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1. DEVICE: THE SUPERCONDUCTING QUBITS WITH GMON ARCHITECTURE

Figure S1. An optical micrograph of the
device which consists of 9 qubits in a 1D
chain with adjustable coupling between ev-
ery pair of qubits. The qubits appear as
small vertical rectangles in the middle of
the chip. The couplers are the two square
loops that are between the qubits. The
wiring lines that are routed to the perime-
ter of the chip are used to control the
qubits and the interaction between them.
The meandering lines above the qubits
are the readout resonators. The qubits
are connected with an adjustable coupler.
Each qubit is a non-linear LC resonator,
and the two qubits are inductively coupled
through the mutual inductance to a cou-
pler loop. The coupler loop has a single
Josephson junction, which can be tuned
by applying magnetic flux into the coupler
loop, allowing variable coupling strength
between the two qubits in a few ns time
scales. For a detailed discussion of princi-
ple of operation and calibration routines,
see references [1–4].
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Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

The occurrence of long domains of correlated spins in
the state |"ix (fluorescing spins) signifies the fully po-
larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0

= 0.89(7). For more details, see Appendix F.
The DPT studied here, with up to 53 trapped ion

qubits, is the largest quantum simulation ever performed
with high-e�ciency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is di�cult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with ⌫cm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of the
ions is linear; for 8� 16 ions the axial center-of-mass fre-
quency is ⇠ 400 kHz and for 53 ions it is ⇠ 200 kHz. The
ion spacing is anisotropic across the chain, with typical
spacings of 1.5 µm at the center of the chain and 3.5 µm
at either end [38].

The e↵ective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas in
the UHV apparatus [39], which in general re-orders the
crystal but can also melt the crystal and even ultimately
eject the ions from rf-heating or other mechanisms. This
can be mitigated by quickly re-cooling the chain, and
we expect that occasionally the crystal returns without
notice. Rarely, such collisions with the background gas
are inelastic, either populating the 171Yb+ ion in the
metastable F7/2 state or forming a YbH+ molecule. The
355 nm Raman laser quickly returns the ions back to their
atomic ground state manifold, with a small probability
of creating doubly-charged ions. The mean time between
Langevin collisions is expected to be of order 1 collision
per hour per trapped ion, and we expect that the mean
lifetime for a chain of ions might therefore scale inversely
with the number of ions. For 53 ions we observe an av-
erage lifetime of about 5 minutes. However, we observe
rare events where a long ion chain survives for about 30
minutes. We speculate that either the chain is consis-
tently re-captured instantaneously, or the local pressure
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device which consists of 9 qubits in a 1D
chain with adjustable coupling between ev-
ery pair of qubits. The qubits appear as
small vertical rectangles in the middle of
the chip. The couplers are the two square
loops that are between the qubits. The
wiring lines that are routed to the perime-
ter of the chip are used to control the
qubits and the interaction between them.
The meandering lines above the qubits
are the readout resonators. The qubits
are connected with an adjustable coupler.
Each qubit is a non-linear LC resonator,
and the two qubits are inductively coupled
through the mutual inductance to a cou-
pler loop. The coupler loop has a single
Josephson junction, which can be tuned
by applying magnetic flux into the coupler
loop, allowing variable coupling strength
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scales. For a detailed discussion of princi-
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see references [1–4].
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Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

The occurrence of long domains of correlated spins in
the state |"ix (fluorescing spins) signifies the fully po-
larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0

= 0.89(7). For more details, see Appendix F.
The DPT studied here, with up to 53 trapped ion

qubits, is the largest quantum simulation ever performed
with high-e�ciency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is di�cult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with ⌫cm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of the
ions is linear; for 8� 16 ions the axial center-of-mass fre-
quency is ⇠ 400 kHz and for 53 ions it is ⇠ 200 kHz. The
ion spacing is anisotropic across the chain, with typical
spacings of 1.5 µm at the center of the chain and 3.5 µm
at either end [38].

The e↵ective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas in
the UHV apparatus [39], which in general re-orders the
crystal but can also melt the crystal and even ultimately
eject the ions from rf-heating or other mechanisms. This
can be mitigated by quickly re-cooling the chain, and
we expect that occasionally the crystal returns without
notice. Rarely, such collisions with the background gas
are inelastic, either populating the 171Yb+ ion in the
metastable F7/2 state or forming a YbH+ molecule. The
355 nm Raman laser quickly returns the ions back to their
atomic ground state manifold, with a small probability
of creating doubly-charged ions. The mean time between
Langevin collisions is expected to be of order 1 collision
per hour per trapped ion, and we expect that the mean
lifetime for a chain of ions might therefore scale inversely
with the number of ions. For 53 ions we observe an av-
erage lifetime of about 5 minutes. However, we observe
rare events where a long ion chain survives for about 30
minutes. We speculate that either the chain is consis-
tently re-captured instantaneously, or the local pressure
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Spin-orbit coupling: Rashba

!dw!r" = #wL$ 1

− i
%e−imvx+i"L + #wR$1

i
%eimvx+i"R, !7 "

where wL# 0 and wR# 0 are the fractions of left- and right-
moving states subjected to the constraint wL+wR=1, while
"L and "R are arbitrary phases. Note that by left -or right-
moving states we mean states with nonzero momentum av-
erage, & p' = $ mvex. However, the corresponding average ve-
locity vanishes & !pȞ!p"' =0, so that quasiparticles
characterized by these nonzero momentum single-particle
states are not actually “moving,” as long as the laser fields
generating the spin-orbit coupling are maintained. Note that
rotations in the manifold of the double-well ground states are
distinct from rotations in the pseudo-spin Hilbert space, as
real-space and pseudo-spin coordinates are mixed up by the
spin-orbit interaction. The twofold degeneracy of the single-
particle ground state is preserved if the system is placed in a
harmonic trap. For a potential Vtrap=m%2r2 /2, we can write
the Schödinger equation in momentum representation: The
trap potential plays the role of “the kinetic energy” and the
real kinetic term produces a double-well potential in momen-
tum space, see Fig. 1. The tunneling processes connect the
degenerate vacua in momentum space (24 ). However, they
do not eliminate the double-degeneracy of the single-particle
states, which is protected by the Kramers-like symmetry !see
Sec. III B".

At low temperatures, the many-body Bose system !1"
condenses into the single-particle states corresponding to the
double-well minima. The transition temperature of this
double-well SOBEC can be calculated using standard text-
book procedures (25 ). Let us assume that near and below the
transition the band with &= +1 does not contribute and that
we can expand the spectrum near the minima of the band !4 ".
We define the momentum q in the vicinity of the left or right
minima as follows: p= ' mvex+q, with q( mv. Equation !4 "
leads to the anisotropic spectrum:

)E!q" =
qx

2 + qz
2

2m
+ *1 − $v!

v
%2+ qy

2

2m
. !8 "

The transition temperature is

Tc =
*

2
* 4

+!3/2"+3/2*1 − $v!

v
%2+1/3n2/3

m
. !9 "

We see that if n1/3(1− !v! /v"2)1/6( mv, our approximation is
justified and, in particular, the density of particles in the up-
per band &= +1 is exponentially small.

In the isotropic limit ,=v! /v→1, the transition tempera-
ture formally vanishes. Note that in the isotropic case v=v!
the spin-orbit term of the Hamiltonian !1" is equivalent to the
Rashba model (26) and can be reduced to the latter via the
rotation exp!i*-̌2 / 4 " in the pseudo-spin space. In this case,
the spectrum !4 " has minima on a one-dimensional circle
#px

2+ py
2=mv !see Fig. 2". The single-particle ground state is

infinitely degenerate and the most general expression for the
corresponding wave function is

!ring!r" = ,
0

2* d.

2*
#w!."U! −!."ei"!."e(imv!x cos .+y sin ."),

!10"

where w!."/ 0 is the angle-dependent weight of the Bose
condensate on a circle (-d. / !2*"w!."=1) and "!." is the
angle-dependent phase. An especially interesting class of
ground states corresponds to w!." not vanishing anywhere
on the circle. In this case, the phase "!." must satisfy the
constraint "!.+2*"−"!."=2*n, with n"Z=*1!S1" being
an integer winding number. Therefore there may exist a num-
ber of topologically distinct ground states !characterized by
the winding number", which cannot be deformed into one
another via any continuous transformation. We note here that
a transition into the ring SOBEC is similar to a “weak-
crystallization transition” discussed by Brazovsky (27 ) !see
also Refs. (28 )". In this case, the phase volume of fluctua-
tions is very large, which drives the !classical" transition first
order. Even though the transition temperature into the ring
SOBEC vanishes in the thermodynamic limit, in a finite
trapped system, the energy scale for the crossover into this
state will be nonzero (29 ).

III. EFFECTS OF DENSITY-DENSITY INTERACTION

The most general ground-state many-body wave function
of a noninteracting “double well BEC” is

.!N' = /
n=0

N
cn

#n!!N − n"!
!B̂L

† "n!B̂R
† "N−n.vac' , !11"

where n and N−n are the numbers of left and right movers,
B̂L/R

† are the corresponding creation operators, and cn are ar-
bitrary coefficients satisfying /n0cn02=1. In the absence of
spin-orbit interaction, a two-component bosonic system has a
ferromagnetic ground state with fully polarized pseudo-spin
(12,30). We emphasize that this is not the case for the
double-well many-body ground state !11" that describes the

P

x

y

P

E(p)

FIG. 2. !Color online" Schematic picture of the band structure
described by Eq. !4 " for the isotropic Rashba-type case with v=v!
for pz=0. The inside sheet represents the &= +1 band, while the
outside sheet corresponds to &=−1 and has minima a one-
dimensional circle #px

2+ py
2=mv.
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Chapter 4

Spin orbit coupled systems

Spin orbit coupling is an essential part of many condensed matter systems. Here I study how

to realize spin-orbit (SO) coupled hamiltonians using ultracold atoms, via Raman dressed

states. This is an intellectual continuation of the earlier discussion of artificial magnetic

fields in Chapter 3.

4.1 Introduction

Spin-orbit (SO) coupling – the interaction between motional and internal degrees of

freedom – is ubiquitous in physical systems from the fine-structure of atoms, to perturbative

and now dramatic e�ects in condensed matter systems. A general expression of a SO coupled

two level system is

H =
~2k2

2m
1̌ +

⇤

2
⌅̌z + � (kx⌅̌y � ky⌅̌x) + ⇥ (kx⌅̌x � ky⌅̌y) .

� gives the strength of the Rashba coupling; ⇥ yields the linear Dresselhaus coupling; and ⇤

produces a Zeeman splitting between the two spin components []. Here we realize an example

of this Hamiltonian using a system of ultracold atoms where a pair of “Raman” laser beams

couple the internal and motional degrees of freedom giving a form of this Hamiltonian with

� = ⇥. With this replacement

H =
~2k2

2m
1̌ +

⇤

2
⌅̌z + � (kx � ky) (⌅̌x + ⌅̌y) .

Spin-orbit coupling

Pure Rashba: 



Why Rashba SOC?

Novel single particle physics 
Negative index like reflection for matter waves (phase-matching at dispersion-boundaries)

2D Topological insulators (generally with spin-orbit coupling) 


Novel many-body particle physics 
Laughlin like physics of bosons (interacting bosons, partially flat 2D ring-dispersion) 
Topological superfluids p-wave superconductivity (fermions, spin polarized p-wave interactions)

References:  G. Juzeliūnas, et al; PRL (2008); T. A. Sedrakyan, V. M. Galitski, and A. Kamenev; PRL (2015); C. Zhang, et al; PRL (2008)

More motivation in: V. Galitski and IBS; Nature (2013).

Negative index
p-wave superconductivity

FQHE-like physics

now an evanescent wave. The boundary condition at the
potential barrier gives the reflection coefficient

 r1 !
ei!

!!!!!!!!!!!!!!
kk " q

p # i !!!!!!!!!!!!!!
kk # q

p

e#i!
!!!!!!!!!!!!!!
kk " q

p " i !!!!!!!!!!!!!!
kk # q

p ; (12)

with jr1j ! 1. Thus, there is a total reflection to the first
mode at an angle !1 ! ! accompanied by a phase shift,
with the second reflected wave being evanescent. The
phenomenon resembles the total internal reflection of op-
tical waves at an interface with an optically thinner me-
dium. In our situation, however, the evanescent wave is the
reflected wave rather than the refracted one.

Our plane-wave analysis may be easily extended to the
case of wave packet reflection. Similar results may be
found if the momentum width of the wave packet !k is
sufficiently small with respect to ". Figure 5 displays the
double and negative reflection of atomic wave packets
from an atomic mirror, for an incident wave packet "$r% !
g##k e

i #k&rf$r%, with f$r% a Gaussian, and #k the central wave
number. The propagation direction and population of each
of the reflected wave-packets are in good agreement with
the analytical plane-wave results (9)–(11). Similar results
are also found for more realistic Gaussian or evanescent
atomic mirrors [1,2], as long as the potential barrier is
sufficiently high compared to the incident kinetic energy.
Lower barriers would lead to partial reflection, transmis-
sion and tunneling, whose physics will be the subject of
further investigations.

Summarizing, the reflection of atoms under a non-
Abelian gauge potential presents unusual features. In par-
ticular, one can have a double reflection comprising a
specular and a nonspecular one. Remarkably, the latter
wave shows negative reflection due to the special proper-
ties of the dispersion law, and becomes evanescent for
sufficiently large incident angles. Atom mirrors are a key
tool in atom optics. Hence the anomalous reflection prop-
erties may be of crucial importance for the design of non-

Abelian atom optics elements, e.g., atom interferometers
which exploit the non-Abelian Aharanov-Bohm effect.
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now an evanescent wave. The boundary condition at the
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 r1 !
ei!

