.5 0.410 ± 0.001
THPBS 1 0.965 ± 0.001
RHPBS 0 0.008 ± 0.004
TVPBS 0 0.024 ± 0.014
RVPBS 1 0.928 ± 0.035

FIG. 4. Concurrence vs AD mapping for η = 0.66. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within
one standard deviation of the fidelity Fexpt = 0.980 ± 0.016 and the
propagated error of the damping η = 0.66 ± 0.017. (a) Plot of !AD,
obtained by rotating θ , with EB behavior around θ = ± π

4 . (b) Plot of
!′

AD, obtained by rotating ϕ, with a revival of entanglement around
ϕ = ± π

4 , while θ is fixed at π
4 .

The discrepancies existing between !PD and !′
PD and their

simulations could be attributed to the postprocessing genera-
tion of the channel, since their action has been simulated by
combining I and σz operations with unstable photon counts
during long-time scans varying θ and ϕ rotation angles. On
the other hand, discrepancies between !AD and !′

AD and their
simulations are strongly related to the difficulty of coupling
the 16 possible spatial modes within a unique SMF at the end
of the entire channel.

Our results constitute an experimental validation of the
entanglement recovery effect summarized by Eqs. (2) and (3).
As discussed in the Introduction, the iteration of the same
filtering method beyond two repetitions (q > 2) of the map
' is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered 'PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered 'AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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FIG. 1. Scheme of the experimental setup A source of
polarization entangled qubits sends the a-photon directly to
the tomography stage, while the s-photon is transmitted by
a SMF to the simulation of ⇧ = ⌅ �⌅ or ⇧0 = ⌅ � F �⌅ and
then measured in the same temporally synchronized bipartite
tomography. ⌅ = ⌅PD or ⌅ = ⌅AD are represented by the
black boxes, while F = ⇥⇥ is represented by the transparent-
gray box enclosing a half wave plate HWP (⌅). Finally, we
specify that ⇧ (⇧0) corresponds to the absence (presence) of
HWP (⌅).

a rotation degree of freedom in the angle ⇤ (as seen in
Fig. 2 a)) [6, 21].

Since both �⇥ plates are synchronized in their rotation
angle, there are only four combinations of Pauli opera-
tions; when the first ⇤PD is applying I, the second ⇤PD

can apply I or ⇧z; when the first ⇤PD is applying ⇧z,
the second ⇤PD can apply I or ⇧z. Then, the statisti-
cal mixture between I and ⇧z is obtained by extracting
a fraction PII = (1 � p

2 )
2 of coincidences from the I + I

tomography, a fraction PI⌅z = (1� p
2 ) ·

p
2 of coincidences

from the I+ ⇧z and ⇧z + I tomographies, and a fraction
P⌅z⌅z = (p2 )

2 from the ⇧z + ⇧z tomography.
Once the tomography registry fractions are combined,

the new registry will be equivalent to a tomography of
the state under a the action of ⌅PD = ⇤PD ⇤ ⇤PD.

a) b)

FIG. 2. Single channel modules. a) ⌅PD: The unrotated
yellow plate HWP (0) constitutes the PD channel �, since I
is applied when it is absent or ⇤z when it is present. b) ⌅AD:
The SI and MZI constitute the AD channel ⇤, since trans-
form the vertical polarization into horizontal by a rotation of
HWP (�). Either in a) or b), the rotating red plate HWP (⇥)
represents ⇥�.

Rotating Amplitude Damping Channel: To sim-
ulate each ⇥ channel, we use a displaced Sagnac inter-
ferometer (SI), opened and closed by a single polarizing
beam splitter (PBS) (as seen in Fig. 2 b)). The par-
allel trajectories of |V ⇧ and |H⇧ projections inside the
SI are temporally compensated and go in clockwise and
counter-clockwise directions, respectively. Both trajec-

tories are intercepted by independent HWPs, a rotating
one HWP (�) for |V ⇧ and another unrotated HWP (0)
for |H⇧. The rotation angle � is related to the damp-

ing parameter ⇥ by the expression �(⇥) = arccos(�
⇤
1��)

