ROBUST COHERENT WAVEPACKET CREATION BY MEANS OF DISSIPATION



Alejandro Saenz

AG Moderne Optik Institut für Physik Humboldt-Universität zu Berlin



(QSIM19 at KITP Santa Barbara, 24.04.2019)

• Strong-field / attosecond physics in a (very tiny) nutshell.

- Strong-field / attosecond physics in a (very tiny) nutshell.
- Bond-softening and *Lochfraß*: coherent wave-packet formation in intense laser fields.

• Strong-field / attosecond physics in a (very tiny) nutshell.

- Bond-softening and *Lochfraß*:
   coherent wave-packet formation in intense laser fields.
- An ultracold-atom based quantum simulator for attosecond science.

• Strong-field / attosecond physics in a (very tiny) nutshell.

- Bond-softening and *Lochfraß*:
   coherent wave-packet formation in intense laser fields.
- An ultracold-atom based quantum simulator for attosecond science.
- Toward (interacting?) many-body systems . . .

• Strong-field / attosecond physics in a (very tiny) nutshell.

- Bond-softening and *Lochfraß*:
   coherent wave-packet formation in intense laser fields.
- An ultracold-atom based quantum simulator for attosecond science.
- Toward (interacting?) many-body systems . . .

#### **Disclaimer:**

This talk tries to invoke discussions (and leaves many questions unanswered . . . ).

## Qualitative strong-field ionization models







REMPI Resonance-enhanced multiphoton ionization

Multiphoton Ionization Non-resonant multiphoton ionization ATI Above-threshold ionization

## Qualitative strong-field ionization models



## Corkum's 3-step model:



review: P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007)

- 1. Electron escapes through or over the electric-field lowered Coulomb potential (a).
- 2. Electronic wavepacket moves away until the field direction reverses (b) and is (partly) driven back to its parent ion (c).
- 3. The returning electron may (d)
  - scatter elastically (electron diffraction)
  - scatter inelastically (excitation, dissociation, double ionisation, . . . )
  - recombine radiatively (high-harmonic radiation).

#### $\longrightarrow$ time-resolved imaging, attosecond pulses, . . .

# Example electronic wavepacket $(H_2^+)$



Electronic wavepacket at two different times within a 2-cycle laser pulse. (Only the continuum part is shown.)

 $\rightarrow$  strongly driven dissipative quantum system.

## Example electron spectrum (ATI)



Hydrogen atom (laser parameters: 1300 nm; 6 cycles;  $\cos^2$ ;  $I_{max} = 10^{14} \text{ W/cm}^2$ ). Direct electrons: 0 to about 2 times the ponderomotive energy  $U_p = I/(4\omega^2)$ . Rescattered electrons: dominate spectrum beyond 2  $U_p$ .

 $\longrightarrow$  extremely highly non-linear process.

#### Atoms in ultrashort intense laser fields:

 Numerical solution of Schrödinger equation extremely demanding, even for very few particles.

#### Atoms in ultrashort intense laser fields:

- Numerical solution of Schrödinger equation extremely demanding, even for very few particles.
- Strongly driven open (dissipative) system: great!

#### Atoms in ultrashort intense laser fields:

- Numerical solution of Schrödinger equation extremely demanding, even for very few particles.
- Strongly driven open (dissipative) system: great!
- However: very "boring" (structureless) environment: bad!

#### Atoms in ultrashort intense laser fields:

- Numerical solution of Schrödinger equation extremely demanding, even for very few particles.
- Strongly driven open (dissipative) system: great!
- However: very "boring" (structureless) environment: bad!
- What about molecules (adding the nuclear degree of freedom)?

#### Atoms in ultrashort intense laser fields:

- Numerical solution of Schrödinger equation extremely demanding, even for very few particles.
- Strongly driven open (dissipative) system: great!
- However: very "boring" (structureless) environment: bad!
- What about molecules (adding the nuclear degree of freedom)?

Tunneling ionization rate: (see, e.g., Landau-Lifshitz)

$$\Gamma(F) \propto \exp\left[-\frac{2(2E_b)^{3/2}}{3F}\right]$$

with field electric strength F and electron's binding energy  $E_b$ .