!!!!!!!!!!!!!!
kk " q

p # i !!!!!!!!!!!!!!
kk # q

p

e#i!
!!!!!!!!!!!!!!
kk " q

p " i !!!!!!!!!!!!!!
kk # q

p ; (12)

with jr1j ! 1. Thus, there is a total reflection to the first
mode at an angle !1 ! ! accompanied by a phase shift,
with the second reflected wave being evanescent. The
phenomenon resembles the total internal reflection of op-
tical waves at an interface with an optically thinner me-
dium. In our situation, however, the evanescent wave is the
reflected wave rather than the refracted one.
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g##k e

i #k&rf$r%, with f$r% a Gaussian, and #k the central wave
number. The propagation direction and population of each
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wave shows negative reflection due to the special proper-
ties of the dispersion law, and becomes evanescent for
sufficiently large incident angles. Atom mirrors are a key
tool in atom optics. Hence the anomalous reflection prop-
erties may be of crucial importance for the design of non-
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does not work because of the separable (in x, y) nature of
the potential. Indeed, the corresponding bands are labeled
by the two integers ϵnx;ny with the lowest band being ϵ0;0.
The low energy excited bands ϵ0;1 and ϵ1;0 are highly
anisotropic and, thus, do not lead to a flat moat. The next
excited band ϵ1;1 is approximately isotropic, but shaking
the lattice either in x or y directions does not produce matrix
elements between ϵ1;1 and ϵ0;0, due to orthogonality of the
separable wave functions.
The simplest way to engineer an approximately flat moat

is to create a square optical lattice with two sites per unit
cell. Such a lattice can be constructed by fusing a laser
setup with laser beams of wavelength λL ¼ 2π=kL, result-
ing in a standing wave intensity pattern forming a regular
square lattice, and then adding two additional identical
laser beams directed along xþ y and x − y diagonals
(X scheme). If the lasers directed along x, y, and x − y
directions are calibrated to have exactly the same phases
while the laser along the xþ y diagonal has a phase shift
amounting to π , such a setup results in a potential

Uðx; yÞ ¼ U0½sin2ðkLxÞ þ sin2ðkLyÞ
þ sin2½kLðx − yÞ& þ cos2½kLðxþ yÞ&&: ð2Þ

This potential realizes a square optical lattice of the depth
U0, having two sites per unit cell (A and B), with vectors
kLe1 ¼ ðπ=3; π=3Þ, kLe2 ¼ ½π=3;−ð2π=3Þ&, and kLe3 ¼
½−ð2π=3Þ; π=3&, depicted in Fig. 1. One can harmonically
drive this lattice by applying time dependent phase shifts to
the lasers, resulting in the transformation x → x − Δ cosωt,
y → y − Δ cosωt, where Δ is the shaking amplitude.
Below, we show that, if the frequency ω is nearly resonant
with the two lowest bands, an almost flat moat appears in
the lowest Floquet band.
The Lagrangian describing such a time-dependent prob-

lem is given by

L ¼ ψ̄ðr; tÞfi∂t − ĤðtÞgψðr; tÞ

ĤðtÞ ¼ −
∂2
r

2M
þU½x − xðtÞ; y − yðtÞ&; ð3Þ

where ψðr; tÞ is a single particle wave function. The
periodicity of the lattice with Tr ¼ π=kL, implies that
the solution ψn;kðr; tÞ of the Shrödinger equation with
Hamiltonian ĤðtÞ, can be uniquely described by the
space-time periodic single particle eigenstate φn;kðr; tÞ
of the Floquet operator i∂t −HðtÞ as ψn;kðr; tÞ ¼
eiEnðkÞteikrφn;kðr; tÞ. This representation is analogous to
the Bloch representation of states in time independent
periodic potentials. Here, EnðkÞ ∈ ð0;ωÞ is the Floquet
energy of nth Bloch band, defined modulus of multiples of
ω (corresponding to the energy quanta produced by
driving). The Bloch momentum is given by k ¼ 2πm=L;
m ¼ ðmx;myÞ, mx;y ¼ 1;…; L, with L being the lattice

size. Here, the function φn;kðr; tÞ is periodic in x and y
directions with the period Tr, and in time with the period
T ¼ 2π=ω. To find the Floquet spectrum, we expand the
periodic counterpart, φn;kðr; tÞ, of the Bloch eigenfunction
in Fourier series over momenta 2πmx=Tr, 2πmy=Tr, and
energies 2πs=T with integer s, mx, my ∈ ð−∞;∞Þ and
numerically diagonalize the Hamiltonian in this basis,
assuming it is a large finite dimensional matrix. Here,
diagonalization yields the lowest quasienergy of the
Floquet spectrum.
The distribution function of excitations in a periodically

driven system, generally speaking, can be obtained by
solving a kinetic equation in the Floquet basis. However, in
many relevant situations, an equilibriumlike distribution of
quasisteady states on Floquet bands has been shown to be
the proper approximation [30,31]. Furthermore, the results
of the shaken-lattice experiment in one dimension [28]
show that one can apply conventional statistical mechanics
to Floquet systems of this sort (shaken lattices). The
lowest quasienergy of the Floquet spectrum in this
experiment appears to be the stationary, time independent
kinetic energy of the system. This suggests that, in our
scheme, one still arrives at a stationary, time independent
problem of particles with kinetic energy given by the
lowest Floquet band. Its shape, on the other hand, is
affected by the closeness to the resonance with the help
of the avoided crossings, and may acquire the moatlike
form.

FIG. 1 (color online). (a) Lowest Floquet band exhibiting
approximately flat moat. (b) Fragment of a square optical lattice
with two sites per unit cell [29] that gives rise to an approximately
flat moat in the lowest Floquet band upon resonant driving.
(c) Left panel shows the band structure of the undriven optical
lattice. The driving frequency ω is of the order of the gap causing
resonant coupling between the lowest and the first excited bands
at k ¼ 0. Middle panel: enlargement of the lowest and shifted
first excited bands. Right panel: Blow up of the driven lowest
Floquet band exhibiting a double-well feature in kx þ ky direction
indicating the appearance of the moat in the Brillouin zone.
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ΨðlÞ
F ðr1 ;…; rNÞ ¼

1ffiffiffiffiffiffi
N!

p det
m;j

½χðlÞm ðrjÞ%; ð8Þ

where χðlÞm ðrÞ ¼ ½2 πðlþmÞ!l!%−1 =2 ðb†Þlþmða†Þl½e−1
4 jzj

2 %, is a
state with the angular momentum m ¼ −l;…;−lþ N at
the Landau level l. Here, a† ¼ 1ffiffi

2
p ½ðz̄=2 Þ − 2 ð∂=∂zÞ%,

b† ¼ 1ffiffi
2

p ½ðz=2 Þ − 2 ð∂=∂z̄Þ% are the ladder operators. For
intermediate densities, nlþ1 < n < nl, the ground state is a
mixture of two fermion liquids with densities nl and nlþ1 .
The variational state (5), (8) breaks time-reversal symmetry
due to the effective Chern-Simons magnetic field; however,
it conserves the Uð1 Þ. Though within the mean-field
approximation the state has zero energy, its actual energy
is given by the expectation value of the Hamiltonian
operator (1) (or, rather, only its kinetic energy part). The
corresponding calculations, given in the Supplemental
Material [39], show that the energy per particle scales as
EðnÞ ∼ ðk20 =MÞðn=n0 Þ2 log2 ðn=n0 Þ. This should be com-
pared with either the naive estimate for the condensate state
E ∼ gn=M, or the result of Ref. [34] E ∼ n4 =3 . In any event,
the composite fermion variational state (5), (8) is seen to be
parametrically advantageous at small enough density [42].
The comparison of chemical potentials of candidate Bose-
Einstein condensate (BEC) states and of our composite
fermion state resulted in a phase diagram presented in
Fig. 3 (inset).
The composite fermion state discussed above represents

an example of a topological state of bosons. To achieve this
state experimentally, one needs to load the driven lattice of

Fig. 1with bosons and let themoccupy the degenerate lowest
steady Floquet band. An important and somewhat indirect
experimental measure of the composite fermion state of
bosons is the velocity distribution of an expanding gas,
which can be observed in the time of flight experiments [43].
The group velocity of an expanding gas is defined by the

derivative of the kinetic energy as v ¼ ∂k½ðjkj − k0 Þ2 =
2M% ¼ ðjkj − k0 =MÞðk=jkjÞ. The expectation value of this
operator in the proposed state of composite fermions (5),
(8) is obtained numerically and depicted in Fig. 4. The
result demonstrates a striking difference with the velocity
distribution of condensed bosons shown in the inset of
Fig. 4. While, at high temperatures, distribution functions
of condensate and of composite fermion states are similar,
the qualitative difference at T → 0 is caused by the
fermionic nature of the latter. If, for condensed bosons,
the distribution is sharply peaked at v ¼ 0 , indicating
condensation into a state with zero velocity, for composite
fermions, it is reminiscent to the Fermi-Dirac distribution
exhibiting weak, plateaulike behavior at finite v at very low
temperatures and small densities. Importantly, at low
temperatures, there is no sharp peak at v ¼ 0 . The plateau
vs peak difference can be regarded as the indication of the
proposed statistical transmutation. In the field-theoretical
language, this difference can be traced back to the presence
of the effective Chern-Simons magnetic field and to the fact
that, effectively, fermions find themselves in a state
corresponding to the fully occupied lowest Landau level.
Unambiguous experimental identification of the composite
fermion state may require additional probes, such as
measuring the collective modes spectrum, which is sensi-
tive to the equation of state.

FIG. 3 (color online). Excitation spectrum in units of ER is
plotted versus n=n0 . The per particle energy, Egs=ER, represented
by the fully filled lowest Landau level, is shown by the thick grey
(red) curve. The thin black lines represent excited energies. The
dashed line represents the chemical potential of a condensate
μcon1 =ER corresponding to the interaction parameter g ∼ 1 . The
comparison between chemical potentials of these candidate states
results in a phase diagram presented in the inset. For such strong
interactions the transition from composite fermion state to zero
temperature BEC takes place at densities n=n0 ∼ 1 . Upon low-
ering g, the transition shifts towards smaller n=n0 , as schemati-
cally shown in the inset.

FIG. 4 (color online). Dimensionless velocity distribution
ρðvÞ · vl, wheremvl ¼ πnl=k0 , of an expanding gas of composite
fermions plotted vs dimensionless velocity v=vl at fixed values of
density n ¼ nl, l ¼ 0 ; 3 ; 5 and zero temperature. Inset: Dimen-
sionless velocity distribution of condensed bosons with density
n ¼ n0 . The temperatures are marked. At low temperatures, the
distribution shows a sharp peak at zero velocity, which is absent
in the distribution of the composite fermions.
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In the experiments, one can also detect the velocity
distribution vxðyÞ directly by the two-photon Raman tran-
sition [25]. The Raman lasers are focused on a local region
and transfer atoms in that region to another hyperfine state
j3i. Then one can detect atoms at the state j3i using the
time-of-flight image, leading to a determination of their
velocity distribution.

The second type of effective electric field we consider is
generated by a laser beam propagating along the z direction
and centered at ðx; yÞ ¼ ð0; 0Þ. The optical potential can be
written as V ¼ V0 expð$r2=2!2Þ, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

The effective electric field is now along the radial direc-
tion, which leads to a response current

jtðrÞ ¼ V0r expð$r2=2!2Þ=2hd!2 (11)

along the tangential direction. Such a current forms a close
loop around the center that corresponds to a rotation of the
superfluid (see Fig. 1). The velocity reaches its maximum
at r ¼ ! and then decreases on both sides. The direction of
the rotation is determined by the chirality of the superfluid.
This phenomenon can be observed by measuring the local
velocity of the atoms using the Raman process.
Remarkably, by applying a nonrotating laser beam, one
can create a rotation of the condensate in a 2D px þ ipy

superfluid. Note that the total angular momentum is con-
served in this process. In a px þ ipy superfluid, each
Cooper pair carries a unit of internal angular momentum.
In our scheme, this angular momentum comes from the
effective spin-orbit coupling for the atomic motion. The
external nonrotating laser potential produces a density
gradient of the Cooper pairs, leading to the redistribution
of the angular momentum spatially. This redistribution of
the angular momentum yields the tangential current peak-
ing at r ¼ !, and is the physical origin of the rotation of the
condensate in a 2D px þ ipy superfluid.

We emphasize that there is no antisymmetric transverse
mass current in an s-wave or px-wave superfluid. Thus, the
above experiments involving the transverse currents can

serve as clear diagnostic tests for the existence of the chiral
superfluid. In the px þ ipy superfluid, the time-reversal
symmetry is broken, which leads to a nonzero Berry phase
in the momentum space. The nonzero Berry phase, absent
in the s- or px-wave superfluids, is the physical origin of
the nonzero antisymmetric transverse mass current.
Finally, we note that our proposed method for observing

the mass current is very general. It does not depend on the
specific way to generate a px þ ipy superfluid. Therefore,
if a px þ ipy superfluid can be generated using other
methods (say, using a p-wave Feshbach resonance), our
proposed diagnostic methods still apply.
In summary, we have proposed a concrete method to

generate a chiral px þ ipy cold atom fermionic superfluid
by exploiting the well-established s-wave Feshbach reso-
nance and the topological Berry phases, thereby circum-
venting the short lifetime issues of p-wave superfluids
associated with p-wave Feshbach resonance. We have
also proposed techniques for the direct observation of the
chirality of the neutral px þ ipy atomic superfluids in
optical traps.
This work is supported by ARO-DARPA. We thank
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m ¼ 1 angular momentum channel in the physical regime
!kF " h0 " EcðgÞ. Consequently, the pairing interaction
is renormalized to a separable interaction in the p-wave
channel leading to a ground state of a 2D chiral p-wave
superfluid with px þipy symmetry of the order parameter:
!ðpÞ ¼ !0ðpx þipyÞ=pF, where !0 is the energy gap in
the excitation spectrum of the superfluid.

The physical origin of the renormalization of the inter-
action may be understood through the Berry phase effects
of a Rashba type of spin-orbit coupling. In the presence of a
Rashba type of spin-orbit coupling, an atom evolving
adiabatically in the momentum space accumulates a geo-
metric (Berry) phase associated with the adiabatic change
of the momentum k, in analogy to the Aharanov-Bohm
phase acquired by an electron moving in the real space in
the presence of a magnetic field. Here the corresponding
magnetic field in the momentum space is the Berry curva-
ture field

"k ¼
!
rk &hu kji

@

@ k
ju ki

"
' ez ¼

1

2

"

ð"2 þk2Þ3=2
: (8)

The effective ‘‘magnetic flux’’ passing through the Fermi
disk is #B ¼ R

d2k
ð2#Þ2 "k ( # as kF " ", which means a

geometric phase $#B=2# is obtained for the adiabatic
moving of atoms from k to k0 ($ ¼ %k0 ) %k). This geo-
metric phase is the origin of the additional phase factor
expð) i$#B=#Þ in the interaction Vk;k0 [Eq. (6)] around
the Fermi surface and leads to the p-wave pairing atm ¼ 1
channel. Remarkably, if originally the bare interaction is in
the px þipy channel, the Berry phase renormalizes the
interaction to the d-wave channel (m ¼ 2). In this way a
2D dx2) y2 þidxy superfluid should be realizable, which is

very difficult to create using the conventional Feshbach
resonance approach.

In experiments, one can choose a suitable attractive
interaction regime (BCS side) so that the pairing gap for
the s-wave superfluid would be * @&200 Hz. The laser
parameters for generating the effective spin-orbit coupling
should be chosen so that the Zeeman field h0 is * @&
1 kHz. For a typical Fermi energy EF * @&1 kHz [11],
the spin-orbit coupling constant should be chosen so that
!kF * @&10 kHz, which should be achievable within the
current experimental technology [16,19,20]. With these
parameters, we can limit our discussion to the lower
spin-orbit energy band and create a px þipy superfluid
from the s-wave attractive interaction using the methods
described earlier.