2
[6, 10].
After the SI there is an unbalanced Mach-Zehnder in-

terferometer (MZI), that allows to couple in the same
trajectory the damped and undamped polarizations as
they pass through a beam splitter (BS). The temporal
di⇧erence between the MZI arms is set to a value larger
than the coherence length of the photons in order to sim-
ulate random phase fluctuations that destroy quantum
interferences at its output.
The action of ⌅AD = ⇤AD ⇤ ⇤AD is then obtained

by selecting the same damping ⇥ in both ⇥, while both
HWPs corresponding to �⇧ rotate in a synchronous way.
Filtering: The protocol firstly requires to fix the

damping parameter p for ⌅PD or ⇥ for ⌅AD, to scan
the channel in the rotation angle ⇤ and verify the lo-
cation of periodic EB regions. It results that these
regions are located around ⇤PD = ⇤

8 ± n⇤
4 for the

(⌅PD,s ⇥ Ia)(⌅sa) experiment and around ⇤AP = ⇤
4 ±n⇤

2
for the (⌅AD,s ⇥ Ia)(⌅sa) experiment, in both cases with
n ⌅ N. Once this condition is experimentally certified,
one proceeds to fix the angle ⇤ = ⇤PD or ⇤ = ⇤AD. Then,
the operation of F is studied by scanning the rotation ⌃
of an extra HWP (as seen in Fig. 1).
As a consequence, either ⌅⇥

PD = ⇤PD ⇤ �⇧ ⇤ ⇤PD or
⌅⇥

AD = ⇤AD ⇤�⇧ ⇤⇤AD will be no more EB, in a region
where, on the contrary, ⌅PD and ⌅AD were EB.

IV. RESULTS

In Fig. 3 we report the experimental results for the
channels ⌅PD and ⌅⇥

PD acting over the s-photon of a
pair of entangled photons, with the damping parameter
set to the value p = 0.65. Fig. 3 a) shows the EB be-
haviour of ⌅PD around ⇤PD = ±⇤

8 as predicted by the
simulated model, while Fig.3 b) shows an entanglement
revival of ⌅⇥

PD for ⌃ = ±⇤
8 . Similarly, in Fig. 4 we report

the results of ⌅AD and ⌅⇥
AD channels acting over the s-

photon from a pair of entangled photons, having set the
damping parameter to the value ⇥ = 0.66± 0.017. Fig. 4
a) shows the EB behavior of ⌅AD around ⇤AD = ±⇤

8 as
predicted by the simulated model, while Fig.4 b) shows
an entanglement revival of ⌅⇥

AD for ⌃ = ⇤
8 .

The experimental data were obtained by averaging
and calculating the standard deviation over 5 values per
point. The blue lines were calculated considering per-
fect input state and optical conditions. The simulated
shaded green areas correspond to the regions of all pos-
sible experimental results within one standard deviation
of Fexp = 0.980 ± 0.016 for ⌅PD and ⌅⇥

PD, and also
considering the error propagation of 0.5 degrees of un-
certainty in ⇤ for ⌅AD and ⌅⇥

AD. This di⇧erence in the
data analysis between PD and AD channel origins from
the negligible error contribution of 0.5 degrees of uncer-
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FIG. 3. Concurrence vs PD mapping for p = 0.65. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within one
standard deviation of the fidelity Fexp = 0.980 ± 0.016. (a) Plot of
!PD, obtained by rotating θ , with EB behavior around θ = ± π

8 .
(b) Plot of !′

PD, obtained by rotating ϕ, with a revival of entanglement
around ϕ = ± π

8 , while θ is fixed at π
8 .

propagation. The differences between these two cases are
described in Table I.

In both PD (Fig. 3) and AD (Fig. 4) cases there is a
good agreement between experimental and simulated data.

TABLE I. Optical parameters and state fidelities. The acronyms
TH and TV represent the transmissivities in the horizontal and vertical
polarizations, respectively; RH and RV represent the reflectivities in
the horizontal and vertical polarizations, respectively.