#### Atoms in ultrashort intense laser fields:

- Numerical solution of Schrödinger equation extremely demanding, even for very few particles.
- Strongly driven open (dissipative) system: great!
- However: very "boring" (structureless) environment: bad!
- What about molecules (adding the nuclear degree of freedom)?

Tunneling ionization rate: (see, e.g., Landau-Lifshitz)

$$\Gamma(F) \propto \exp\left[-\frac{2(2E_b)^{3/2}}{3F}\right]$$

with field electric strength F and electron's binding energy  $E_b$ .

#### **Molecules:** Nuclear-geometry dependence of tunnel ionization?

## Molecular effects: R-dependence (extnd. ADK model)



#### ADK model:

 $\Gamma_{\text{ADK}}$  $\propto \exp\left(-\frac{2\left(2I_P\right)^{3/2}}{3F}\right)$ 

with  $\Gamma_{ADK}$ : ionization rate F: field strength  $I_P$ : ionization potential

# Extended ADK model: Replace ionization potential $I_P$ with $E^{A_2^+}(R) - E^{A_2}(R)$

No Franck-Condon distribution for, e.g., H<sub>2</sub> or O<sub>2</sub> [A. S., J. Phys. B 33, 4365 (2000)].

## R-dependent ab initio dc ionization rate for H<sub>2</sub>



Ab initio calculation (dc field) confirms: ionisation rate of H<sub>2</sub> strongly R dependent. [A. S., *Phys. Rev. A* **61**, 051402 (R) (2000); *Phys. Rev. A* **66**, 063408 (2002).]

## Furthermore: bond softening in neutral H<sub>2</sub>



Ab initio complex-scaling calculation (dc field) of H<sub>2</sub> in an intense field. [A. S., *Phys. Rev. A* **61**, 051402 (R) (2000); *Phys. Rev. A* **66**, 063408 (2002).]

## Validity of quasi-static approximation for $H_2$



Full dimensional solution of TDSE: M. Awasthi, Y. V. Vanne, A. S., J. Phys. B **38**, 3973 (2005) [method]; M. Awasthi and A. S., J. Phys. B: **39**, S389 (2006) [R dependence].

#### Pronounced *R*-dependent ionization yield

 $\longrightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.

#### Pronounced *R*-dependent ionization yield

- $\longrightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.
- A coherent vibrational wavepacket in the electronic ground state of the neutral(!) molecule is created.

- Pronounced *R*-dependent ionization yield
  - $\longrightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.
- A coherent vibrational wavepacket in the electronic ground state of the neutral(!) molecule is created.



#### Pronounced *R*-dependent ionization yield

- $\longrightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.
- A coherent vibrational wavepacket in the electronic ground state of the neutral(!) molecule is created.

#### Pronounced *R*-dependent ionization yield

- $\longrightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.
- A coherent vibrational wavepacket in the electronic ground state of the neutral(!) molecule is created.

# Purely quantum-mechanical effect: A superposition state of the ionized and the neutral molecule!

#### Pronounced *R*-dependent ionization yield

- $\rightarrow$  fast ionization process (pump) should deplete the large R component of the wavefunction.
- A coherent vibrational wavepacket in the electronic ground state of the neutral(!) molecule is created.
- Purely quantum-mechanical effect:
   A superposition state of the ionized and the neutral molecule!

#### • Highly non-linear process:

A second (probe) pulse should detect a time-dependent ionization signal.

## Wave-packet study (results)



Peak intensity:  $I = 6 \cdot 10^{14} \,\text{W/cm}^2$ , Wavelength:  $\lambda = 800 \,\text{nm}$ , Length: 8 fs.

Formation of a H<sub>2</sub> wavepacket by "Lochfrass" ("eating a hole").

## Wave-packet detection: Pump-probe



Identical pulses, Peak intensities:  $I = 6 \cdot 10^{14} \text{ W/cm}^2$ , Wavelength:  $\lambda = 800 \text{ nm}$ . [E. Goll, G. Wunner, and A. S., *Phys. Rev. Lett.* **97**, 103003 (2006)]

## Pump-probe experiment (MPI Heidelberg)



#### Parameters:

Two identical pulses,

$$I = 4(1) \cdot 10^{14} \, {
m W \over cm^2}$$
 ,

 $\lambda = 795$  nm, 7 fs (FWHM).