Transverse Hall mass current in 2D px þipy super-
fluid.—Neutral atoms in superfluid can interact with laser
fields through dipole interactions [25]. The dipole interac-
tion can provide an optical potential, whose gradient can be
taken as an ‘‘effective electric field’’ for the atoms. Here,
we study the linear response of a chiral px þipy fermionic
superfluid subject to such external effective electric fields

which act as a perturbation. The following two types of
external effective electric fields will be considered.
First, we consider an effective electric field Ey, applied

along the y direction, and calculate the transverse response
of the superfluid along the x direction. This transverse
response, which gives rise to a spontaneous Hall mass
current, is a clear diagnostic of the broken time-reversal
invariance and the associated chirality of the px þipy

order parameter. The transverse Hall current changes the
sign as the chirality of the order parameter is reversed. As
such, this mass current can be used to detect the realization
of the chiral p-wave superfluid. In experiments, this effec-
tive electric field, E ¼ ) rVðrÞ, can be realized by ap-
plying a perturbation potential VðrÞ ¼ V0 expð) y2=2&2Þ
created by a laser beam traveling along the x direction,
where & is the beam waist of the laser. For simplicity, we
set the temperature T ¼ 0 and neglect finite temperature
effects. We also assume that the external trap potential
is very weak, and neglect the effects of the spatial
inhomogeneity.
The antisymmetric component of the spontaneous Hall

conductivity, 'xy ¼ ) 'yx, for the chiral superfluid can be
obtained from the anomalous chiral response coefficient,
which leads to (in momentum and frequency domain) [26]

'xyðq; !Þ ( q2=2hdð2!2=v2
F ) q2Þ; (9)

in the low frequencies ! + !0 region, where d is the
thickness of the superfluid along z direction, h is the
Plank constant, vF is the Fermi velocity. Since we consider
a time independent perturbation potential, Eq. (9) can be
simplified to 'xy ( ) 1=2hd.
Equation (9) can be used to calculate the transverse mass

current jxðr; tÞ ¼
RR

'xyðq;!ÞEyðq;!Þeiq'rei!tdqd! in-
duced by the longitudinal effective electric field Ey. For
the potential V0 expð) y2=2&2Þ, this can be simplified as

jxðrÞ ¼ V0y expð) y2=2&2Þ=2hd&2: (10)

We see that at the peak of the potential, y ¼ 0, the mass
current is zero. The current flows in opposite directions on
the two sides of the potential, and reaches maximum at y ¼
,&.
In the time-of-flight measurements, such a current would

lead to a velocity of BCS pairs, vxðrÞ ¼ jxðrÞ=nðrÞ, where
nðrÞ is the density of Cooper pairs. The different velocities
of the atoms on the two sides yield a larger image along the
x direction compared to the unperturbed case. The en-
hancement of the size of the image is determined by the
maximum transverse velocity, vmax

x ¼ V0e
) 0:5=2n&h,

which occurs for the atoms at y ¼ ,&. Assuming repre-
sentative values for the parameters, & ¼ 20 (m, V0=h ¼
100 Hz, the 2D Cooper pair densityn¼ 1012 m) 2, we find
vmax
x ¼ 8 (m=s. For a time of flight 500 ms, the enlarge-

ment of the image is about 4 (m, which should be ob-
servable in experiments.
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m ¼ 1 angular momentum channel in the physical regime
!kF " h0 " EcðgÞ. Consequently, the pairing interaction
is renormalized to a separable interaction in the p-wave
channel leading to a ground state of a 2D chiral p-wave
superfluid with px þipy symmetry of the order parameter:
!ðpÞ ¼ !0ðpx þipyÞ=pF, where !0 is the energy gap in
the excitation spectrum of the superfluid.

The physical origin of the renormalization of the inter-
action may be understood through the Berry phase effects
of a Rashba type of spin-orbit coupling. In the presence of a
Rashba type of spin-orbit coupling, an atom evolving
adiabatically in the momentum space accumulates a geo-
metric (Berry) phase associated with the adiabatic change
of the momentum k, in analogy to the Aharanov-Bohm
phase acquired by an electron moving in the real space in
the presence of a magnetic field. Here the corresponding
magnetic field in the momentum space is the Berry curva-
ture field

"k ¼
!
rk &hu kji

@

@ k
ju ki

"
' ez ¼

1

2

"

ð"2 þk2Þ3=2
: (8)

The effective ‘‘magnetic flux’’ passing through the Fermi
disk is #B ¼ R

d2k
ð2#Þ2 "k ( # as kF " ", which means a
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!kF * @&10 kHz, which should be achievable within the
current experimental technology [16,19,20]. With these
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spin-orbit energy band and create a px þipy superfluid
from the s-wave attractive interaction using the methods
described earlier.
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fluid.—Neutral atoms in superfluid can interact with laser
fields through dipole interactions [25]. The dipole interac-
tion can provide an optical potential, whose gradient can be
taken as an ‘‘effective electric field’’ for the atoms. Here,
we study the linear response of a chiral px þipy fermionic
superfluid subject to such external effective electric fields

which act as a perturbation. The following two types of
external effective electric fields will be considered.
First, we consider an effective electric field Ey, applied

along the y direction, and calculate the transverse response
of the superfluid along the x direction. This transverse
response, which gives rise to a spontaneous Hall mass
current, is a clear diagnostic of the broken time-reversal
invariance and the associated chirality of the px þipy

order parameter. The transverse Hall current changes the
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such, this mass current can be used to detect the realization
of the chiral p-wave superfluid. In experiments, this effec-
tive electric field, E ¼ ) rVðrÞ, can be realized by ap-
plying a perturbation potential VðrÞ ¼ V0 expð) y2=2&2Þ
created by a laser beam traveling along the x direction,
where & is the beam waist of the laser. For simplicity, we
set the temperature T ¼ 0 and neglect finite temperature
effects. We also assume that the external trap potential
is very weak, and neglect the effects of the spatial
inhomogeneity.
The antisymmetric component of the spontaneous Hall

conductivity, 'xy ¼ ) 'yx, for the chiral superfluid can be
obtained from the anomalous chiral response coefficient,
which leads to (in momentum and frequency domain) [26]
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in the low frequencies ! + !0 region, where d is the
thickness of the superfluid along z direction, h is the
Plank constant, vF is the Fermi velocity. Since we consider
a time independent perturbation potential, Eq. (9) can be
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Equation (9) can be used to calculate the transverse mass
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duced by the longitudinal effective electric field Ey. For
the potential V0 expð) y2=2&2Þ, this can be simplified as
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We see that at the peak of the potential, y ¼ 0, the mass
current is zero. The current flows in opposite directions on
the two sides of the potential, and reaches maximum at y ¼
,&.
In the time-of-flight measurements, such a current would

lead to a velocity of BCS pairs, vxðrÞ ¼ jxðrÞ=nðrÞ, where
nðrÞ is the density of Cooper pairs. The different velocities
of the atoms on the two sides yield a larger image along the
x direction compared to the unperturbed case. The en-
hancement of the size of the image is determined by the
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State of the art

Lattice 
Two-band model with a single Dirac point

(“2D SOC” in the vicinity of Dirac point)

Continuum 
Direct implementation of Campbell et al in 40K

Z. Wu, et al; Science (2016)

W. Sun, et al; PRL (2018)Z. Meng, et al; PRL (2016).

V lattðx; yÞ ¼ V0xcos2k0xþ V0ycos2k0y; ð1Þ

with lattice depth V0xðyÞ ∝ jExyðyxÞj2 − jExzðyzÞj2 [42,44].
We tune V0x ¼ V0y ¼ V0 to have a symmetric 2D lattice.
The spin-up or -down states are defined via two magnetic

sublevels in F ¼ 1 manifold, i.e., j1;−1i and j1; 0i. A bias
magnetic field B of 14.5 G is applied in ẑ direction, giving a
Zeeman split of 10.2 MHz. The j1; 1i state is effectively
suppressed due to the large quadratic Zeeman shift
(ϵ ≈ 8.2Er). The Raman couplings are generated by the
orthogonal polarization pairs (Exz, Eyx) and (Exy, Eyz),
respectively, realizing the double-Λ configuration, with
Ω1 ¼ Ω01 sin k0x cos k0y and Ω2 ¼ Ω02 cos k0x sin k0y,
shown in Fig. 1(b). The coupling strength Ω01 ∝
jEyzjjExyj and Ω02 ∝ jEyxjjExzj [42,44]. Due to the anti-
symmetric lattice structure, the onsite Raman coupling
vanishes. Only in the tunneling do the atoms experience
nonzero coupling strength, which causes the spin-flip
Raman diffraction. This is essential for the generation of
nontrivial topological band structure in the 2D SO coupling
system [39,42]. An electro-optical phase modulator (EOM)
is placed in one of the beam path to tune the relative phase

δφ between Ω1 and Ω2. The total Raman coupling term
reads

ΩRðx; yÞ ¼
!

0 Ω1 þ eiδφΩ2

Ω%
1 þ e−iδφΩ%

2 0

"
: ð2Þ

We adjust the two λ=2 wave plates to set Ω01 ¼ Ω02 ¼ Ω0

so that ΩRðx; yÞ satisfies reflective antisymmetry. An
optimal 2D SO coupling is achieved with δφ ¼ &π=2.
In this scheme, the initial and propagation phases of the

laser beams are static global phases and can be neglected
[42,44]. The total Hamiltonian reads

Ĥ ¼ p2

2m
þ V lattðx; yÞ þΩRðx; yÞ þ

δ
2
σz; ð3Þ

wherem is the atomic mass, and δ is the two-photon Raman
detuning. It is the realization of a minimal quantum
anomalous Hall (QAH) model driven by the SO coupling
[34]. Different from the previous realization of 2D SO
coupling [39], this Hamiltonian has the precise inversion
and C4 symmetries, which lead to nontrivial physics as
presented below.
Properties of 2D SO coupled BEC.—The BEC with

3.0 × 105 87Rb atoms is prepared in j1;−1i ¼ j↑i state.
The 2D lattice and Raman coupling beams are ramped up
adiabatically in 80 ms, and the BEC is loaded into the
ground state of the Hamiltonian Eq. (3) with V0 ¼ 4.0Er,
Ω0 ¼ 1.0Er, and δ ¼ 0. By manipulating the voltage on the
EOM, we can tune δφ continuously over the 2π range,
which governs the interference of the Raman couplings
Ω1;2 [44] and leads to the crossover between 1D and 2D SO
couplings. For detection, a time-of-flight (TOF) image is
taken after the BEC is free released for 25 ms.
A highly resolved crossover between 1D and 2D SO

couplings is observed in Figs. 2(a) and 2(b). The major
atom cloud in j↑i state stays at momentum ðkx; kyÞ ¼
ð0; 0Þ. The four atom clouds with momenta k ¼
ð&k0;&k0Þ in diagonal and off-diagonal directions are in
j↓i state diffracted by the Raman coupling term. As shown
in Fig. 2(a), the distribution of the four j↓i atom clouds
varies versus δφ, which characterizes the interference of the
Raman coupling lattices Ω1 and Ω2. We define WðδφÞ to
quantify this interference by

WðδφÞ ¼
Nx̂þŷ − Nx̂−ŷ

Nx̂þŷ þ Nx̂−ŷ
; ð4Þ

where Nx̂þŷ (Nx̂−ŷ) is the total number of atoms in the
diagonal (off-diagonal) direction, as denoted by red
(yellow) circles in Fig. 2(a). For the 1D SO coupling with
δφ ¼ π (0), the Raman diffracted atoms are only in the
diagonal (off-diagonal) direction, and we have W ¼
−0.96& 0.01 (0.95& 0.01). For the optimal 2D SO cou-
pling with δφ ¼ &π=2, the Raman diffracted atoms are

(a)

(b)

FIG. 1. (a) Experimental setup. The B field along the z axis
generates the Zeeman splitting and the quantization axis of the
atoms. The red and blue lines are lasers to construct the 2D
lattice and Raman couplings. The λ=2 wave plates are used to
generate two orthogonal polarization components of the latti-
ces. The λ=4 wave plates are phase retarders, which are applied
to form the antisymmetric Raman coupling lattices. The EOM
is applied to tune the relative phase δφ between two Raman
couplings Ω1 and Ω2. Insets: level structure and Raman
coupling scheme. (b) The antisymmetric structure of the two
Raman couplings Ω1 and Ω2 in real space. The grid represent
the square optical lattice V lattðx; yÞ.
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where ê⊥ and ê∥ components correspond to σ and π
polarizations with respect to the quantization axis z defined
by the magnetic field. The rotation still keeps ~E1 and ~E2

orthogonal. The additional λ=4wave plate can change ~E1 to
elliptical polarization ~E1 ¼ A1ðcos θê∥ þ i sin θê⊥Þ, where
the imaginary part is responsible for generating complex
Ω12. To illustrate this, we consider two different cases (I)
without and (II) with the λ=4 wave plate. Hereafter, we
denote Ωjj0 as the Raman coupling strength before the λ=2
and λ=4 wave plates. Careful analysis of the Raman
transition selection rules (note that ~E3 ¼ A3ê⊥) shows [38].
Case I.—ΩI

23 ¼ cos θΩ23, ΩI
13 ¼ cos θΩ13, and

ΩI
12 ¼ Ω12. The rotations induced by the λ=2 wave plates

keep ΩI
jj0 real, and therefore only shift the Dirac point

position and cannot open a band gap [see Fig. 2(a1)].
Case II.—ΩII

13 ¼ cos θΩ13, ΩII
23 ¼ cos θΩ23, and

ΩII
12 ¼ Ω12ðcos2θ þ isin2θÞ, yielding an imaginary part

HZ ¼ −iðΩ12sin2θ=2Þj1ih2jþ H:c: in the Hamiltonian
(1), which cannot be gauged out by varying the phase of
the wave function for each hyperfine ground state. This
term opens a band gap at the Dirac point as shown in
Fig. 2(b1). In the degenerate dark state pseudospin basis,
this term gives Vzσz, the perpendicular Zeeman field. The
energy gap at the Dirac point can be controlled precisely by
adjusting the rotation angle θ. Note HZ has the same form
as that in a previous theoretical proposal [37] that requires
complicated setup of additional lasers. Our scheme is much
simpler and more robust because it only need tune the
polarizations of three Raman lasers.
The change of Ωi

jj0 induced by the wave plates can be
measured using the Rabi oscillation between two hyperfine
ground states [10,38]. We obtain Ωi

12 for cases I and II,
respectively, as the function of the rotation angle θ as
shown in Fig. 3(a). For case I, ΩI

12 keeps unchanged for
different θ. In case II, we measure the absolute value of
ΩII

12 because ΩII
12 is a complex number, which showsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos4θ þ sin4θ
p

dependence for different θ [Fig. 3(a)],
agreeing with the theory. The measurements for Ωi

13 and
Ωi

23 also demonstrate their cos θ dependence [Fig. 3(b)].
Observation of band gap opening.—The imaginary part

iΩ12 sin2 θ ofΩII
12 opens a band gap at the Dirac point of the

energy-momentum dispersions, corresponding to a
perpendicular Zeeman field. Such a topological band gap
opening can be measured by spin injection rf spectroscopy,
which uses the rf field to drive atoms from a free spin-
polarized state into an empty 2D SOC system [27].
In our experiment, a degenerate Fermi gas 40K of 2 × 106

is prepared at the free reservoir hyperfine state j9=2; 5=2i in
a crossed optical dipole trap. We ramp the homogeneous
bias magnetic field to the value B0 ¼ 121.4 G, and then
apply three Raman lasers with the wavelength 768.85 nm
in 60 ms from zero to its final value. Subsequently, a
Gaussian shape pulse of the rf field is applied for 450 μs to

drive atoms from the initial j9=2; 5=2i state to the final
empty state with 2D SOC. Since the rf field does not
transfer momentum to the atoms, spin injection occurs
when the frequency of the rf matches the energy difference
between the initial and final states [38]. At last, the Raman
lasers, the optical trap, and the bias magnetic field are
switched off abruptly, and atoms freely expand for 12 ms
with a magnetic field gradient applied along the x axis. The
absorption image is taken along the z direction. We use a
Gaussian fit to locate the maximum of the measured atomic
density as a function of the momentum and the rf frequency

(a1) (b1)

(a2) (b2)

(b3)(a3)

FIG. 2. The energy dispersions of dressed atoms measured by rf
spin-injection spectroscopy. Columns (a1)–(a3) and (b1)–(b3)
correspond to the energy-momentum dispersions of 2D SOC
without (case I) and with (case II) effective perpendicular Zeeman
field, respectively. The experimental parameters are Ω12 ¼
−4.97Er, Ω13 ¼ 5.46Er, Ω23 ¼ 6.46Er, δ2 ¼ −0.5Er, δ3 ¼
−1.8Er and θ ¼ 45°. (a1) and (b1) are theoretical results
calculated using the Hamiltonian (1) with the experimental
parameters. (a2) and (b2) are experimental results measured by
rf spin-injection spectroscopy. The black dots represent the
experimental data. The yellow circles in (a1) and (a2) indicate
the Dirac points. In both rows, we only show the lowest two
bands for better visualization of the Dirac points and the band gap
opening. (a3) The cross-section drawings of (a1) and (a2) in the
energy-py coordinates for px ¼ 0.45kr. Triangles are from
experimental data. Solid and dashed lines are from theoretical
calculations using the full [Eq. (1)] and effective [Eq. (2)]
Hamiltonians, respectively. (b3) The cross-section drawings of
(b1) and (b2).