Parameter POE Average ROE

Fidelity (F) 1 0.980 ± 0.016
THBS 0.5 0.507 ± 0.016
RHBS 0.5 0.407 ± 0.011
TVBS 0.5 0.495 ± 0.018
RVBS 0.5 0.410 ± 0.001
THPBS 1 0.965 ± 0.001
RHPBS 0 0.008 ± 0.004
TVPBS 0 0.024 ± 0.014
RVPBS 1 0.928 ± 0.035

FIG. 4. Concurrence vs AD mapping for η = 0.66. Red points
represent the experimental data. Blue lines represent the simulated
data for perfect optical elements and a pure entangled state with
F = 1. Green shaded areas represent the regions of simulated data
for realistic optical elements and a mixed entangled state within
one standard deviation of the fidelity Fexpt = 0.980 ± 0.016 and the
propagated error of the damping η = 0.66 ± 0.017. (a) Plot of !AD,
obtained by rotating θ , with EB behavior around θ = ± π

4 . (b) Plot of
!′

AD, obtained by rotating ϕ, with a revival of entanglement around
ϕ = ± π

4 , while θ is fixed at π
4 .

The discrepancies existing between !PD and !′
PD and their

simulations could be attributed to the postprocessing genera-
tion of the channel, since their action has been simulated by
combining I and σz operations with unstable photon counts
during long-time scans varying θ and ϕ rotation angles. On
the other hand, discrepancies between !AD and !′

AD and their
simulations are strongly related to the difficulty of coupling
the 16 possible spatial modes within a unique SMF at the end
of the entire channel.

Our results constitute an experimental validation of the
entanglement recovery effect summarized by Eqs. (2) and (3).
As discussed in the Introduction, the iteration of the same
filtering method beyond two repetitions (q > 2) of the map
' is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered 'PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered 'AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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PD and their

simulations could be attributed to the postprocessing genera-
tion of the channel, since their action has been simulated by
combining I and σz operations with unstable photon counts
during long-time scans varying θ and ϕ rotation angles. On
the other hand, discrepancies between !AD and !′

AD and their
simulations are strongly related to the difficulty of coupling
the 16 possible spatial modes within a unique SMF at the end
of the entire channel.

Our results constitute an experimental validation of the
entanglement recovery effect summarized by Eqs. (2) and (3).
As discussed in the Introduction, the iteration of the same
filtering method beyond two repetitions (q > 2) of the map
' is theoretically possible, however, the practical implemen-
tations present technical difficulties depending on the kind
of channels under study. In the cases considered in this
work, for q-filtered 'PD channels, their concatenation must
be temporally synchronized to correctly apply 2q possible
operations. For q-filtered 'AD channels, all the 4q spatial
modes must be correctly collected by a single SMF. As a
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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c)

theoretical prediction obtained 
with real optical elements  

1) entanglement degradation on 
    each dual interferometric set 
    up > 1.3%, therefore maximum    
    concurrence at end of the 
    entire sequence of channels 
    decreases from 98% to 94%:
    

2) losses L of the beam splitters:
    T, R           T/(1-L), R/(1-L) 

� � �

Each point and the associated
statistical error was taken from
a set of N measurements
(3 ≤ N ≤ 11), under equivalent
mode coupling conditions.
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Continuous time
evolution of quantum systems

Markovian evolution: 

non-Markovian evolution: 
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S
        depends on all the previous history,
and not only on
ρ(t)

ρ(t + dt)Ξ

Quantum-enhanced measurements (QEM) use quantum
effects in order to measure physical quantities with larger
precision than what is possible classically with compar-

able resources. QEMs are therefore expected to have large impact
in many areas, such as improvement of frequency standards1–5,
gravitational wave detection6,7, navigation8, remote sensing9, or
measurement of very small magnetic fields10. A well-known
example is the use of so-called NOON states in an interferometer,
where a state with N photons in one arm of the interferometer
and zero in the other is superposed with the opposite situation11.
It was shown that the smallest phase shift that such an inter-
ferometer could measure scales as 1/N , a large improvement over
the standard 1=

ffiffiffiffi
N

p
behavior that one obtains from ordinary laser

light. The latter scaling is known as the standard quantum limit
(SQL), and the 1/N scaling as the Heisenberg limit (HL). So far
the SQL has been beaten only in few experiments, and only for
small N (see e.g., 3,12,13), as the required non-classical states are
difficult to prepare and stabilize and are prone to decoherence.