[Fig. from Ergler et al. *Phys. Rev. Lett.* **97**, 103004 (2006)]

#### $\rightarrow$ Experiment observes the theoretically predicted oscillation!!!

[Note: expected oscillation period for  $D_2$ : 11 fs ( $H_2$ : 8 fs).]

# Is it really Lochfraß?



#### <u>"Lochfraß"</u>

(*R*-dependent depletion by ionization) [E. Goll et al., *PRL* **97**, 103003 (2006)]

[L. Gon et al., I h L**91**, 103003 (2000)]

Preferential ionization at large R:

If ionisation is fast enough,

a hole is carved into the wavefunction.

# Is it really Lochfraß?





#### <u>"Lochfraß"</u>

(*R*-dependent depletion by ionization) [E. Goll et al., *PRL* **97**, 103003 (2006)]

Preferential ionization at large R:

If ionisation is fast enough,

a hole is carved into the wavefunction.

#### **Bond Softening**

(caused by potential-curve distortion)
[A. S., PRA 61, 051402(R) (2000)]
Field-induced lowering of potential curve:
The nuclear wavefunction escapes
over the suppressed barrier.

#### Full solution of the time-dependent Schrödinger equation:

• Beyond reach at the time of the proposal.

#### Full solution of the time-dependent Schrödinger equation:

- Beyond reach at the time of the proposal.
- Now, in principle possible, but still extremely demanding.

#### Full solution of the time-dependent Schrödinger equation:

- Beyond reach at the time of the proposal.
- Now, in principle possible, but still extremely demanding.
- Not of interest for QSIM19: no environment . . .

#### Full solution of the time-dependent Schrödinger equation:

- Beyond reach at the time of the proposal.
- Now, in principle possible, but still extremely demanding.
- Not of interest for QSIM19: no environment . . .

#### Model Hamiltonian (nuclear motion with dissipation):

$$\hat{H}(R,t) = \hat{H}_0(R) + \Delta \hat{V}(R,F(t)) - \frac{i}{2} W(R,F(t))$$

 $\hat{H}_0(R)$ : field-free time-independent Hamiltonian.  $\Delta \hat{V}(R, F(t))$ : field-induced distortion of the potential curve. W(R, F(t)): field-induced (quasi-static) ionization rate. F(t): time-dependent electric field component of the laser pulse.
#### How to experimentally determine the mechanism?



Lochfrass and Bond Softening may be distinguished by the absolute phase!!!

#### **Robustness of Lochfraß**



Variation of the **absolute** (carrier-envelope) **phase**  $\phi$  of the ultrashort laser pulse.

Variation of the laser wavelength  $\lambda$ .

#### $\rightarrow$ Lochfraß is extremely robust!

#### **Determination of the mechanism**



**Dashed**: Bond Softening Chain: Lochfrass. Solid: Both effects, **Circles:** Experiment.

[Fig. from Ergler et al.]

#### → Lochfrass is the clearly dominating mechanism!!!

#### Lochfrass in $I_2$



#### Lochfrass is again seen.

More incoherence in initial state improves coherent control scheme!

[L. Fang and G. N. Gibson, *Phys. Rev. Lett.* **100**, 103003 (2008)]





#### Beyond diatomics: Lochfraß in ammonia (NH<sub>3</sub>)





2 cycles (pump+probe), 1800 nm,  $10^{14}$  W/cm $^2$ 

Real-time imaging of nuclear motion and tunneling possible [Förster et al., Phys. Rev. A 94, 043405 (2016)].

Why did the  $Lochfra\beta$  experiment work at all?

Why did the *Lochfraß* experiment work at all?

• no carrier-envelope-phase stabilisation

Why did the *Lochfraß* experiment work at all?

- no carrier-envelope-phase stabilisation
- short pulse  $\rightarrow$  large spectral width (wavelength distribution)

Why did the *Lochfraß* experiment work at all?

- no carrier-envelope-phase stabilisation
- short pulse  $\rightarrow$  large spectral width (wavelength distribution)
- variation of pulse length from shot to shot expected.

Why did the *Lochfraß* experiment work at all?

- no carrier-envelope-phase stabilisation
- short pulse  $\rightarrow$  large spectral width (wavelength distribution)
- variation of pulse length from shot to shot expected.

Why can *Lochfraß* and bond softening be distinguished by the absolute phases?