PRL 117, 235304 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 DECEMBER 2016

235304-3



Basic idea
Raman couple three internal hyperfine states 

D. L. Campbell, G. Juzeliūnas, and IBS; PRA (2011); V. Galitski, and IBS; Nature (2013)

entity, but when many such entities are brought together in a spin–
orbit-coupled system, the weirdness increases further. As the temper-
ature is lowered, the bosons tend to condense, but in contrast to the
conventional BEC, where the zero-momentum state is the unique
state with lowest energy (the ground state is non-degenerate), spin–
orbit bosons can have energy-momentum dispersion with several
lowest-energy states (the ground state is degenerate). For example,
for Rashba and Dresselhaus SOC (Fig. 2c) there are two such minima;
for pure Rashba SOC there is a continuous ring of minima (Fig. 1d);
for the Weyl-type SOC there is a sphere of minima10. This is in
contrast with the more conventional case of spinor BECs, which include
two or more spin states, but do not alter the energy–momentum dis-
persion relation.

The bosons’ ‘indecisiveness’ about what state to condense into is
partially resolved by their interactions, which limits the states with low-
est energy. But unless the interactions break a ‘synthetic time-reversal’
(Kramers) symmetry, some degeneracy must remain, leading to the
possibility of exotic states. For example, repulsive bosons with a
non-equal combination of Rashba and Dresselhaus SOC are predicted
to condense into a strongly entangled many-body ‘‘cat’’ state, where the
whole condensate is simultaneously in a superposition of states with
equal and opposite momentum. Such many-body cat states have long
been sought in various experiments, but have never been convincingly
observed. The spin–orbit BECs, existing in a double-well ‘potential’ in
momentum space (for example, Fig. 1d) are promising in this regard

because robust arguments support the existence of many-body cat
states22: (1) the symmetry protection of the exact spin degeneracy from
splitting and (2) an argument based on the Heisenberg uncertainty
relation, which suggests that for the repulsive bosons to stay as far as
possible from each other in real space, they should be as close as possible
in dual momentum space. An experimental realization of such a many-
body cat state would be a major scientific development.

On the experimental front, there are already exciting developments,
which include the first realization of an Abelian SOC (corresponding to
the persistent spin helix symmetry point, where Rashba and Dresselhaus
SOCs are identical; see Box 2 for a discussion of the connection to
Abelian and non-Abelian gauge fields) and observation of a spin–
orbit-coupled BEC with rubidium atoms12,35,36. Exactly as expected,
the time-of-flight images of cold spin–orbit coupled bosons feature
two peaks that correspond to left- and right-moving condensates flying
apart in opposite directions. They however do not represent a cat state
(where all the atoms are either in the left-moving or all in the right-
moving condensate), but rather are either in a ‘striped’ state (where all of
the atoms are in the same state, which involves both positive and nega-
tive momenta), or in a phase-separated state of the right- and left-
moving condensates in the Abelian spin–orbit system12,40–42; see Fig. 2b.

Spin-orbit-coupled ultracold fermions are intriguing8: even the
behaviour of two interacting fermions is fundamentally altered with
the addition of SOC. Without SOC and in one spatial dimension, any
attraction between two fermions, no matter how weak, always gives
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Figure 3 | Generalized SOC. Going beyond current experiments, more
complicated forms of SOC may be created. These require both more laser
beams and more internal states. a, Coupling scheme. Each state is coupled by a
two-photon Raman transition, each produced by a pair of the beams shown in

b. The configuration depicted in a and b could realize a tunable combination of
Rashba and Dresselhaus SOC in the alkali atoms39; the outcome is equivalent to
that of the well-known tripod configuration6 with detuning, but practical in the
alkali atoms. c, Resulting coupled dispersion relation.
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Figure 2 | Laser coupling schemes. a, Typical level diagram. In our
experiments, a pair of lasers—often counter-propagating—couple together a
selected pair of atomic states labelled by :j i and ;j i that together comprise the
atomic ‘spin’. These lasers are arranged in a two-photon Raman configuration
that uses an off-resonant intermediate state (grey). These lasers link atomic
motion along the x direction to the atom’s spin creating a characteristic spin–
orbit coupled energy-momentum dispersion relation. b, Minima location.
Measured location of energy minimum or minima, where as a function of laser

intensity the characteristic double minima of SOC dispersion move together
and finally merge12. The uncertainties reflect the standard deviation of about 10
measurements. Taken from figure 1 in ref. 12. c, Dispersion measured in 6Li.
Complete dispersion before and after laser coupling measured in a 6Li Fermi gas
(data reproduced with permission of M. Zwierlein, from figure 2 of ref. 38),
compared with the predicted dispersion (white dashed curves), showing the
typical spin–orbit dispersion relations depicted in Fig. 1d.
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Goal of present work
Applicability to many body physics 

Minimize heating and inelastic losses

Prevent hyperfine-changing collisions 
All states in ground hyperfine manifold

(seems to contradict above)

<latexit sha1_base64="sJeED0RWDoFvH4x+tNow58ML16U=">AAACL3icbVBNSxtBGJ6Ntsb0w6h48jI0FHoQ2S0FvQiKRXoJWmxUyIbw7uRdMzgzu8y8K4Rhf4xXe/LXSC/itf+ik5hDq31g4OF53q95slJJR3H8K2osLL56vdRcbr15++79Snt17cwVlRXYE4Uq7EUGDpU02CNJCi9Ki6AzhefZ1eHUP79G62RhftCkxIGGSyNzKYCCNGxvpF9REXA9POJ7PN7iaal5Mmx34u14Bv6SJHPSYXOcDFejRjoqRKXRkFDgXD+JSxp4sCSFwrqVVg5LEFdwif1ADWh0Az+7v+YfgzLieWHDM8Rn6t8dHrRzE52FSg00ds+9qfg/r19Rvjvw0pQVoRFPi/JKcSr4NAw+khYFqUkgIKwMt3IxBguCQmStEE34i8VumHugyjFkSOl0SZYLUP64e1p7od2k9lntTd0KqSXPM3pJzj5vJ4F//9LZ35rn12Sb7AP7xBK2w/bZN3bCekwwz27YLfsZ3UX30UP0+FTaiOY96+wfRL//AHaNpqM=</latexit>

Far-detuned lasers 
Limit heating from spontaneous emission

In alkalis this implies 



Goal of present work
Applicability to many body physics 

Minimize heating and inelastic losses

Prevent hyperfine-changing collisions 
All states in ground hyperfine manifold

(seems to contradict above)

<latexit sha1_base64="sJeED0RWDoFvH4x+tNow58ML16U="></latexit>

Far-detuned lasers 
Limit heating from spontaneous emission

In alkalis this implies 



Goal of present work
Applicability to many body physics 

Minimize heating and inelastic losses

Proposal: D. L. Campbell and IBS; NJP (2016).

Prevent hyperfine-changing collisions 
All states in ground hyperfine manifold

(seems to contradict above)

Insensitivity to external environment 
magnetic field insensitive

(seems unlikely given states are first 
order field sensitive)

<latexit sha1_base64="sJeED0RWDoFvH4x+tNow58ML16U=">AAACL3icbVBNSxtBGJ6Ntsb0w6h48jI0FHoQ2S0FvQiKRXoJWmxUyIbw7uRdMzgzu8y8K4Rhf4xXe/LXSC/itf+ik5hDq31g4OF53q95slJJR3H8K2osLL56vdRcbr15++79Snt17cwVlRXYE4Uq7EUGDpU02CNJCi9Ki6AzhefZ1eHUP79G62RhftCkxIGGSyNzKYCCNGxvpF9REXA9POJ7PN7iaal5Mmx34u14Bv6SJHPSYXOcDFejRjoqRKXRkFDgXD+JSxp4sCSFwrqVVg5LEFdwif1ADWh0Az+7v+YfgzLieWHDM8Rn6t8dHrRzE52FSg00ds+9qfg/r19Rvjvw0pQVoRFPi/JKcSr4NAw+khYFqUkgIKwMt3IxBguCQmStEE34i8VumHugyjFkSOl0SZYLUP64e1p7od2k9lntTd0KqSXPM3pJzj5vJ4F//9LZ35rn12Sb7AP7xBK2w/bZN3bCekwwz27YLfsZ3UX30UP0+FTaiOY96+wfRL//AHaNpqM=</latexit>

Far-detuned lasers 
Limit heating from spontaneous emission

In alkalis this implies 



Goal of present work
Applicability to many body physics 

Minimize heating and inelastic losses

Proposal: D. L. Campbell and IBS; NJP (2016).

Prevent hyperfine-changing collisions 
All states in ground hyperfine manifold

(seems to contradict above)

Insensitivity to external environment 
magnetic field insensitive

(seems unlikely given states are first 
order field sensitive)

<latexit sha1_base64="sJeED0RWDoFvH4x+tNow58ML16U="></latexit>

Far-detuned lasers 
Limit heating from spontaneous emission

In alkalis this implies 



Solution to all problems: CDD
Continuous dynamical decoupling 

Fancy words for “dressed states”

D. Trypogeorgos, A. Valdés-Curiel, N. Lundblad, and IBS; PRA (2018)

Proposal: D. L. Campbell and IBS; NJP (2016).  See also: N. R. Cooper and J. Dalibard; PRL (2013)

D. TRYPOGEORGOS et al. PHYSICAL REVIEW A 97, 013407 (2018)

390

400

410

234

236

tr
an

si
tio

n 
fr

eq
ue

nc
y 

(k
H

z)

60 40 20 0 20 40 60

/2  (kHz)

160

180

zy

p/
2

 (
kH

z)zx

xy

400 0 400

/2  (kHz)

0.4

0.2

0.0

0.2

0.4

|y

|x

|z

0 1 2 3 4 5

B (mT)

40

20

0

20

40

E
/h

(M
H

z)

| 1

|0

|1

(b)

(a)

RWA

FIG. 1. (a) Shown on the left is the dependence of the 5 2S1/2,
F = 1 ground state of 87Rb on the magnetic field, where the
quadratic dependence of the |mF = 0⟩ state’s Zeeman shift has
been exaggerated so it is visible on the same scale. In the middle
are energies of the |x,y,z⟩ eigenstates for !/2π = 200 kHz (black
curves) and ! = 0 (gray curves). On the right is the TOF image of
|z⟩ at # = 0, showing the constituent mF states. (b) On the left are
spectroscopic data showing transitions between the |x,y,z⟩ states for
!/2π = 194.5(1) kHz. The vertical scale of the middle panel (zx
transition) has only 10% the range of the other panels. The dashed
lines correspond to the Hamiltonian of Eq. (1), while the solid lines
include the dependence of the quadratic shift on #. Shown on the
right are the representative spectra.

Unlike for the mF basis, an oscillatory magnetic field can drive
transitions between all pairs of the |x,y,z⟩ states with nonzero
transition matrix elements (see Appendix A for more details).

Our BECs had N ≈ 5 × 104 atoms and were held in a
crossed dipole trap with trapping frequencies (fx,fy,fz) =
[42(3),34(2),133(3)] Hz.2 The B0 ≈ 3.27 mT bias field lifted
the ground-state degeneracy, giving an ω0/2π = 22.9 MHz
Larmor frequency, with a quadratic shift ϵ/2π = 76.4 kHz. In
our laboratory the ambient magnetic-field fluctuations were
dominated by contributions from line noise giving an rms
uncertainty δ#/2π = gF µBδB/h = 0.67(3) kHz.

We used adiabatic rapid passage (ARP) to transfer atoms
initially prepared in any of the |mF = 0,−1,1⟩ states into the
corresponding |x,y,z⟩ states. Beginning far from resonance
[#(t = 0)/2π ≈ −450 kHz] with all coupling fields off, we
ramped on the rf dressing field in a two-step process. We first

2All uncertainties herein represent the uncorrelated combination of
statistical and systematic uncertainties.

ramped from ! = 0 to approximately half its final value in
10 ms. By increasing the magnetic field B0, we then ramped #
to zero in 12 ms using a nonlinear ramp adiabatic with respect
to the relevant energy gaps. After allowing B0 to stabilize for
30 ms, we ramped the rf dressing field to its final value ! in
10 ms, yielding the dynamically decoupled |y,x,z⟩ states.

We measured the population in the |x,y,z⟩ states, adiabat-
ically deloaded them back into the mF basis by ramping B0
so that # approached its initial detuned value in 2 ms, and
then ramped off the dressing rf field in 1 ms. We obtained the
spin-resolved momentum distribution using standard time-of-
flight (TOF) imaging techniques, with a Stern-Gerlach field
to spatially separate the spin components during the TOF.
The right panel of Fig. 1(a) shows such a TOF image for
decomposition of |z⟩ into the mF states in a typical TOF image.

We confirmed our control and measurement techniques
spectroscopically measuring the energy differences between
the |x,y,z⟩ states with our prove field. Figure 1(b) shows the
dependence of the ωxy/2π , ωyz/2π , and ωzx/2π on detuning
for !/2π = 194.5(1) kHz derived from spectra such as in
the side panel with coupling strength !p/2π ≈ 1 kHz and
#/2π ≈ 9 kHz.

The dashed curves based on Eq. (1) clearly depart from
our measurements for the zx transition. This departure results
from neglecting the weak dependence of the quadratic shift ϵ
on bias field B0. In near-perfect agreement with experiment,
the solid curves from the full Breit-Rabi expression account
for this dependence.