Sensing devices used in quantum metrology so far have been
based almost exclusively on integrable systems, such as precessing
spins (e.g., nuclear spins, NV centers, etc.) or harmonic oscillators
(e.g., modes of an electro-magnetic field or mechanical oscilla-
tors), prepared in non-classical states (see ref. 14 for a recent
review). The idea of the present work is to achieve enhanced
measurement precision with readily accessible input states by
disrupting the parameter coding by a sequence of controlled
pulses that renders the dynamics chaotic. At first sight this may
appear a bad idea, as measuring something precisely requires
well-defined, reproducible behavior, whereas classical chaos is
associated with unpredictible long-term behavior. However, the
extreme sensitivity to initial conditions underlying classically
chaotic behavior is absent in the quantum world with its unitary
dynamics in Hilbert space that preserves distances between states.
In turn, quantum-chaotic dynamics can lead to exponential
sensitivity with respect to parameters of the system15.

The sensitivity to changes of a parameter of quantum-chaotic
systems has been studied in great detail with the technique of
Loschmidt echo16, which measures the overlap between a state
propagated forward with a unitary operator and propagated
backward with a slightly perturbed unitary operator. In the limit
of infinitesimally small perturbation, the Loschmidt echo turns
out to be directly related to the quantum Fisher information
(QFI) that determines the smallest uncertainty with which a
parameter can be estimated. Hence, a wealth of known results
from quantum chaos can be immediately translated to study the
ultimate sensitivity of quantum-chaotic sensors. In particular,
linear response expressions for fidelity can be directly transfered
to the exact expressions for the QFI.

Ideas of replacing entanglement creation by dynamics were
proposed previously17–21, but focussed on initial state prepara-
tion, or robustness of the readout22,23, without introducing or
exploiting chaotic dynamics during the parameter encoding. They
are hence comparable to spin-squeezing of the input state24.
Quantum chaos is also favorable for state tomography of random
initial states with weak continuous time measurement25,26, but no
attempt was made to use this for precision measurements of a
parameter. A recent review of other approaches to quantum-
enhanced metrology that avoid initial entanglement can be found
in ref. 27.

We study quantum-chaotic enhancement of sensitivity at the
example of the measurement of a classical magnetic field with a
spin-precession magnetometer. In these devices that count
amongst the most sensitive magnetometers currently available28–
32, the magnetic field is coded in a precession frequency of atomic
spins that act as the sensor. We show that the precision of the
magnetic-field measurement can be substantially enhanced by

non-linearly kicking the spin during the precession phase and
driving it into a chaotic regime. The initial state can be chosen as
an essentially classical state, in particular a state without initial
entanglement. The enhancement is robust with respect to
decoherence or dissipation. We demonstrate this by modeling the
magnetometer on two different levels: firstly as a kicked top, a
well-known system in quantum chaos to which we add
dissipation through superradiant damping; and secondly with a
detailed realistic model of a spin-exchange-relaxation-free
atom-vapor magnetometer including all relevant decoherence
mechanisms28,33, to which we add non-linear kicks.

