Open Quantum Systems: from the transmission of correlations to the measurement problem.

Antonella De Pasquale

KITP, UC Santa Barbara

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Outline

Main topic: open quantum systems

our framework: quantum maps

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}}$$

coherent evolution: (isolated systems)

$$\frac{d\rho}{dt} = -i[H, \rho] \quad \xrightarrow{\text{integrated}} \quad \rho^{\text{out}} = \mathcal{U}[\rho^{\text{in}}] \text{ unitary CHANNEL}$$

noisy evolution: (open systems)

$$\Phi[\rho^{\rm in}] = \rho^{\rm out} \cdots$$
 not necessarily local in time generic CHANNEL

 $\rho(t)$ depends on all the previous history, and not only on $\rho(t + dt)$

our framework: quantum maps

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}}$$

coherent evolution: (isolated systems)

$$\frac{d\rho}{dt} = -i[H, \rho] \xrightarrow{\text{integrated}} \rho^{\text{out}} = \mathcal{U}[\rho^{\text{in}}] \text{ unitary CHANNEL}$$

noisy evolution: (open systems)

$$\Phi[\rho^{\text{in}}] = \rho^{\text{out}} \cdots \text{not necessarily local in time}$$
 generic CHANNEL

Φ MUST BE -

- linear: superposition
- trace preserving: states → state
- completely positive: local operations $\Phi \otimes I$

our framework: quantum maps

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}}$$

coherent evolution: (isolated systems)

$$\frac{d\rho}{dt} = -i[H, \rho] \quad \xrightarrow{\text{integrated}} \quad \rho^{\text{out}} = \mathcal{U}[\rho^{\text{in}}] \text{ unitary CHANNEL}$$

noisy evolution: (open systems)

$$\Phi[\rho^{\text{in}}] = \rho^{\text{out}} \cdots \text{not necessarily local in time}$$
 generic CHANNEL

Φ : Stinespring representation

$$\rho^{\text{out}} = \Phi[\rho^{\text{in}}] = \text{Tr}_{\Xi} \left[U_{S\Xi} \left(\rho^{\text{in}} \otimes |D\rangle_{\Xi} \langle D| \right) U_{S\Xi}^{\dagger} \right]$$

Part I: correlations trasmission

Entanglement distribution

quantum information & technologies:

q. **computation** & **teleportation** (Bennett, Jozsa, Peres, Wootters, Zeillinger, Polzik, Di Vincenzo)

dense coding (Bennett and Wiesner)

- q. cryptography (Bennett, Brassard, Deutsch, Ekert, Popescu, Gisin..)
- q. metrology (Giovannetti, Lloyd, Adesso, Braunstein, Caves, ..)

What is the "quality" of such evolution?

$$\bullet \ \, \textbf{fidelity:} \quad \mathcal{F}(\rho^{\rm in}, \Phi(\rho^{\rm in})) \quad \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad } \quad \mathcal{F}(\Phi) = \min_{\rho^{\rm in} = |\psi\rangle\langle\psi|} (|\psi\rangle, \Phi[|\psi\rangle\langle\psi|])$$

- capacity: optimal communication rate in parallel on multiple copies of S
- entaglement transmission:

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}} = \Phi[\rho^{\text{in}}]$$

What is the "quality" of such evolution?

entaglement transmission:

"too noisy"

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}} = \Phi[\rho^{\text{in}}]$$

What is the "quality" of such evolution?

• entaglement

transmission:

$$\rho^{\text{in}} \longrightarrow \rho^{\text{out}} = \Phi[\rho^{\text{in}}]$$

What is the "quality" of such evolution?

Noise addition: concatenation

A. De Pasquale and V. Giovannetti, Phys. Rev. A 86, 052302 (2012)

A. De Pasquale and V. Giovannetti, Phys. Rev. A 86, 052302 (2012).

change the direction along which the system is hit

amendable maps of order m

detrimental effect delayed of m-2 steps

$$(\Phi \circ \mathcal{F}) \circ (\Phi \circ \mathcal{F}) \circ \dots \circ (\Phi \circ \mathcal{F}) \notin \mathrm{EB}$$

$$m' < m$$
or Constrained Amplitude

eg. Generalized Amplitude damping maps, Gaussian attenuation/amplification maps

A. De Pasquale and V. Giovannetti, Phys. Rev. A 86, 052302 (2012).

amendable maps of order m

detrimental effect delayed of m-2 steps

$$(\Phi \circ \mathcal{F}) \circ (\Phi \circ \mathcal{F}) \circ \ldots \circ (\Phi \circ \mathcal{F}) \notin EB$$

eg. Generalized Amplitude damping maps, Gaussian attenuation/amplification maps

ENERGY DISSIPATION (amplitude damping channel)