III. ROBUSTNESS

The zx transition is remarkably robust against magnetic-
field variations, as commonly result from temporal and spatial
magnetic-field noise in laboratory environments [Fig. 2(a)].
We focus on the zx transition, which can be made virtually
independent of magnetic-field variations due to the similar
curvature of ωz(#) and ωx(#) [see the middle panel of
Fig. 1(a)]. We quantified the sensitivity of this transition to field
variations with three methods corresponding to the different
markers in Fig. 2(b). In each case we measured the energy
shift from resonance as a function of detuning and then used
a fourth-order polynomial fit to extract the rms residuals δωzx

due to the known detuning noise.3 (1) Triangles denote data
using full spectroscopical measurements similar to Fig. 2(a).
(2) Squares denote data in which a detuned π pulse of the
probe field transferred atoms from |z⟩ to |x⟩, a side-of-peak
technique giving a signal first-order sensitive to changes in ωzx .
(3) Circles denote data using an adiabatic technique described
below. The results are not consistent with the theory simple
from Eq. (1) (dashed line) and instead require the Breit-Rabi
expression (solid line) to obtain full agreement.4

Even at our smallest coupling !/2π = 69(1) kHz the
typical magnetic-field noise was attenuated by two orders
of magnitude, rendering it essentially undetectable. Ideally,

3Our procedure also quantifies the small fluctuations that survive
for spectra that are flat beyond second order, as in Eq. (1).

4The fluctuations can be even smaller for a given ! if we allow for
# ̸= 0 (see Appendix A).
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FIG. 2. (a) Transition frequencyωzx/2π for three values of#/2π .
The dashed curves correspond to Eq. (1), while the solid curves
use the Breit-Rabi expression. (b) The change in energy from our
experimental detuning fluctuations as measured in the mF basis
is δ%/2π = 0.67 kHz (red dashed line). Triangles correspond to
|x,y,z⟩ spectroscopy data, squares to side-of-peak π -pulse data, and
circles to double-dressed data. The black dashed (solid) curve was
calculated using Eq. (1) (the Breit-Rabi expression). The shading of
the data points corresponds to the Rabi frequencies in Fig. 3.

the radius of curvature of ωzx(%) changes sign at about
#/2π = 220 kHz, leaving only a %4 contribution; however, in
practice the small dependence of ϵ on B prevents this perfect
cancellation.

We explored the strength of the probe-driven transitions
between these states by observing coherent Rabi oscillations
[Fig. 3(a)] where our BEC was prepared in |z⟩ and the probe
field had strength #p/2π ≈ 1 kHz. The top panel shows
Rabi oscillations between |mF = 0⟩ and |mF = − 1⟩ states for
reference and the remaining panels show oscillations between
|z⟩ and |x⟩. The observed Rabi frequency between dressed
states decreased with increasing #, indicating a dependence of
the zx transition matrix elements on #. These matrix elements,
as well as those for the zy transition, decrease with increasing
# for % = 0, as shown in Fig. 3(b) and Appendix A 2.
The coherence of the Rabi oscillations for longer times was
limited by gradients in # that lead to phase separation of the
dressed states and therefore loss of contrast after a few tens of
milliseconds, but had no measurable effect on the coherence
of the oscillations. In comparison, the coherence of the Rabi
oscillation between the mF states deteriorates after 500 µs. For
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FIG. 3. (a) Rabi oscillations. Phase coherence is maintained
throughout the oscillations in the dressed basis, while it is quickly
lost in the mF basis. The marker size reflects the typical uncertainties
on the dressed basis oscillations. (b) Transition matrix elements for
zx (blue) and zy (orange) transitions decrease monotonically with
increasing # for % = 0, while they increase for xy.

these time scales, the loss of coherence was predominantly due
to bias magnetic-field temporal noise.5

IV. CONCATENATED CDD

The driving field # coupled together the |mF ⟩ states, giving
us synthetic clock states |x,y,z⟩ that were nearly insensitive
to magnetic-field fluctuations. However, the spectrum of these
states is first-order sensitive to fluctuations δ# of the driving
field. Reference [10] showed that an additional field coupling
together these |x,y,z⟩ states can produce doubly dressed states
that are insensitive to both δ# and δ%: a process called
concatenated CDD. In our experiment, the probe field provided
the concatenating coupling field. Because #p ≪ #, we focus
on a near-resonant two-level system formed by a single pair
of dressed states, here |z⟩ and |x⟩, which we consider as
pseudospins |↑⟩ and |↓⟩. These are described by the effective

5We canceled gradient magnetic fields so that no phase separation
of the bare states was observed for more than 10 s.
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to bias magnetic-field temporal noise.5

IV. CONCATENATED CDD

The driving field # coupled together the |mF ⟩ states, giving
us synthetic clock states |x,y,z⟩ that were nearly insensitive
to magnetic-field fluctuations. However, the spectrum of these
states is first-order sensitive to fluctuations δ# of the driving
field. Reference [10] showed that an additional field coupling
together these |x,y,z⟩ states can produce doubly dressed states
that are insensitive to both δ# and δ%: a process called
concatenated CDD. In our experiment, the probe field provided
the concatenating coupling field. Because #p ≪ #, we focus
on a near-resonant two-level system formed by a single pair
of dressed states, here |z⟩ and |x⟩, which we consider as
pseudospins |↑⟩ and |↓⟩. These are described by the effective

5We canceled gradient magnetic fields so that no phase separation
of the bare states was observed for more than 10 s.
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Graphical construction: primer
Two levels 

Y.-J. Lin et al; Nature (2011)
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Physical picture

Resulting uncoupled dispersionGeometry 

D. L. Campbell, G. Juzeliūnas, and IBS; PRA (2011)
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Fourier transform spectroscopy (aside)

A. Valdés-Curiel et al; NJP (2018)

Setup

Experiment

Webegin our experiments with a 87RbBEC [16] containing about 4 104´ atoms in the S52
1 2 electronic

ground state, and in the f m1, 1f= = - ñ∣ hyperfine state. The BEC is confined in a crossed optical dipole trap
formed by two1064 nm beams propagating along e ex y+ and e ey x- , which give trapping frequencies

, , 2 42 3 , 34 2 , 133 3 Hzx y zw w w p =( ) ( ( ) ( ) ( )) 2.We break the degeneracy of the threemFmagnetic sub-levels by
applying a 1.9893 3( )mTbiasfield along ez that produces a 2 14.000 2 MHzZw p = ( ) Zeeman splitting, and a
quadratic Zeeman shift ò that shifts the energy of f m1, 0F= = ñ∣ by h 28.45 kHz- ´ .We adiabatically
transfer our BEC into f m1, 0F= = ñ∣ by slowly ramping the biasfield, from B 1.9522 3i = ( )mT to
B 1.9893 3f = ( )mT in 50 mswhile applying a 14 MHz radio-frequencymagnetic fieldwith approximately
20 kHz coupling strength that was ramped on 50ms before the biasfield.We then apply a pair of 250 sm
microwave pulses that each transfer a small fraction of atoms into the 5 S2

1 2 f=2manifold thatwe use to
monitor and stabilize the biasfield [17]. Themicrowave pulses are detuned by 2 kHzo from the
f m f m1, 0 2, 1F F= = ñ « = = ñ∣ ∣ transition and spaced in time by 33 ms (two periods of 60 Hz).We
imaged the transferred atoms following each pulse using absorption imaging3, and count the total number of
atoms n1 and n2 transferred by each pulse. The imbalance in these atomnumbers n n n n1 2 1 2- +( ) ( ) leads to a
4 kHz wide error signal that we use both tomonitor themagnetic field before each spectroscopymeasurement
and cancel longtermdrifts in the field.

We induce spin–orbit coupling using a pair of intersecting, cross polarized ‘Raman’ laser beams propagating
along e ex y+ and e ex y- + , as shown infigures 2(a) and (b). This beams have angular frequency A Lw w d= +
and B ZLw w w= + , where 2d is the, experimentally controllable, detuning from four photon resonance
between m 1F = - and m 1F = + . The geometry andwavelength of the Raman fields determine the natural units
of the system: the single photon recoilmomentum k 2L Rp l= and its associated recoil energy
E k m2L

2
L
2�= , as well as the direction of the recoilmomentum kk exL L= . The Ramanwavelength is

790.032 nmRl = , so that the scalar light shift is zero.
Our system iswell described by theHamiltonian including atom–light interaction alongwith the kinetic

contribution

H
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m
q F E F E F F

2
4 4 , 4x

x z x z zSOC

2 2

L R L
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where q is the quasimomentum, Fx y z, ,ˆ are the spin-1 angularmomentummatrices, k m2
L�a = is the SOC

strength, and RW is the Raman coupling strength, proportional to the Raman laser intensity. The Raman field
couples m q q0,F x= = ñ∣ to m q q k1, 2F x L= o = ñB∣ , generating a spin change of m 1FD = o and imparting
a k2 LB momentum. The eigenstates of HSOCˆ are linear combinations of these states and m q q0,F x= = ñ∣ , and
the set m q,F ñ{∣ }constitutes themeasurement basis for the Fourier transform spectroscopy.

Figure 2. (a) Setup. A biasmagnetic field B ez0 , withB0= 1.9893mT splits the hyperfine energy levels of the f=1manifold of 87Rb by
2 14 MHzZw p = . A pair of cross polarized Raman beams propagating along e ex y+ and e ex y- + couple the atoms’momentum

and spin states. (b)TheRaman frequencies are set to A Lw w d= + and B ZLw w w= + .We add frequency sidebands to Bw , separated
by dwo . The amplitudemodulation from the interference between themultiple frequency components results in tunable SOC. (c)
SOCdispersion for Raman coupling strength E120 LW = and 0W = , on four photon resonance.

2
All uncertainties herein represent the uncorrelated combination of statistical and systematic errors.

3
Wedid not apply repump light during this imaging, so the untransferred atoms in the f=1manifoldwere largely undisturbed by the

imaging process.
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Our system iswell described by theHamiltonian including atom–light interaction alongwith the kinetic
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where q is the quasimomentum, Fx y z, ,ˆ are the spin-1 angularmomentummatrices, k m2
L�a = is the SOC

strength, and RW is the Raman coupling strength, proportional to the Raman laser intensity. The Raman field
couples m q q0,F x= = ñ∣ to m q q k1, 2F x L= o = ñB∣ , generating a spin change of m 1FD = o and imparting
a k2 LB momentum. The eigenstates of HSOCˆ are linear combinations of these states and m q q0,F x= = ñ∣ , and
the set m q,F ñ{∣ }constitutes themeasurement basis for the Fourier transform spectroscopy.

Figure 2. (a) Setup. A biasmagnetic field B ez0 , withB0= 1.9893mT splits the hyperfine energy levels of the f=1manifold of 87Rb by
2 14 MHzZw p = . A pair of cross polarized Raman beams propagating along e ex y+ and e ex y- + couple the atoms’momentum

and spin states. (b)TheRaman frequencies are set to A Lw w d= + and B ZLw w w= + .We add frequency sidebands to Bw , separated
by dwo . The amplitudemodulation from the interference between themultiple frequency components results in tunable SOC. (c)
SOCdispersion for Raman coupling strength E120 LW = and 0W = , on four photon resonance.
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All uncertainties herein represent the uncorrelated combination of statistical and systematic errors.
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Wedid not apply repump light during this imaging, so the untransferred atoms in the f=1manifoldwere largely undisturbed by the

imaging process.
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Fourier transform spectroscopy (aside)

A. Valdés-Curiel et al; NJP (2018)

Experiment
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1 2 electronic
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between m 1F = - and m 1F = + . The geometry andwavelength of the Raman fields determine the natural units
of the system: the single photon recoilmomentum k 2L Rp l= and its associated recoil energy
E k m2L
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2�= , as well as the direction of the recoilmomentum kk exL L= . The Ramanwavelength is

790.032 nmRl = , so that the scalar light shift is zero.
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where q is the quasimomentum, Fx y z, ,ˆ are the spin-1 angularmomentummatrices, k m2
L�a = is the SOC

strength, and RW is the Raman coupling strength, proportional to the Raman laser intensity. The Raman field
couples m q q0,F x= = ñ∣ to m q q k1, 2F x L= o = ñB∣ , generating a spin change of m 1FD = o and imparting
a k2 LB momentum. The eigenstates of HSOCˆ are linear combinations of these states and m q q0,F x= = ñ∣ , and
the set m q,F ñ{∣ }constitutes themeasurement basis for the Fourier transform spectroscopy.

Figure 2. (a) Setup. A biasmagnetic field B ez0 , withB0= 1.9893mT splits the hyperfine energy levels of the f=1manifold of 87Rb by
2 14 MHzZw p = . A pair of cross polarized Raman beams propagating along e ex y+ and e ex y- + couple the atoms’momentum

and spin states. (b)TheRaman frequencies are set to A Lw w d= + and B ZLw w w= + .We add frequency sidebands to Bw , separated
by dwo . The amplitudemodulation from the interference between themultiple frequency components results in tunable SOC. (c)
SOCdispersion for Raman coupling strength E120 LW = and 0W = , on four photon resonance.
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All uncertainties herein represent the uncorrelated combination of statistical and systematic errors.
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Wedid not apply repump light during this imaging, so the untransferred atoms in the f=1manifoldwere largely undisturbed by the

imaging process.
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Fourier transform spectroscopy

A. Valdés-Curiel et al; NJP (2018)
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What data looks like

2D SOC with three states 
Same idea

Reminder of 1D SOC 
Spin-momentum locking

Lin et al; Nature (2011)

effectively describes spinless bosons with a tunable dispersion rela-
tion16 with which we engineered synthetic electric17 and magnetic
fields18 for neutral atoms.

In the absence of Raman coupling, atoms with spins j"æ and j#æ
spatially mixed perfectly in a BEC. By increasing V we observed an
abrupt quantum phase transition to a new state where the two dressed
spins spatially separated, resulting from a modified effective inter-
action between the dressed spins.

We studied SO coupling in oblate 87Rb BECs with about 1.8 3 105

atoms in a l5 1,064-nm crossed dipole trap with frequencies (fx, fy,
fz) < (50, 50, 140) Hz. The bias magnetic field B0ŷ generated a vZ/
2p< 4.81 MHz Zeeman shift between j"æ and j#æ. The Raman beams
propagated along ŷ+x̂ and had a constant frequency difference DvL/
2p< 4.81 MHz. The small detuning from the Raman resonance
d5 B(DvL 2 vZ) was set by B0, and the state jmF 5 11æ was
decoupled owing to the quadratic Zeeman effect (see Methods).

We prepared BECs with an equal population of j"æ and j#æ at V,
d5 0, then we adiabatically increased V to a final value up to 7EL in
70 ms, and finally we allowed the system to equilibrate for a holding
time th 5 70 ms. We abruptly (toff , 1ms) turned off the Raman lasers
and the dipole trap—thus projecting the dressed states onto their
constituent bare spin and momentum states—and absorption-imaged
them after a 30.1-ms time of flight (TOF). For V . 4EL (Fig. 1d), the
BEC was located at the single minimum q0 of E2(q) with a single
momentum component in each spin state corresponding to the pair
{j", q0 1 kLæ, j#, q0 2 kLæ}. However, for V , 4EL we observed two
momentum components in each spin state, corresponding to the
two minima of E2(q) at q" and q#. The agreement between the data
(symbols), and the expected minima locations (curves), demonstrates

the existence of the SO coupling associated with the Raman dressing.
We kept d< 0 when turning on V by maintaining equal populations in
bare spins j"æ, j#æ (see Fig. 1d).