Results
Physical model of a quantum-chaotic sensor. As a sensor we
consider a kicked top (KT), a well-studied quantum-chaotic
system34–36 described by the time-dependent Hamiltonian

HKTðtÞ ¼ αJz þ
k
2J

J2y
X1

n¼% 1
τδðt % nτÞ; ð1Þ

where Ji (i= x, y, z) are components of the (pseudo-)angular
momentum operator, J≡ j+ 1/2, and we set ħ= 1. Jz generates a
precession of the (pseudo-)angular momentum vector about the
z-axis with precession angle α which is the parameter we want to
estimate. “Pseudo” refers to the fact that the physical system need
not be an actual physical spin, but can be any system with 2j+ 1
basis states on which the Ji act accordingly. For a physical spin-j
in a magnetic field B in z-direction, α is directly proportional to B.
The J2y -term is the non-linearity, assumed to act instantaneously
compared to the precession, controlled by the kicking strength k
and applied periodically with a period τ that leads to chaotic
behavior. The system can be described stroboscopically with
discrete time t in units of τ (set to τ= 1 in the following),

ψðtÞj i ¼ UαðkÞ ψðt % 1Þj i ¼ U t
αðkÞ ψð0Þj i ð2Þ

with the unitary Floquet-operator

UαðkÞ ¼ T exp % i
Z tþ 1

t
dt′HKTðt′Þ

" #
¼ e% ik

J2y
2J e% iαJz ð3Þ

that propagates the state of the system from right after a kick to
right after the next kick34–36. T denotes time-ordering. The total
spin is conserved, and 1/J can be identified with an effective ħ,
such that the limit j →∞ corresponds to the classical limit, where
X= Jx/J, Y= Jy/J, Z= Jz/J become classical variables confined to
the unit sphere. (Z, ϕ) can be identified with classical phase space
variables, where ϕ is the azimuthal angle of X= (X, Y, Z)36. For
k= 0, the dynamics is integrable, as the precession conserves Z
and increases ϕ by α for each application of Uα(0). Phase space
portraits of the corresponding classical map show that for k≲ 2.5,
the dynamics remains close to integrable with large visible
Kolmogorov–Arnold–Moser tori, whereas for k≳ 3.0 the chaotic
dynamics dominates36.

States that correspond most closely to classical phase space
points located at (θ, ϕ) are SU(2)-coherent states (“spin-coherent
states”, or “coherent states” for short), defined as

j; θ; ϕj i ¼
Xj

m¼% j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

j % m

" #s

sinðθ=2Þj% mcosðθ=2Þjþ meiðj% mÞϕ jmj i

ð4Þ

in the usual notation of angular momentum states jmj i
(eigenbasis of J2 and Jz with eigenvalues j(j+ 1) and m, 2j 2 N,
m=−j, −j+ 1, …, j). They are localized at polar and azimuthal
angles θ, ϕ with smallest possible uncertainty of all spin-j states
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Part II: the measurement problem
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we have introduced some protocols to amend the corrupting role of the environment on entanglement

environment ENCODES   information

in order to write a dynamical model for arbitrary POVMs we need to go beyond standard decoherence 

quantum measurements 



Open questions

transmission of correlations 

quantum measurements 

EB maps
k⇢

⇢k

is it possible to determine a  
simple dynamical description for 
arbitrary EB maps?

is it possible to translate the incompatibility of quantum observables at a dynamical level?

optimal control techniques to limit/delay the destructive effects 
of environment on q. correlations?   

Thank you for your attention!

Paola Verrucchi
at the PROGRAM! 
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memory effects: non-Markovian regime
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FIG. 1: Blind quantum estimation. TOP: Alice and Bob initialize the
two arms A and B of an interferometer in a probe state ⇢AB. Alice’s
subsystem undergoes a unitary dynamics described by UA = e�i'HA ,
where ' is the parameter to be estimated, while the Hamiltonian HA
is secretely determined by Charlie (C) who reveals his choice only
after the probe state has been transformed. Alice and Bob are then
asked to retrieve ' upon performing the most informative joint detec-
tion (D) on the output state and constructing the best estimator '̃ (E).
If ⇢AB is uncorrelated or only classically correlated, it is impossible
to guarantee a successful estimation for all possible moves of Char-
lie. Exploiting instead probe states with nonclassical correlations
(with or without entanglement), Alice and Bob can always estimate
' with nonvanishing precision. The worst-case precision defines the
interferometric power PA of ⇢AB, which is a measure of its quantum
discord. BOTTOM: Remote sensing application. A satellite encodes
a message in a phase '. Upon receiving a probe signal, the satellite
bounces it back shifted by ' in a direction ~n. For security reasons,
the direction is randomly changed after each time interval �t, and
then publicly broadcast. If �t is smaller than the time needed for a
signal from earth to reach the satellite, then the actual ~n which will
be applied is totally unknown at the state preparation stage, realiz-
ing an instance of blind metrology. This is enough to prevent purely
classical players from gaining any information about ' in the worst-
case. Conversely, any state preparation making use of discord always
ensures a nonzero minimum precision, quantified by PA(⇢AB).