eg. spontaneous emission high temp. equilibrium

$$\Sigma_{\eta}[\rho] = E_{1}\rho E_{1}^{\dagger} + E_{2}\rho E_{2}^{\dagger}$$

$$E_{1} \equiv \begin{bmatrix} \begin{smallmatrix} 1 & 0 \\ 0 & \sqrt{\eta} \end{bmatrix}, E_{2} \equiv \begin{bmatrix} \begin{smallmatrix} 0 & \sqrt{1-\eta} \\ 0 & 0 \end{bmatrix}$$

transmission coefficient: $\eta \in [0,1]$

ENERGY DISSIPATION (amplitude damping channel)

$$\Phi = \mathcal{U}_{\theta} \circ \Sigma_{\eta}, \mathcal{F} = \mathcal{U}_{\varphi}$$

$$\eta = 0.66 \pm 0.017$$

Á. Cuevas, A. De Pasquale, et al, Phys. Rev. A 96, 022322 (2017)

cut-and-paste protocol

What happens if we have at disposal only EB channels?

$$\Psi_{\mathrm{EB}} \circ \Phi_{\mathrm{EB}} \in \mathrm{EB}$$

once entanglement is destroyed, it is **not** possible to create it again with local operations

cut-and-paste protocol

What happens if we have at disposal only EB channels?

cut-and-paste protocol

What happens if we have at disposal only EB channels?

IT IS POSSIBLE TO TRANSMIT ENTANGLEMENT HAVING AT DISPOSAL ONLY EB MAPS!!

Experimental test

$$\frac{1}{\sqrt{2}} \left(|H\rangle_S |V\rangle_A + e^{i\phi} |V\rangle_S |H\rangle_A \right)$$

high-brilliance, high-purity polarization entangled source more than 98% fidelity

• The generated pairs of photon at 810nm by type-II parametric down conversion. The generated pairs (**more than 50000 detected coincidences/sec**) have a **coherence length** of Lcoh = 1.02mm and spectral bandwidth $\Delta\lambda$ = 0.43nm.

nonlinear PPKTP crystal pumped by a single mode laser at 405nm and 2.75mW of power within a Sagnac interferometer

Let's check (experimentally)!

Experimental data

Á. Cuevas, A. Mari, A. De Pasquale, A. Orieux, S. Duranti, M. Massaro, F. Sciarrino, P. Mataloni, and V. Giovannetti, Phys. Rev. A 96, 012314 (2017)

Experimental data

theoretical prediction obtained with real optical elements

- I) entanglement degradation on each dual interferometric set up > 1.3%, therefore maximum concurrence at end of the entire sequence of channels decreases from 98% to 94%:
- 2) losses L of the beam splitters: $T, R \longrightarrow T/(I-L), R/(I-L)$
- Each point and the associated statistical error was taken from a set of N measurements
 (3 ≤ N ≤ 11), under equivalent mode coupling conditions.

Continuous time evolution of quantum systems

...related to Daniel's presentation..

$$H_{\mathrm{KT}}(t) = \alpha J_z + \frac{k}{2J} J_y^2 \sum_{n=-\infty}^{\infty} \tau \delta(t-n\tau)$$

 $\rho(t)$ depends on all the previous history, and not only on $\rho(t+dt)$

Markovian evolution: D. Gatto, A. De Pasquale, and V. Giovannetti, Phys. Rev. A 99, 032307 (2019)

non-Markovian evolution:

Part II: the measurement problem

A.D.P., C. Foti, A. Cuccoli, V. Giovannetti and P. Verrucchi, arXiv:1902.03628v2

Quantum measurements

Is it possible to establish a dynamical description?

we read the info. on $\ \Xi \implies$ we need to consider the evolution of $\ S+\Xi$

$$\rho_{S\Xi}(0) = \rho_{S}^{\text{in}} \otimes |D\rangle_{\Xi} \langle D|$$

$$= \int_{S\Xi} \left[\rho_{S}^{\text{out}} \right]_{ji} \otimes |\Xi^{(\gamma_{j})}(t)| + \left[(\Xi^{(\gamma_{i})}(t)) \right]_{ji} \otimes |\Xi^{(\gamma_{i})}(t)| + \left[(\Xi^{(\gamma_{i})}(t)) \right]_{ji} \otimes |\Xi^$$

initial state of $S + \Xi$

final state of $S + \Xi$

Projective q. measures (PVM) von Neumann (1927) Ozawa (1984)