Why did the *Lochfraß* experiment work at all?

- no carrier-envelope-phase stabilisation
- short pulse  $\rightarrow$  large spectral width (wavelength distribution)
- variation of pulse length from shot to shot expected.

Why can *Lochfraß* and bond softening be distinguished by the absolute phases?

Why can a more incoherent initial state lead to a more coherent wavepacket?

Why did the *Lochfraß* experiment work at all?

- no carrier-envelope-phase stabilisation
- short pulse  $\rightarrow$  large spectral width (wavelength distribution)
- variation of pulse length from shot to shot expected.

Why can *Lochfraß* and bond softening be distinguished by the absolute phases?

Why can a more incoherent initial state lead to a more coherent wavepacket?

**Note:** All results in perfect agreement with theoretical simulation!

 How universal is the robust formation of coherent wavepackets by time- and positiondependent dissipation?

- How universal is the robust formation of coherent wavepackets by time- and positiondependent dissipation?
- Can this phenomenon be transferred to many-body systems?

- How universal is the robust formation of coherent wavepackets by time- and positiondependent dissipation?
- Can this phenomenon be transferred to many-body systems?
- Especially, also to (strongly) interacting many-body systems?

- How universal is the robust formation of coherent wavepackets by time- and positiondependent dissipation?
- Can this phenomenon be transferred to many-body systems?
- Especially, also to (strongly) interacting many-body systems?
- This is QSIM19: where is the quantum simulator?

#### Quantum-simulator for attosecond physics (I)



Atom in electric field  $\hat{H}^{LG}(t) = \hat{H}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot e\mathbf{E}$   $\frac{\text{Atoms in dipole trap}}{\hat{\mathcal{H}}^{\text{LG}}(t) = \hat{\mathcal{H}}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot \mu \mathcal{B}'}$ 

Mapping of electric field E on magnetic-field gradient  $\mathcal{B}'$ .

#### Quantum-simulator for attosecond physics (II)



Atom in electric field  $\hat{H}^{LG}(t) = \hat{H}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot e\mathbf{E}(t)$   $\frac{\text{Atoms in dipole trap}}{\hat{\mathcal{H}}^{\text{LG}}(t) = \hat{\mathcal{H}}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot \mu \mathcal{B}'(t)}$ 

Mapping of electric field  $\mathbf{E}(t)$  on magnetic-field gradient  $\mathcal{B}'(t)$ .

#### Quantum-simulator for attosecond physics (II)



<u>Atom in electric field</u>  $\hat{H}^{LG}(t) = \hat{H}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot e\mathbf{E}(t)$   $\frac{\text{Atoms in dipole trap}}{\hat{\mathcal{H}}^{\text{LG}}(t) = \hat{\mathcal{H}}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot \mu \mathcal{B}'(t)}$ 

Mapping of electric field  $\mathbf{E}(t)$  on magnetic-field gradient  $\mathcal{B}'(t)$ .

Time scales of field variation: femtoseconds vs. milliseconds.

#### Quantum-simulator for attosecond physics (II)



Atom in electric field  $\hat{H}^{LG}(t) = \hat{H}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot e\mathbf{E}(t)$  Atoms in dipole trap  $\hat{\mathcal{H}}^{\mathrm{LG}}(t) = \hat{\mathcal{H}}_0 + \sum_{i=1}^N \mathbf{r}_i \cdot \mu \mathcal{B}'(t)$ 

Mapping of electric field  $\mathbf{E}(t)$  on magnetic-field gradient  $\mathcal{B}'(t)$ .

Time scales of field variation: femtoseconds vs. milliseconds.

 $\rightarrow$  attoscience in slow motion!

• Trap potential (confinement) experimentally tunable.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).
- Multi-well potentials (double and multiple wells already realized): "molecule" with fixed or classically moving nuclei.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).
- Multi-well potentials (double and multiple wells already realized): "molecule" with fixed or classically moving nuclei.
- Short-range potential: ideal test case for strong-field approximation.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).
- Multi-well potentials (double and multiple wells already realized): "molecule" with fixed or classically moving nuclei.
- Short-range potential: ideal test case for strong-field approximation.
- Controlled collisions between atoms (with variable dimension).