determine as precisely as possible an unknown phase ' intro-
duced by an assigned black box device whose unitary phase-
imprinting mechanism, generated by HA, is unknown at the
state preparation stage of the input probe. Think for instance
to a satellite interrogation (Fig. 1) or a quantum illumination
setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is

partially incognito. Let us first consider the case of unassisted
probing (i.e. no reference system B). Alice equips herself with
a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
eigenbases of all Hamiltonians ~n · ~�A.

The solution to this conundrum requires a collaborative
strategy based on the interferometric setup of Fig. 1. Alice
and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,

P
A(⇢AB) =

1
4

min
HA

F(⇢AB; HA) , (1)

where we inserted a normalization factor 1
4 for convenience.

We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
tage e.g. in specific computation or communication settings
[14–17], its practical merit remains unclear. We show that the
IP of Eq. (1)—which can furthermore be computed in closed
form for relevant cases [9]—is in general an operationally mo-
tivated and mathematically sound measure of discord. Dis-
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setting [10] where Alice is asked to monitor a remote (unco-
operative) target whose interaction with the probing signals is
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a qubit probe initialized in a state ⇢A of her choice. The probe
enters the black box, where a randomizing mechanism, or an
intelligent referee called Charlie, decides the direction ~n on
the spot and rotates the probe by ' according to the generator
HA = ~n · ~�A. Charlie can now disclose the chosen setting ~n to
Alice, who recovers her rotated probe and implements the best
possible measurement strategy to estimate '. The trial can
be repeated an arbitrarily high number ⌫ of times to improve
the statistics, under the condition that the prepared quantum
state ⇢A and the Bloch sphere direction ~n are fixed by the first
trial and not changed during the whole procedure. Eventu-
ally, Alice deduces a probability distribution for '; the esti-
mation precision shall be determined by the associated QFI.
How can Alice choose a probe state ⇢A that guarantees her a
nonzero precision whichever the setting? Simply, she cannot,
as for any ⇢A there are always adverse choices of ~n such that
her state is una↵ected by the rotation, resulting in a zero QFI,
or not su�ciently a↵ected for the task purposes, resulting in
Alice being unable to access information about ' precisely
enough. The minimum precision over all ~n vanishes as it is in
fact impossible for a qubit state ⇢A to exhibit coherence in the
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and Bob initialize qubits A and B in a chosen probe state ⇢AB,
unbeknownst of ~n. As usual, after Charlie discloses ~n at the
output stage, Alice and Bob are allowed to perform the best
possible joint measurement on the resulting global state ⇢'AB,
possibly repeating the estimation trial ⌫ times. It is natural to
assign a relevant figure of merit for this procedure given by
the worst-case QFI over all possible black box settings ~n,
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We shall refer to PA(⇢AB) as the interferometric power (IP)
of the input state ⇢AB, since it quantifies rather intuitively the
guaranteed usefulness of such a state for blind estimation of a
phase applied on Alice’s side of the quantum interferometer.

All the states ⇢AB with nonzero IP are, by definition, useful
for blind phase estimation. Having already established that
product states are not in this class, one might wonder whether
entanglement between A and B is required for the task. Cru-
cially, we find that even the majority of mixed separable states
have a nonzero IP. Entanglement is not necessary to ensure
local coherence in all bases, but quantum discord is [11–13].
Discord encodes a statistical relationship between constituents
of a composite system which has no classical analogue and
can be observed in the disturbance induced on the system
state by local measurements [7, 8]. While it has been spec-
ulated that discord might be at root of some quantum advan-
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