We experimentally studied the low-temperature phases of these
interacting SO-coupled bosons as a function of V and d. The zero-
temperature mean-field phase diagram (Fig. 2a, b) includes phases
composed of a single dressed spin state, a spatial mixture of both
dressed spin states, and coexisting but spatially phase-separated
dressed spins.

This phase diagram can largely be understood as the result of non-
interacting bosons condensing into the lowest-energy single particle
state, and can be divided into three regimes (Fig. 2a). In the region of
positive detuning marked j#9æ, there are double minima at q 5 q", q# in
E2(q) with E2(q#) , E2(q") and the bosons condense at q#. In the
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b, Computed dispersion. Eigenenergies at d5 0 for V 5 0 (grey) to 5EL. When
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c, Measured minima. Quasimomentum q",# of |"9, #9æ versus V at d5 0,
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Fourier transform spectroscopy

Initial state 2D SOC with three states 
Same idea
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Target energiesInitial state 



Fourier transform spectroscopy

ObservationsInitial state 
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“Band” topology

Dispersion 
Single Dirac point +  non-periodic potential 


“Chern index” = 1/2



“Band” topology

Dispersion 
Single Dirac point +  non-periodic potential 


“Chern index” = 1/2

Measurement inspiration 

P. Hauke, M. Lewenstein, and A. Eckardt; PRL (2014)

N. Fläschner, et al; Science (2016)



Measuring phases

Measuring phases with atoms 
Ramsey Interferometer

Measuring phases in optics 
Interferometer
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Measuring phases
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given 14417 how do we think of A

Ai i Ini41 k d 41k this does not followfrom a G

andrequires a more careful consideration
real valued

ofBoys phases
now if we express 4 k blk ei nlH

O

Aj iIi14ktl2 idk nCk i 4nlHOk14h41

re imaginary

IAj.tn4nCkH2Qejo thus A

rijtfiknlkHIdkidqdryda.IOnCk cool

this is ReallyImportant Ajand Rij arethe weighted averagesof
gradients ofthephases in each component
of 4 k 1kn sepertly

This observationthereforeinforms us that obtaining these qualities
relies on separate measurements of 14hCHI and k

Assumption

I will assumethat via somesnapoff experiment detecting
14h41 is straightforward leaving theproblem of
4kt which is gauge dependant



Measuring phases

Last step frequencies we assume that we can isolate
individual frequency components so

it
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a kindependent Knoxphase d
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fits to time evolution
gives all phase differences

NtotClhot c 12 equations

All told this gives
Ntot thot 1 12 equations for Niot unknowns
note the equations relate phase differences so one phase

for each K is unknown so setting it inforces the gauge
choice

For lfq 2 there is one equation phasechoice determined

For
Nrg

3 there are 3 1 4 equations gun
determined

f t required

 

The aim of thesenotes is to provide a general framework formeasuring
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Typical image: Dirac point



“Band” topology

Dispersion 
Single Dirac point +  non-periodic potential 


“Chern index” = 1/2

Result

A. Valdés-Curiel et al; (2019, in preparation)

Preliminary
Phase map

Figure 3 | a) Experimental protocol. We started with atoms in state |i, qi = k ≠ kiÍ, i œ {xyz} but with di�erent RF coupling strength
�rf,i/2fi = 117.7 ± yyy kHz, such that the Raman lasers were no longer resonant with the clock-state transition energies (Êzx, Êxy, Êyz. We
ramped the Raman beams on in 750 µs. The detuning induced by the change in �RF created a global minima in the dispersion, and it
was chosen such that eigenstates corresponding to this global minima had a large overlap with the initial |x, y, zÍ. This additionally shifted
the location of the Dirac point away from q = 0, such that its location does not overlap with the atomic cloud. We then ramped the RF
coupling strength to its final value �rf,f/2fi = 117.7 kHz in 1.25 ms. We let the system evolve in the dark for times between 5 µs and
400 µs, followed by a 25 us Raman pulse. b)The implemented experimental protocol was equivalent to a three-arm interferometer that split
an initial state into three final states with amplitudes related to the initial wave function phases c) Time evolution and fits as a function of
interferometer duration for all output ports in the interferometer at fixed quasimomentum of q = xx kL d) Power spectral densities of the
three interferometer output ports
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Figure 4 | a) Fitted phases b)Berry curvature maybe or Berry connec-
tion with something to smooth crazy points

manifold, and deduced the topology resulting from the Dirac point.
While two-dimensional spin-orbit coupling has been implemented
in systems of ultra-cold fermions 21, 31, the short lifetime of these
systems is still an issue and there have not been any other ex-
perimental demonstrations of engineered Rashba spin-orbit cou-
pling all within a single hyperfine manifold. Our new implemen-
tation has the advantages of reduced collision induced losses and
increased stability against environmental fluctuations due to the
clock-like nature of the RF dressed states. The spontaneous emis-
sion limited lifetime of our system is xxx ms, measured with o�
resonant Raman couplings. The lifetime measured with resonant
Raman coupling is reduced to xxx ms which we attribute most
likely to technical noise (noise in the relative phase between the
RF field and the Raman beams) and unwanted avoided crossings
with higher Floquet bands. It is unlikely that we su�ered from
Floquet induced heating small due to the small interaction ener-
gies at low atomic densities 32. This work could allow the study
of rich ground state physics in many body systems of bosons and
fermions [ref]. Other future work includes fancy thing [fancy], an-
other fancy thing [fancier] and one more fancy thing [fanciest].
Open the gap and measure Berry curvature spread throughout a
larger range of momenta? Create interfaces between topologically
inequivalent continuous media and observe emerging edge sates?
Fermions and interactions in bec-bcs crossover?

Ana’s concerns:

• Since the Dirac point is degenerate technically I shouldn’t be
talking of Chern numbers but maybe Z2 topological invari-
ants. I think the Berry’s phase is well defined in this case
as long as my path doesn’t go through degeneracies? Hav-
ing some doubts after seeing reading about things like Wilson
loops.

• With restructured manuscript I don’t know where is a good
place to cite the first 2D SOC result.

TODOS:

• Fill in the blank numbers

• Write better captions
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CDD
Continuous dynamical decoupling 

Fancy words for “dressed states”
D. TRYPOGEORGOS et al. PHYSICAL REVIEW A 97, 013407 (2018)
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FIG. 1. (a) Shown on the left is the dependence of the 5 2S1/2,
F = 1 ground state of 87Rb on the magnetic field, where the
quadratic dependence of the |mF = 0⟩ state’s Zeeman shift has
been exaggerated so it is visible on the same scale. In the middle
are energies of the |x,y,z⟩ eigenstates for !/2π = 200 kHz (black
curves) and ! = 0 (gray curves). On the right is the TOF image of
|z⟩ at # = 0, showing the constituent mF states. (b) On the left are
spectroscopic data showing transitions between the |x,y,z⟩ states for
!/2π = 194.5(1) kHz. The vertical scale of the middle panel (zx
transition) has only 10% the range of the other panels. The dashed
lines correspond to the Hamiltonian of Eq. (1), while the solid lines
include the dependence of the quadratic shift on #. Shown on the
right are the representative spectra.

Unlike for the mF basis, an oscillatory magnetic field can drive
transitions between all pairs of the |x,y,z⟩ states with nonzero
transition matrix elements (see Appendix A for more details).

Our BECs had N ≈ 5 × 104 atoms and were held in a
crossed dipole trap with trapping frequencies (fx,fy,fz) =
[42(3),34(2),133(3)] Hz.2 The B0 ≈ 3.27 mT bias field lifted
the ground-state degeneracy, giving an ω0/2π = 22.9 MHz
Larmor frequency, with a quadratic shift ϵ/2π = 76.4 kHz. In
our laboratory the ambient magnetic-field fluctuations were
dominated by contributions from line noise giving an rms
uncertainty δ#/2π = gF µBδB/h = 0.67(3) kHz.

We used adiabatic rapid passage (ARP) to transfer atoms
initially prepared in any of the |mF = 0,−1,1⟩ states into the
corresponding |x,y,z⟩ states. Beginning far from resonance
[#(t = 0)/2π ≈ −450 kHz] with all coupling fields off, we
ramped on the rf dressing field in a two-step process. We first

2All uncertainties herein represent the uncorrelated combination of
statistical and systematic uncertainties.

ramped from ! = 0 to approximately half its final value in
10 ms. By increasing the magnetic field B0, we then ramped #
to zero in 12 ms using a nonlinear ramp adiabatic with respect
to the relevant energy gaps. After allowing B0 to stabilize for
30 ms, we ramped the rf dressing field to its final value ! in
10 ms, yielding the dynamically decoupled |y,x,z⟩ states.

We measured the population in the |x,y,z⟩ states, adiabat-
ically deloaded them back into the mF basis by ramping B0
so that # approached its initial detuned value in 2 ms, and
then ramped off the dressing rf field in 1 ms. We obtained the
spin-resolved momentum distribution using standard time-of-
flight (TOF) imaging techniques, with a Stern-Gerlach field
to spatially separate the spin components during the TOF.
The right panel of Fig. 1(a) shows such a TOF image for
decomposition of |z⟩ into the mF states in a typical TOF image.

We confirmed our control and measurement techniques
spectroscopically measuring the energy differences between
the |x,y,z⟩ states with our prove field. Figure 1(b) shows the
dependence of the ωxy/2π , ωyz/2π , and ωzx/2π on detuning
for !/2π = 194.5(1) kHz derived from spectra such as in
the side panel with coupling strength !p/2π ≈ 1 kHz and
#/2π ≈ 9 kHz.

The dashed curves based on Eq. (1) clearly depart from
our measurements for the zx transition. This departure results
from neglecting the weak dependence of the quadratic shift ϵ
on bias field B0. In near-perfect agreement with experiment,
the solid curves from the full Breit-Rabi expression account
for this dependence.

III. ROBUSTNESS

The zx transition is remarkably robust against magnetic-
field variations, as commonly result from temporal and spatial
magnetic-field noise in laboratory environments [Fig. 2(a)].
We focus on the zx transition, which can be made virtually
independent of magnetic-field variations due to the similar
curvature of ωz(#) and ωx(#) [see the middle panel of
Fig. 1(a)]. We quantified the sensitivity of this transition to field
variations with three methods corresponding to the different
markers in Fig. 2(b). In each case we measured the energy
shift from resonance as a function of detuning and then used
a fourth-order polynomial fit to extract the rms residuals δωzx

due to the known detuning noise.3 (1) Triangles denote data
using full spectroscopical measurements similar to Fig. 2(a).
(2) Squares denote data in which a detuned π pulse of the
probe field transferred atoms from |z⟩ to |x⟩, a side-of-peak
technique giving a signal first-order sensitive to changes in ωzx .
(3) Circles denote data using an adiabatic technique described
below. The results are not consistent with the theory simple
from Eq. (1) (dashed line) and instead require the Breit-Rabi
expression (solid line) to obtain full agreement.4

Even at our smallest coupling !/2π = 69(1) kHz the
typical magnetic-field noise was attenuated by two orders
of magnitude, rendering it essentially undetectable. Ideally,

3Our procedure also quantifies the small fluctuations that survive
for spectra that are flat beyond second order, as in Eq. (1).

4The fluctuations can be even smaller for a given ! if we allow for
# ̸= 0 (see Appendix A).
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Figure 3 | a) Experimental protocol. We started with atoms in state |i, qi = k ≠ kiÍ, i œ {xyz} but with di�erent RF coupling strength
�rf,i/2fi = 117.7 ± yyy kHz, such that the Raman lasers were no longer resonant with the clock-state transition energies (Êzx, Êxy, Êyz. We
ramped the Raman beams on in 750 µs. The detuning induced by the change in �RF created a global minima in the dispersion, and it
was chosen such that eigenstates corresponding to this global minima had a large overlap with the initial |x, y, zÍ. This additionally shifted
the location of the Dirac point away from q = 0, such that its location does not overlap with the atomic cloud. We then ramped the RF
coupling strength to its final value �rf,f/2fi = 117.7 kHz in 1.25 ms. We let the system evolve in the dark for times between 5 µs and
400 µs, followed by a 25 us Raman pulse. b)The implemented experimental protocol was equivalent to a three-arm interferometer that split
an initial state into three final states with amplitudes related to the initial wave function phases c) Time evolution and fits as a function of
interferometer duration for all output ports in the interferometer at fixed quasimomentum of q = xx kL d) Power spectral densities of the
three interferometer output ports
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Figure 4 | a) Fitted phases b)Berry curvature maybe or Berry connec-
tion with something to smooth crazy points

manifold, and deduced the topology resulting from the Dirac point.
While two-dimensional spin-orbit coupling has been implemented
in systems of ultra-cold fermions 21, 31, the short lifetime of these
systems is still an issue and there have not been any other ex-
perimental demonstrations of engineered Rashba spin-orbit cou-
pling all within a single hyperfine manifold. Our new implemen-
tation has the advantages of reduced collision induced losses and
increased stability against environmental fluctuations due to the
clock-like nature of the RF dressed states. The spontaneous emis-
sion limited lifetime of our system is xxx ms, measured with o�
resonant Raman couplings. The lifetime measured with resonant
Raman coupling is reduced to xxx ms which we attribute most
likely to technical noise (noise in the relative phase between the
RF field and the Raman beams) and unwanted avoided crossings
with higher Floquet bands. It is unlikely that we su�ered from
Floquet induced heating small due to the small interaction ener-
gies at low atomic densities 32. This work could allow the study
of rich ground state physics in many body systems of bosons and
fermions [ref]. Other future work includes fancy thing [fancy], an-
other fancy thing [fancier] and one more fancy thing [fanciest].
Open the gap and measure Berry curvature spread throughout a
larger range of momenta? Create interfaces between topologically
inequivalent continuous media and observe emerging edge sates?
Fermions and interactions in bec-bcs crossover?

Ana’s concerns:

• Since the Dirac point is degenerate technically I shouldn’t be
talking of Chern numbers but maybe Z2 topological invari-
ants. I think the Berry’s phase is well defined in this case
as long as my path doesn’t go through degeneracies? Hav-
ing some doubts after seeing reading about things like Wilson
loops.

• With restructured manuscript I don’t know where is a good
place to cite the first 2D SOC result.

TODOS:

• Fill in the blank numbers

• Write better captions
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We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement
and real-time feedback. The pseudospin state of an ensemble of N ¼ 5 × 104 laser-cooled 87Rb atoms is
deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4
(6) dB] in variance below the standard quantum limit for unentangled atoms—comparable to the best
enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint
premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase
variance relative to the standard quantum limit for N ¼ 4 × 105 atoms. This is one of the largest reported
entanglement enhancements to date in any system.