- macroscopic apparatus
- $t > t_{\rm d}$ decoherence time

Optimal distinguishability

Projective q. measures (PVM) von Neumann (1927) Ozawa (1984)

$$\rho_S^{\text{out}} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}]$$

Projective q. measures (PVM) von Neumann (1927) Ozawa (1984)

$$S \qquad \qquad \Xi \qquad \qquad S \qquad \qquad \gamma_1 \text{ with probability } p_1 \\ \gamma_i \qquad \qquad \vdots \\ \gamma_i \qquad \qquad \vdots \\ \gamma_{n_\Gamma} \qquad \qquad p_{n_\Gamma} = \text{Tr}[\Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)}] \\ \text{observable on } S \qquad \qquad \\ \rho_S^{\text{out}} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ U_{S\Xi} = e^{-itO_S \otimes O_\Xi} \qquad t > t_{\rm d} \qquad \qquad \\ t > t_{\rm d} \qquad \qquad \\ \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}} \Pi_S^{(\gamma_i)} = \Phi[\rho_S^{\text{in}}] \\ N_{S\Xi} = \sum_i \Pi_S^{(\gamma_i)} \rho_S^{\text{in}}$$

$$\rho_S^{\rm out} = \Phi[\rho_S^{\rm in}] = {\rm Tr}_\Xi \left[U_{S\Xi} \left(\rho_S^{\rm in} \otimes |D\rangle_\Xi \langle D| \right) U_{S\Xi}^\dagger \right] \quad \begin{array}{l} \text{Stinespring representation} \\ \text{of the quantum map} \end{array}$$

projective measures

$$\rho_{S\Xi}(0) = \rho_S^{\mathrm{in}} \otimes |D\rangle_\Xi \langle D| \qquad \qquad \rho_{S\Xi}(t) = \sum_{i,j} \underbrace{\Pi_S^{(\gamma_j)} \rho_S^{\mathrm{in}} \Pi_S^{(\gamma_j)}}_{|\Xi^{(\gamma_j)}(t)\rangle} \otimes |\Xi^{(\gamma_j)}(t)\rangle_\Xi \langle \Xi^{(\gamma_j)}(t)|$$

$$\rho_{S\Xi}(0) = \rho_S^{\mathrm{in}} \otimes |D\rangle_\Xi \langle D| \qquad \qquad \rho_{S\Xi}(t) = \sum_{i,j} \underbrace{M_S^{(\gamma_j)} \rho_S^{\mathrm{in}} M_S^{(\gamma_j)^{\dagger}}}_{|\Sigma^{(\gamma_j)}(t)\rangle} \otimes |\Xi^{(\gamma_j)}(t)\rangle_\Xi \langle \Xi^{(\gamma_j)}(t)|$$

$$PovMs$$

Naimark Theorem: two-step procedure

Naimark Theorem : two-step procedure

what happens at the level of the principal system?

new strategy:

- 1. one time-independent Hamiltonian
- 2. beyond standard decoherence

$$U_{SA}(t) := e^{-iH_{SA}t} - - - \blacktriangleright V_{SA}$$

$$|\psi\rangle_S \otimes |\psi_0\rangle_A$$

$$\sum_{i=1}^{n_\Gamma} M_S^{(\gamma_i)} |\psi\rangle_S \otimes |\gamma_i\rangle_A$$

new strategy:

- 1. one time-independent Hamiltonian
- 2. beyond standard decoherence

$$U_{SA}(t) := e^{-iH_{SA}t} - - - \longrightarrow V_{SA}$$

$$|\psi\rangle_S \otimes |\psi_0\rangle_A$$

$$\sum_{i=1}^{n_\Gamma} M_S^{(\gamma_i)} |\psi\rangle_S \otimes |\gamma_i\rangle_A$$

new strategy:

new strategy:

$$S \quad U_{SA}(t) := e^{-iH_{SA}t}$$

$$\vdots \quad \gamma_{1}, p_{1}$$

$$\vdots \quad \gamma_{i}, p_{i}$$

$$\vdots \quad \gamma_{n_{\Gamma}}, p_{n_{\Gamma}}$$

$$\vdots \quad |\psi\rangle_{S} \otimes |\psi_{0}\rangle_{A}$$

$$\vdots \quad \sum_{i=1}^{n_{\Gamma}} M_{S}^{(\gamma_{i})} |\psi\rangle_{S} \otimes |\gamma_{i}\rangle_{A}$$

$$|\Psi(t)\rangle_{SA} = \cos(\omega t) |\psi\rangle_{S} \otimes |\psi_{0}\rangle_{A} - i\sin(\omega t) \sum_{i=1}^{n_{\Gamma}} M_{S}^{(\gamma_{i})} |\psi\rangle_{S} \otimes |\gamma_{i}\rangle_{A}$$

new strategy:

$$|\Psi(t)\rangle_{SA} = \cos(\omega t)|\psi\rangle_{S} \otimes |\psi_{0}\rangle_{A} - i\sin(\omega t)\sum_{i=1}^{n_{\Gamma}} M_{S}^{(\gamma_{i})}|\psi\rangle_{S} \otimes |\gamma_{i}\rangle_{A} \propto V_{SA}|\psi\rangle_{S} \otimes |\psi_{0}\rangle_{A}$$

$$t^* = \frac{\pi}{2\omega} + m\pi$$

new strategy:

new strategy:

new strategy:

1. one time-independent Hamiltonian; 2. beyond standard decoherence

$$H_{SA} = \sum_{j=1}^{n_S} \sum_{\ell=0}^{n_L-1} \omega_{\ell} \left(|\xi_j^{(\ell)}\rangle_{SA} \langle \xi_j^{(\ell+1)}| + |\xi_j^{(\ell+1)}\rangle_{SA} \langle \xi_j^{(\ell)}| \right)$$

$$\sigma_{SA}^{(j,\ell)} \sim$$

$$0 \quad 1$$

I excitation sector of a spin chain with first neighboring hopping terms

STATE TRANSFER PROBLEM

Christandl, et al, PRL (2004)

$$\rho_S^{\text{in}} \otimes |\psi_0\rangle_A \langle \psi_0| \xrightarrow[A]{\text{CPT}} \rho_{SA}(t) \simeq \sum_{i=1,j}^{n_{\Gamma}} M_S^{(\gamma_i)} \rho_S^{\text{in}} M_S^{(\gamma_j)^{\dagger}} \otimes |A^{\gamma_i}(t)\rangle_A \langle A^{\gamma_j}(t)|$$

standard decoherence

standard decoherence
$$A \langle \Xi^{(\gamma_i)}(t) | \Xi^{(\gamma_j)}(t) \rangle_A \neq \delta_{i,j}$$

$$\rho_{S\Xi}(t) = \sum_{i \ i} M_S^{(\gamma_j)} \rho_S^{\text{in}} M_S^{(\gamma_i)^\dagger} \otimes |\Xi^{(\gamma_j)}(t)\rangle_\Xi \langle \Xi^{(\gamma_i)}(t) |$$

$$\{E_S^{(\gamma_i)} = M_S^{(\gamma_i)^{\dagger}} M_S^{(\gamma_i)} \ge 0\}$$

$$\sum_i E_S^{(\gamma_i)} = \mathbb{I}_S$$

arXiv:1902.03628v2

$$\Phi[\rho_{S}^{\rm in}] = \operatorname{Tr}_{A} \left[U_{SA} \left(\rho_{S}^{\rm in} \otimes |\psi_{0}\rangle_{A} \langle \psi_{0}| \right) U_{SA}^{\dagger} \right]$$

Stinespring representation of the quantum map

Conclusions

Phys. Rev. A **86**, 052302 (2012) Phys. Rev. A **96**, 022322 (2017) Phys. Rev. A **96**, 012314 (2017) Phys. Rev. A **98**, 042301 (2018) Phys. Rev. A **99**, 032307 (2019)

• we have introduced some protocols to **amend** the corrupting role of the environment on entanglement

quantum measurements arXiv:1902.03628v2 environment ENCODES information

• in order to write a dynamical model for arbitrary **POVMs** we need to go **beyond** standard decoherence

Open questions

 optimal control techniques to limit/delay the destructive effects of environment on q. correlations?

Paola Verrucchi at the PROGRAM!

is it possible to determine a simple dynamical description for arbitrary EB maps?

• is it possible to translate the incompatibility of quantum observables at a dynamical level?

Thank you for your attention!

propagation of polarization qubits in optical fibers

Phys. Rev. A 96, 012314 (2017)

polarization qubits in optical fibers

$$H = +\sigma_x$$

$$H = -\sigma_x$$

propagation of polarization qubits in optical fibers

Phys. Rev. A 96, 012314 (2017)

polarization qubits in optical fibers

Continuous evolution of quantum systems

memory effects: non-Markovian regime

possible non-monotonic behavior of quantum correlations

A. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77, 094001 (2014).

L. Mazzola, S. Maniscalco, J. Piilo, et al Phys. Rev. A 79, 042302 (2009).

Time-local amplitude damping channels

$$\frac{d\varrho(t)}{dt} = \gamma(t) \left(\sigma_{-}\varrho(t)\sigma_{+} - \frac{1}{2} \{ \sigma_{+}\sigma_{-}, \varrho(t) \} \right)$$

bosonic reservoir with Lorentian spectral density

$$J(\omega) = \frac{1}{2\pi} \frac{\alpha \ell^2}{(\omega_0 - \omega)^2 + \ell^2}$$

Continuous evolution of quantum systems

Assume to instantaneously reset the environment at the end of each interval τ at the input state it had at the beginning