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).
- Multi-well potentials (double and multiple wells already realized): "molecule" with fixed or classically moving nuclei.
- Short-range potential: ideal test case for strong-field approximation.
- Controlled collisions between atoms (with variable dimension).
- Attoscience imaging concepts may be applied to ultracold atoms.

- Trap potential (confinement) experimentally tunable.
- Atom number variable and experimentally controllable.
- Atom-atom interaction experimentally tunable.
- Independent variation of trap and particle parameters.
- Pulse shape easily controllable (and very flexible).
- Distinguishable vs. indistinguishable atoms (role of exchange).
- Multi-well potentials (double and multiple wells already realized): "molecule" with fixed or classically moving nuclei.
- Short-range potential: ideal test case for strong-field approximation.
- Controlled collisions between atoms (with variable dimension).
- Attoscience imaging concepts may be applied to ultracold atoms.

Key question: does it work with realistic experimental parameters?

#### Possible experimental realization (cf. S. Jochim's set-up)

The experiment uses fermionic Li atoms.

The optical trap potential is **effectively one-dimensional**: aspect ratio 10:1.

#### **Potential:**

$$\mathcal{V}_L(z) = \alpha \mathcal{V}_0 \left[ 1 - \frac{1}{1 + (z/z_r)^2} \right]$$

with variable parameter  $\alpha$ , basic trap depth  $\mathcal{V}_0/k_b = 3.33 \ \mu \text{K}$  (Boltzmann constant  $k_b$ ), and the Rayleigh length  $z_r = \pi w_0^2/\lambda \ (\lambda = 1064 \text{ nm})$ .

#### Mapping (equal Keldysh parameters and binding energies):

$$\gamma_{\mathbf{e}} := \omega_{\mathbf{e}} \frac{\sqrt{2m_{\mathbf{e}}I_p}}{eE_0} = \omega \frac{\sqrt{2m_{\mathbf{a}}E_{\mathbf{b}}}}{\mu \mathcal{B}'_0} =: \gamma_{\mathbf{a}} \qquad \beta_{\mathbf{e}} := \frac{I_p}{\hbar \omega_{\mathbf{e}}} = \frac{E_{\mathbf{b}}}{\hbar \omega} =: \beta_{\mathbf{a}} \quad .$$

where  $I_p$  and  $E_b$  are the binding energies of the ground states of the field-free Hamiltonians.

# Quantum simulator in multiphoton regime (I)



#### Quantum simulator in multiphoton regime (II)



#### Quantum simulator in quasi-static regime (I)



**Characteristic features:** direct emission ( $< 2U_p$ ), plateau between 2 and 10  $U_p$ .

# SFA (strong-field approximation): very popular, long-range Coulomb interaction between electron and remaining ion is ignored!

#### Quantum simulator in quasi-static regime (II)


#### Measurement issues



**Problem:** in view of the **statistics** such **energy-resolved "ATI" spectra** are **hard to measure with few atoms**.

#### Measurement issues



**Problem:** in view of the **statistics** such **energy-resolved "ATI" spectra** are **hard to measure with few atoms**.

Possible solutions:

other observables (e.g., excited states: "frustrated tunneling ionization")

#### Measurement issues



**Problem:** in view of the **statistics** such **energy-resolved "ATI" spectra** are **hard to measure with few atoms**.

#### Possible solutions:

**other observables** (e.g., excited states: "frustrated tunneling ionization") **or** using **many atoms** (e.g., one BEC) per simulated electron!

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

**Idea:** a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

**Idea:** a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

**Simulator:** the atoms in the lattice represent electrons in a solid exposed to a periodic electromagnetic field.

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

Idea: a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

**Simulator:** the atoms in the lattice represent electrons in a solid exposed to a periodic electromagnetic field.

→ "Floquet engineering" [Holthaus, J. Phys. B 49, 013001 (2016)]

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

**Idea:** a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

**Simulator:** the atoms in the lattice represent electrons in a solid exposed to a periodic electromagnetic field.

→ "Floquet engineering" [Holthaus, J. Phys. B 49, 013001 (2016)]

**Combination:** Use a single- (or few-)site trap (instead of optical lattice) and shaking (instead of magnetic-field gradient) with many atoms (better statistics).