DOI: 10.1103/PhysRevLett.116.093602

Entanglement is a fundamental quantum resource, able
to improve precision measurements and required for all
quantum information science. Advances in the creation,
manipulation, and characterization of entanglement will be
required to develop practical quantum computers, quantum
simulators, and enhanced quantum sensors. In particular,
quantum sensors operate by attempting to estimate the total
amount of phase that accumulates between two quantum
states, typically forming a pseudospin-1=2. When N atoms
are unentangled, the independent quantum projection or
collapse of each atom’s wave function fundamentally limits
the sensor by creating a rms uncertainty ΔθSQL ¼
1=

ffiffiffiffi
N

p
rad in the estimate of the quantum phase, the

standard quantum limit (SQL) [1]. However, entanglement
can be used to create correlations in the quantum collapse
of the N atoms [2,3] to achieve large enhancements in
phase resolution, in principle down to the Heisenberg
limit ΔθHL ¼ 1=N rad.
This Letter features two main results. First, following

Fig. 1(a), we use the outcome of a collective, or joint,
measurement to actively steer the collective spin projection
of an ensemble of 5 × 104 laser-cooled and trapped 87Rb
atoms to a target entangled quantum state. Real-time
feedback allows generation of the target state with
enhanced angular resolution S−1≡ðΔθSQL=ΔθÞ2¼5.5ð8Þ,
or 7.4(6) dB below the SQL, with no background sub-
tractions. Second, we perform a direct subtraction of
quantum noise without feedback and directly observe a
conditionally enhanced phase resolution S−1 ¼ 59ð8Þ or
equivalently 17.7(6) dB below the SQL. Along with
another recent result using similar collective measurements
[4], this is the largest phase enhancement from entangle-
ment to date in any system.
Entanglement is often created and manipulated via

unitary interactions between qubits [9–18]. However, the
joint measurements on two or more qubits used here
(sometimes referred to as quantum nondemolition

measurements) have shown promise for creating entangle-
ment, particularly among large numbers of qubits [19–30].
By adding real-time feedback guided by the outcome of
joint measurements, one can access a more diverse range of
quantum technologies including Heisenberg-limited atomic
sensors [31], reduction of mean field shifts in atom
interferometers [32,33], quantum teleportation [34,35],
and error correction [36,37]. Quantum noise suppression

FIG. 1. (a) A coherent spin state’s spin-projection noise (pink
distribution) is projected onto a squeezed state by a measurement
of Jz. The quantum state randomly collapses within the original
distribution, creating a conditionally squeezed state. The pre-
measurement’s outcome is then used to rotate the spin state’s
polar angle to a desired target spin projection (black solid line)
Jz ¼ Jztar , creating a deterministically squeezed state. (b) The
relevant 87Rb energy levels (black) and cavity resonance fre-
quency ωc (blue). (c) Simplified experimental diagram. The
cavity is probed in reflection. Homodyne detection of the probe is
sampled by a microcontroller that then applies microwaves at
6.8 GHz to achieve the desired feedback rotation θfb to create the
deterministically squeezed state in (a). See the Supplemental
Material [5] for experimental details.
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ment, particularly among large numbers of qubits [19–30].
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quantum technologies including Heisenberg-limited atomic
sensors [31], reduction of mean field shifts in atom
interferometers [32,33], quantum teleportation [34,35],
and error correction [36,37]. Quantum noise suppression

FIG. 1. (a) A coherent spin state’s spin-projection noise (pink
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relevant 87Rb energy levels (black) and cavity resonance fre-
quency ωc (blue). (c) Simplified experimental diagram. The
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We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of

two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise.

Our feedback scheme is based on weak optical measurements with negligible backaction followed by

coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary

noise model and characterized in terms of the trade-off between information retrieval and destructivity

from the optical probe. We also demonstrate the correction of more general types of collective noise. This

technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme,

opening the way towards improved atomic sensors.

DOI: 10.1103/PhysRevLett.110.210503 PACS numbers: 03.67.!a, 03.65.Yz, 37.30.+i

Coherent ensembles of two-level atoms, whose quantum
evolution provides a reference oscillatory signal, are the
core of many instruments based on Ramsey interferometry,
like atomic clocks, magnetic field sensors, or inertial and
gravitational sensors [1– 3]. Trapping such atomic ensem-
bles gives access to long observation times, and thus,
extreme precision, provided that one can fight the loss of
coherence induced by ambient noise. A noise homogene-
ous over the size of the ensemble affects all the atoms in
the same way. If the number of atoms is large, it becomes
possible to measure the effect of this collective noise
with negligible perturbation of the state of the individual
systems. This can be done using weak measurements, as
proposed in [4], and used for example to determine the
collective atomic state of a coherent ensemble of atoms [5].
It is then possible to react on the atoms to compensate for
the effect of the noise, and thus fight the corresponding
decoherence. Similar techniques have been proposed to
boost the performance of atomic clocks by phase locking
the local oscillator to the atomic phase [6].

In this Letter, we demonstrate such a measurement and
correction scheme, using a trapped coherent ensemble of
two-level atoms. The atomic system consists in rubidium
87 atoms prepared in a coherent superposition of the two
ground hyperfine levels j0i " jF ¼ 1; mF ¼ 0i and j1i "
jF ¼ 2; mF ¼ 0i of the electronic ground state 52S1=2. This
superposition can be manipulated by the interaction with a
microwave field resonant with the 6.835 GHz transition
between the two levels. The population difference is
weakly measured using a frequency modulated optical
probe, whose sidebands are phase shifted with opposite
signs by the two atomic populations. This probe is used to
evaluate the effect of a collective noise on the atoms for
later correction. We consider two different noise models:
the first model takes randomly one of two known values,

and the second one takes a random value uniformly
distributed.
A sample of Nat indistinguishable two-level atoms can

be represented as an ensemble of effective spins 1=2,
whose sum defines a collective spin, or Bloch vector,
with observables J ¼ ðJx; Jy; JzÞ[7,8]. The observable Jz
refers to the population difference between the two atomic
levels, while Jxand Jycharacterize the coherence between
the two levels. When all the atoms are in the same pure
single particle state, they form a coherent spin state (CSS)
or Bloch state; the associated Bloch vector has its extrem-
ity on a Bloch sphere of radius J¼ Nat=2. Any collective
and homogeneous interaction with the microwave results
in a rotation of the Bloch vector. We restrict our study to
rotations around Y: all accessible states are then repre-
sented by a vector in the y¼ 0 plane, labelled j!i from
the angle ! it forms with the Z axis.

FIG. 1 (color online). Evolution of the collective spin on the
Bloch sphere (case of a binary random collective rotation).
A "=2 rotation around Y prepares a coherent superposition.
The state experiences a random rotation of þ# or !# around
Y, which is detected using a weak nondestructive measurement
and then corrected.
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rotation direction for the !=4 correction pulse through the
microwave phase shifter.

We evaluate the efficiency of the feedback control in
terms of the achieved coherence recovery. To determine the
coherence of the atomic state at the end of the cycle, we
send a second !=2 pulse to obtain a Ramsey type mea-
surement. Figure 3 shows the remaining coherence after
one cycle (solid squares), when the measurement uncer-
tainty " is varied by changing the number of photons in the
probe pulse. Each point results from 50 repetitions of the
sequence, and the reported error bars reflect the statistical
spread. We fitted the data set with Eq. (2) for #out

!=4, using

Eq. (1) for the success probability ps and assuming for "
two contributions, one related to the photonic shot noise
(/ Nph

!1=2) and one to technical noise (/ Nph
!1): the latter

is dominant and we obtain " ¼ 9:6ð5Þ % 1011=Nph [18].
The fit of Fig. 3 also yields the rate for the probe induced
decoherence per photon $ ¼ 7:6ð4Þ % 10!10. The remain-
ing coherence of the output state reaches an optimum of
0.993(1) with 9:1% 106 photons per sideband: this value
exceeds the coherence 1=

ffiffiffi
2

p
& 0:707 of the mixed state

after the RCR, proving the efficiency of our scheme.
We confirmed this result by multiplying the success

probability ps of detecting the right hemisphere and the
probe induced decoherence measured separately using
Ramsey interferometry. To obtain ps, the sign of the RCR
and the corresponding correction are recorded during the
experiment; treated off-line they produce the open circles
of Fig. 3, fitted with Eq. (1).

To study how the feedback scheme can protect a CSS
over time in the presence of noise, we iterate 200 times on
the same atomic ensemble the cycle consisting of the
binary RCR of angle !=4, the weak measurement of J z,
and the corresponding correction rotation. At each cycle,

J z is measured by integrating the signal determined by
1:4% 107 photons in each sideband.
During that experiment the signs of the RCRs and the

corresponding corrections are recorded; analyzed off-line
they provide the trajectory followed by the Bloch vector.
The state occupancy, which is the probability to be in a
given state, is measured versus time averaging the results
of 200 experimental runs. In the closed loop case, the
system spreads from j!=2i to the two poles (j0i, j!i),
and at a slower rate to j3!=2i [Fig. 4(a), points]. The
evolution of the state occupancy over the four states is
explained in terms of the random rotations of '!=4 at
every cycle, and by the success probability ps of the weak
measurement [Fig. 4(a), solid lines]. At each cycle, ps

decreases since the spontaneous emission induced by the
probe and the residual inhomogeneous differential light
shift of the trap shorten the spin. The trap induced deco-
herence has been characterized by Ramsey interferometry,
and the coherence loss versus the time in the dipole trap
shows a Gaussian decay. Considering the cycle duration,
the trap decoherence can be expressed in terms of the
number of cycles N as expð!ðN=N0Þ2Þ, where N0 ¼
157:6. This decoherence is not a limitation in the present

FIG. 3. Remaining coherence (solid squares) after the cycle
consisting of a binary RCR, measurement and correction; suc-
cess probability (open circles) versus the number of photons per
sideband in the probe pulse. The solid line is a fit of the
remaining coherence data with Eq. (2), the dashed line, of the
success probability data with Eq. (1). The dotted line at 1=

ffiffiffi
2

p

indicates the coherence after the RCR. Error bars are the '1
standard error of statistical fluctuations.

(a)

(b)

(c)

FIG. 4. State occupancy versus the number of cycles for the
state j0i(solid circles), j!=2i(open squares), j!i(open circles)
and j3!=2i(solid squares) with (a) and without (b) feedback
correction. Each experimental point is obtained from 200 repe-
titions of the sequence. One cycle lasts 140 %s. The solid lines
are calculated independently, considering the probabilistic out-
come of the RCRs, and in closed loop, that of the corresponding
corrections. Inset: In the open loop case, the state occupancy is
equally distributed over the four states after about 10 cycles.
(c) Calculated remaining coherence with (solid line) and without
(dashed line) feedback. The experimental points in closed loop
are shifted at the top of the shaded region because of the finite
size statistical sample in the state occupancy determination.
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through concerted variation of the potentials on segmented control
electrodes of the trap, and individual ion detections can be per-
formed separately11,19.

Ion preparation before each implementation of the QECC
protocol consists of Doppler cooling, Raman sideband cooling of
all three axial modes of vibration to the ground state, and optical
pumping of the ions to the j # # # l state10,20. Each experiment also
requires the initialization of the primary physical qubit to a state
jw 0lP ¼ aj " lP þ bj # lP with the ancillae initialized to the state
j # # lA. This is accomplished by momentarily increasing the spa-
cings between the three ions and then applying a rotation that
affects the ions differently owing to their respective positions in the
laser beam intensity profile (see Fig. 2a). This operation requires
only one laser pulse10. The state of the primary qubit is then encoded
in the state of all three qubits (seeMethods section). In the following
discussion we assume perfect entangling operations.

After encoding, we apply an ‘error’ v e, a rotation Xve ; to all qubits
by means of a stimulated-Raman transition with all ions illumi-
nated equally (see equation (1) and top part of Fig. 2a).With respect
to later measurement, this error induces a spin-flip on each physical
qubit with probability pðveÞ ¼ sin2ðve=2Þ: The state is then decoded
using the inverse of the operation used for encoding. The decoding
effects a transformation such that afterwards, the four possible
states of the ancillae in the measurement basis (the error syn-
dromes) depend on the type of error that has occurred: the state
j " " lA corresponds to no error having occurred, the state j " # lA
corresponds to the first ancilla having flipped, the state j # " lA
corresponds to the second ancilla having flipped, and the state
j # # lA corresponds to the primary qubit having flipped. For at
most one qubit flipped, the state of the primary qubit before a
correction operation is applied is shown in Table 1.

After the decoding operation, the ions are spatially separated (see
Fig. 2c), and ameasurement of the state of the ancillae is performed.

The ions are then moved so that only the primary qubit ion is
addressed. Depending on the ancillae measurement outcome, a
correction operation (X, Yor I, see Table 1) is applied to the primary
qubit. This qubit is then analysed to determine the effectiveness of
the protocol. After initial cooling and preparation of the state
j # # # l, each experiment requires approximately 4ms to perform.
In principle, this QECCworks perfectly only when at most one of

the three qubits undergoes a spin-flip error. The probability of more
than one qubit flipping is given by:

P2or3ðveÞ ¼ p3ðveÞ þ 3p2ðveÞ½12 pðveÞ& ð2Þ
Because of this, most input states cannot be corrected to all orders in
the error ve, though they can be corrected such that an improve-
ment in the fidelity over the uncorrected case is attainable for small
errors. The fidelity of the corrected final state (as derivable from the
action of the code in Fig. 1) as a function of the error will be:

FðveÞ ¼12 jaj2jbj2ð22 3cosve þ cos3 veÞ

<12
3

4
jaj2jbj2v4e þO v6e

! " ð3Þ

The infidelity in this case is quadratic in v2e ;whereas it is linear in v2e
for the uncorrected state. The fidelity reaches a maximum value of 1
for the cases where jaj2jbj2 ¼ 0: The input states j # lP (where
a¼ 0; jbj¼ 1) and j " lP (where jaj ¼ 1, b ¼ 0) can therefore be

Figure 1 Quantum circuit for the quantum error-correction protocol described and

implemented in this work as one would compose it of single-bit rotations, Hadamard

gates, and controlled-not gates15. Double lines denote classical information. The

entangling operation G(¼G 21) is diagonal in the measurement basis and is defined in the

Methods section. The operation of G requires only one collective pulse on all three ions as

implemented in this work. The spin echo refocusing operations and ancilla mapping are

discussed in the Methods section. For rotations around an axis by p we omit the angle

subscript, for example, X ¼ R(p, 0) (see equation 1). The Hadamard and controlled-not

operations that make up the entangling operation G are equivalent to three controlled-

phase rotations between permuted pairs of qubits; these operations could be substituted

for the ones shown, depending on the system-dependent entangling gates selected.

Figure 2 Schematic representation of experimental techniques. a, State preparation
method. The upper panel depicts ion locations in the laser beam profile for global

rotations. In the lower panel, the ions’ spacings are increased such that their relative Rabi

frequencies for rotations are different (the spacings between the ions relative to the laser

beam width are exaggerated in this diagram). By moving the ions such that the primary

qubit (labelled P) is at a location of lower radiation intensity, and hence has a lower Rabi

frequency than the ancillae A1 and A2 (which are illuminated with equal intensity), a

rotation of 2np (n an integer; for this experiment n ¼ 2) can be performed on the ancillae

while any chosen rotation dependent upon the relative Rabi frequencies can be performed

on the primary qubit10. b, Optical-dipole forces (directions indicate relative phase) on ions
during the entangling operation G for different internal states. The state-dependent

force18 (F # ¼ 22F ") on each ion leads to accumulation of phase if the centre-of-mass

vibrational mode is excited, that is, when the internal states of the ions are different, as in

the two diagrams on the right. c, Transportation of ions during the error-correction
protocol. The three ions’ positions are shown as a function of time. Qubit operations are

performed on ions in trapping regions 3 and 4, and ion separations are performed in

region 3.
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JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA

(Received 7 December 2015; published 4 March 2016)

We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement
and real-time feedback. The pseudospin state of an ensemble of N ¼ 5 × 104 laser-cooled 87Rb atoms is
deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4
(6) dB] in variance below the standard quantum limit for unentangled atoms—comparable to the best
enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint
premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase
variance relative to the standard quantum limit for N ¼ 4 × 105 atoms. This is one of the largest reported
entanglement enhancements to date in any system.