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

**Idea:** a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

**Simulator:** the atoms in the lattice represent electrons in a solid exposed to a periodic electromagnetic field.

→ "Floquet engineering" [Holthaus, J. Phys. B 49, 013001 (2016)]

**Combination:** Use a single- (or few-)site trap (instead of optical lattice) and shaking (instead of magnetic-field gradient) with many atoms (better statistics).

**Experiment:** periodically shaken single-trap strontium BEC: David Weld and his group at University of California Santa Barbara (UCSB).

A. Saenz: Robust coherent wavepacket creation by means of dissipation (35)

The possibility of strong-field simulations with ultracold atoms has been discussed earlier: Arlinghaus and Holthaus [*Phys. Rev. A* **81**, 063612 (2010)].

**Idea:** a periodically shaken lattice effectively generates a periodic linear force (in the frame co-moving with the lattice).

**Simulator:** the atoms in the lattice represent electrons in a solid exposed to a periodic electromagnetic field.

→ "Floquet engineering" [Holthaus, J. Phys. B 49, 013001 (2016)]

**Combination:** Use a single- (or few-)site trap (instead of optical lattice) and shaking (instead of magnetic-field gradient) with many atoms (better statistics).

**Experiment:** periodically shaken single-trap strontium BEC: David Weld and his group at University of California Santa Barbara (UCSB).

**Note: Magnetic-field gradient** would allow for **larger laser-paramter regime** (multiphoton/quasistatic).

## Streaking ultrashort laser fields

A time-delayed (weak) attosecond pulse ionizes an atomic system dressed by an ultrashort intense femtosecond pulse (observed: kinetic energy of emitted electrons).

## Streaking ultrashort laser fields

A time-delayed (weak) attosecond pulse ionizes an atomic system dressed by an ultrashort intense femtosecond pulse (observed: kinetic energy of emitted electrons).

Mapping of the time-dependent vector potential (of the femtosecond pulse) due to mechanical/canonical momentum  $p \longrightarrow p + A(t)$ .

# Streaking ultrashort laser fields

A time-delayed (weak) attosecond pulse ionizes an atomic system dressed by an ultrashort intense femtosecond pulse (observed: kinetic energy of emitted electrons).

Mapping of the time-dependent vector potential (of the femtosecond pulse) due to mechanical/canonical momentum  $p \longrightarrow p + A(t)$ .





[Goulielmakis et al., Science 305, 1267 (2004)]

# Streaking using ultracold atoms



**Experiment:** periodically shaken single-trap strontium BEC. [Senaratne *et al.*, *Nature Comm.* **9**, 2065 (2018)]

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.
- The quantum simulator is extremely flexible (potential, particle number and interactions, pulse shapes, . . . ) and "clean".

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.
- The quantum simulator is extremely flexible (potential, particle number and interactions, pulse shapes, . . . ) and "clean".
- Multiple wells (molecules with fixed or classically moving nuclei) recently realised.

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.
- The quantum simulator is extremely flexible (potential, particle number and interactions, pulse shapes, . . . ) and "clean".
- Multiple wells (molecules with fixed or classically moving nuclei) recently realised.
- May test all kind of "tunnelling (delay) times".

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.
- The quantum simulator is extremely flexible (potential, particle number and interactions, pulse shapes, . . . ) and "clean".
- Multiple wells (molecules with fixed or classically moving nuclei) recently realised.
- May test all kind of "tunnelling (delay) times".
- Really of interest: not H atom (used here for validation), but simulations of many-particle systems beyond the reach of classical computers.

- *Lochfraß*: robust coherent wavepacket formation by means of time and spatially varying dissipation.
- The proposed ultracold-quantum simulator for strong-field physics ["attosecond science in slow motion", *Phys. Rev. A* **95**, 011403 (*Rapid Comm.*) (2017)] works for realistic experimental parameters.
- Experimental realisation(s) in progress.
- The quantum simulator is extremely flexible (potential, particle number and interactions, pulse shapes, . . . ) and "clean".
- Multiple wells (molecules with fixed or classically moving nuclei) recently realised.
- May test all kind of "tunnelling (delay) times".
- Really of interest: not H atom (used here for validation), but simulations of many-particle systems beyond the reach of classical computers.

**New perspective:** strongly (periodically) driven (few or many) ultracold atoms, possibly with (strong) interaction and structured dissipative environment.