DOI: 10.1103/PhysRevLett.116.093602

Entanglement is a fundamental quantum resource, able
to improve precision measurements and required for all
quantum information science. Advances in the creation,
manipulation, and characterization of entanglement will be
required to develop practical quantum computers, quantum
simulators, and enhanced quantum sensors. In particular,
quantum sensors operate by attempting to estimate the total
amount of phase that accumulates between two quantum
states, typically forming a pseudospin-1=2. When N atoms
are unentangled, the independent quantum projection or
collapse of each atom’s wave function fundamentally limits
the sensor by creating a rms uncertainty ΔθSQL ¼
1=

ffiffiffiffi
N

p
rad in the estimate of the quantum phase, the

standard quantum limit (SQL) [1]. However, entanglement
can be used to create correlations in the quantum collapse
of the N atoms [2,3] to achieve large enhancements in
phase resolution, in principle down to the Heisenberg
limit ΔθHL ¼ 1=N rad.
This Letter features two main results. First, following

Fig. 1(a), we use the outcome of a collective, or joint,
measurement to actively steer the collective spin projection
of an ensemble of 5 × 104 laser-cooled and trapped 87Rb
atoms to a target entangled quantum state. Real-time
feedback allows generation of the target state with
enhanced angular resolution S−1≡ðΔθSQL=ΔθÞ2¼5.5ð8Þ,
or 7.4(6) dB below the SQL, with no background sub-
tractions. Second, we perform a direct subtraction of
quantum noise without feedback and directly observe a
conditionally enhanced phase resolution S−1 ¼ 59ð8Þ or
equivalently 17.7(6) dB below the SQL. Along with
another recent result using similar collective measurements
[4], this is the largest phase enhancement from entangle-
ment to date in any system.
Entanglement is often created and manipulated via

unitary interactions between qubits [9–18]. However, the
joint measurements on two or more qubits used here
(sometimes referred to as quantum nondemolition

measurements) have shown promise for creating entangle-
ment, particularly among large numbers of qubits [19–30].
By adding real-time feedback guided by the outcome of
joint measurements, one can access a more diverse range of
quantum technologies including Heisenberg-limited atomic
sensors [31], reduction of mean field shifts in atom
interferometers [32,33], quantum teleportation [34,35],
and error correction [36,37]. Quantum noise suppression

FIG. 1. (a) A coherent spin state’s spin-projection noise (pink
distribution) is projected onto a squeezed state by a measurement
of Jz. The quantum state randomly collapses within the original
distribution, creating a conditionally squeezed state. The pre-
measurement’s outcome is then used to rotate the spin state’s
polar angle to a desired target spin projection (black solid line)
Jz ¼ Jztar , creating a deterministically squeezed state. (b) The
relevant 87Rb energy levels (black) and cavity resonance fre-
quency ωc (blue). (c) Simplified experimental diagram. The
cavity is probed in reflection. Homodyne detection of the probe is
sampled by a microcontroller that then applies microwaves at
6.8 GHz to achieve the desired feedback rotation θfb to create the
deterministically squeezed state in (a). See the Supplemental
Material [5] for experimental details.
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Overarching question

Simple reservoir 
Move complexity to classical control problem

Structured reservoir 
Optical pumping

H. M. Hurst and IBS (2019, under review)S. Diehl, et al; PRL (2010)

What types of matter are possible in dynamical steady state?

Dissipation-Induced d-Wave Pairing of Fermionic Atoms in an Optical Lattice

S. Diehl,1,2 W. Yi,1,3,* A. J. Daley,1,2 and P. Zoller1,2

1Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
2Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

3Key Laboratory of Quantum Information, University of Science and Technology of China,
CAS, Hefei, Anhui,230026, People’s Republic of China
(Received 20 July 2010; published 22 November 2010)

We show how dissipative dynamics can give rise to pairing for two-component fermions on a lattice. In

particular, we construct a parent Liouvillian operator so that a BCS-type state of a given symmetry, e.g., a

d-wave state, is reached for arbitrary initial states in the absence of conservative forces. The system-bath

couplings describe single-particle, number-conserving and quasilocal processes. The pairing mechanism

crucially relies on Fermi statistics. We show how such Liouvillians can be realized via reservoir

engineering with cold atoms representing a driven dissipative dynamics.

DOI: 10.1103/PhysRevLett.105.227001 PACS numbers: 74.20.Mn, 03.75.Kk, 74.20.Rp

Pairing in condensed matter physics in general, and in
atomic quantum gases in particular, is associated with con-
servative forces between particles, e.g., in Cooper pairs or
molecular BEC pairs [1]. Lattice dynamics gives rise to
exotic forms of pairing, such as the expected formation of
d-wave Cooper pairs of fermions for a 2D Hubbard model
for repulsive interactions, as discussed in the context of
high-Tc superconductivity [2], but also condensates of !
pairs [3], and the formation of repulsively bound atom pairs
[4].Herewe show that purely dissipative dynamics, induced
by coupling the system to a bath, can give rise to pairing,
even in the complete absence of conservative forces. This
‘‘dissipative pairing’’ crucially relies on Fermi statistics and
is in contrast to pairing arising from bath-mediated inter-
actions (e.g., phonon-mediated Cooper pairing). We will
discuss how reservoir engineering provides opportunities
for experimental realization of this dissipative pairing
mechanismwith cold atomic fermions in optical lattices [5].

Below we treat the example of a d-wave-paired BCS
state of two-component fermions in two dimensions (2D),
showing how the pairing can be generated via purely
dissipative processes. A BCS-type state is the conceptually
simplest many-body wave function describing a conden-
sate of N paired spin-1=2 fermionic particles, jBCSNi!
ðdyÞN=2jvaci. On a square lattice, and assuming singlet
pairs with zero center-of-mass momentum, we have dy ¼
P

q’qc
y
q;"c

y
% q;# or dy ¼ P

i;j’ijc
y
i;"c

y
j;#, where cyq;" (cyi;")

denotes the creation operator for fermions with quasimo-
mentum q (on lattice site i) and spin" ¼" , # , and’q (’ij)
the momentum (position) wave function of the pairs.
For d-wave pairing, the pair wave function obeys ’qx;qy ¼
% ’% qy;qx ¼ ’% qx;% qy , and below we choose ’q ¼
cosqx % cosqy or ’ij ¼ 1

2

P
#¼x;y$#ð%i;jþ e# þ %i;j% e#Þ with

$x ¼ % $y ¼ 1 corresponding to the limit of well localized
pairs [see Fig. 1(a)], and e# the unit lattice vector in # ¼ x,
y direction. For reference below we remark that in BCS

theory, with pairing induced by coherent interactions, the
corresponding energy gap function would be !q ¼
!ðcosqx % cosqyÞ in the molecular limit. The dissipative
pairing mechanism is readily generalized to other pairing
symmetries, such as, e.g., px þ ipy [6], as long as the
pairing is not on site.
While in the standard scenario BCS-type states are

typically used as variational mean-field wave functions to
describe pairing due to interactions, here the system is
dissipatively driven towards the (pure) many-body BCS

state, $ðtÞ ¼ eLt$ð0Þ !t!1jBCSNihBCSNj, beginning from
an arbitrary initial mixed state $ð0Þ. The dynamics of the
density matrix for the N-particle system $ðtÞ is generated
by a Liouville operator with the structure L$ ¼
% iHeff$ þ i$Hy

eff þ &
P

‘j‘$j
y
‘ with non-Hermitian effec-

tive Hamiltonian Heff ¼ H % i
2&

P
‘j

y
‘ j‘. Here, fj‘g are

non-Hermitian Lindblad operators reflecting the system-
bath coupling with strength characterized by the rate &.

FIG. 1 (color online). (a) Symmetry in the d-wave state,
represented by a single off site fermion pair exhibiting the
characteristic sign change under spatial rotations. In a d-wave
BCS state, this pair is delocalized over the whole lattice. (b),
(c) The dissipative pairing mechanism builds on (b) Pauli block-
ing and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a Néel
state (see text). (c) The d-wave state may be seen as a delocal-
ization of these pairs away from half-filling (shown is a cut along
one lattice axis).
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Design quantum jump operators to
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This example is d-wave pairing

C
om
pu
ta
tio
n

Feedback

Weak
measurement



Theory program

Altered mean field systems 
Large systems 


Physical insights

Exact numerics 
Small lattice systems


(With Gorshkov group)

QI / field theory viewpoint 
Analytic methods


(With Taylor group)


Just starting
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Measurement model

Stochastic Schrodinger equation 
Usefully provides system dynamics and measurement record

Lecture Notes on Continuous quantum Measurement; I. H. Deutsch (2015)
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Key point: a full projective measurement of R puts system in a conditional pure state

Describe as Kraus operator

For dispersive measurement of a coherent state (for MFT)

<latexit sha1_base64="a97FhYQKapwS0ZdJvMUon6KZwjw="></latexit>
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Example: Add spin degree of freedom

H. M. Hurst et al (2019, under review)
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Measure magnetization in addition to density 
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Cooling + feedback

Feedback 
Apply potential best matched to current estimate of density and adiabatically remove

For state preparation near MFT: A. C. J. Wade, J. F. Sherson, and K. Mölmer; PRL (2015)

State following weak measurement of density 
Most simple case of density measurement

Estimator of density from measurement

Actual density following measurement



Cooling + feedback

Feedback 
Apply potential best matched to current estimate of density and adiabatically remove

For state preparation near MFT: A. C. J. Wade, J. F. Sherson, and K. Mölmer; PRL (2015)

State following weak measurement of density 
Most simple case of density measurement

Estimator of density from measurement

Actual density following measurement



Effective Hamiltonian limit
Parametric terms in Hamiltonian 

Even simulate “fire-wall” models of gravity

e.g. effective local interactions

<latexit sha1_base64="GhhRCP2BJqvQsEt93OUUfZsW9z0=">AAACWHicbZBNaxRBEIZrx2iS9WuTHHNpsigRIcyIoBclX4dcFhN0k8DOuNT01uw26ekZumvEZZh/k1+Tq17019j7AZrEgoan36rq6nrTUivHYfirFTxYefhodW29/fjJ02fPOxub566orKS+LHRhL1N0pJWhPivWdFlawjzVdJFeHc3yF9/IOlWYLzwtKclxbFSmJLKXhp2P8QRZnIiXH8SChqF4LbJBb/f7q2QhxaVTX+MRjsdkvfpX9JdhpxvuhfMQ9yFaQheWcTrcaAXxqJBVToalRucGUVhyUqNlJTU17bhyVKK8wjENPBrMySX1fNFGvPDKSGSF9cewmKv/dtSYOzfNU1+ZI0/c3dxM/F9uUHH2PqmVKSsmIxeDskoLLsTMNTFSliTrqQeUVvm/CjlBi5K9t+34mPwulnr+3QNdTjAljmdD0kyirj/1Pje1zN20qdOmNk3buxbd9eg+nL/Zizyfve3uHy79W4Nt2IFdiOAd7MMJnEIfJFzDDfyAn63fAQSrwfqiNGgte7bgVgSbfwA21bHn</latexit>
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D. Carney, P. C. E. Stamp, and J. M. Taylor; Classical and Quantum Gravity (2019)

Local potential from density estimator

Almost four-field interaction term Added noise term



Example
Phase transitions in magnetic systems 

Quench from easy plane to easy axis ferromagnet

H. M. Hurst et al (2019, in preparation)
<latexit sha1_base64="QwHSoNmX9HnaRaypf9nZbG4pVYQ="></latexit>

Quench!
Cooling only Feedback

Unquench!
Cooling only



Open questions / directions

Conceptual questions  

Properties of quasi-equilibrium 

Do non-thermal dynamical steady-states exist?


Can states outside of usual CMP rules exist?

e.g., order in 1D 

Effective field theory description 

When can feedback behave as new interactions?

Long-range quasi-interactions… 

Reality motivated questions 

Information lost to environment 

Not all light is collected

Feedback cannot cool all modes that were excited by 

measurement


Detectors are imperfect

Feedback signal will add noise 

Together

What will practical lifetimes be? 

Finite bandwidth 

Feedback delayed

Needed for cooling, but unwanted for control 

‘Continuous Quantum Measurements and Path Integrals' M. 
B. Mensky (1993)



Other recent experiments
Pair production 

Amusingly equivalent to L.-Z. tunneling
Chern number from Diophantine relation

Dynamical decoupling in a BECSolitons move, vanish, and diffuse 

D. Genkina, et al. (2019, accepted) A. Pinero et al; (2019, in preparation)

Topological transition / Yang monopole
Non-Abelian systems: second Chern number

S. Sugawa, et al. Science (2018)

Expanding universe

S. Eckel, et al. PRX (2018)

[with T. Jacobson and G. K. Campbell @ JQI]
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Exceeding the Schwinger limit of pair production

A. M. Piñeiro,⇤ D. Genkina, M. Lu, and I.B. Spielman
Joint Quantum Institute, National Institute of Standards and

Technology and University of Maryland, Gaithersburg, MD 20899, USA
(Dated: February 11, 2019)

We quantum simulated pair production with an atomic Bose-Einstein condensate. We synthesized
the 1D Dirac equation using an optical lattice and emulated electric field. The resulting field
strength was far in excess of Schwinger’s limit for pair production in quantum electrodynamics,
and we directly observed the production of particles. This quantum electrodynamical process is
equivalently described by Landau-Zener tunneling in the atomic physics context, and our data is in
quantative agreement with theory.

The creation of particle-antiparticle pairs from vacuum
by a uniform electric field is a quantum phenomenon
that arises in quantum electrodynamics (QED) [1–4].
The threshold electric field strength of EC = 1.32 ⇥
1018 V/m for this phenomenon was first computed by J.
Schwinger [5]. Electric fields on this scale are not experi-
mentally accessible, even the largest laboratory fields [6]
- produced by ultra short laser pulses - fall short, mak-
ing direct observation of pair production out of reach of
current experiments. To experimentally probe this limit
with an atomic Bose-Einstein condensate (BEC), we en-
gineered the relativistic 1D Dirac Hamiltonian with en-
ergy scales reduced by 1017 orders of magnitude, allow-
ing laboratory scale forces to greatly exceed Schwinger’s
limit. We readily measured pair-production and demon-
strate that this high-energy phenomenon is equivalently
described by Landau-Zener tunneling.

In the Dirac vacuum, the minimum electric field EC

= m
2
c
3
/~qe for pair production, determined by the par-

ticle/antiparticle mass me and charge qe, is enormous.
However, the pair production phenomenon essentially de-
pends on the dimensionless ratio E/EC & 1/2 for an ap-
plied electric field E. This allows our physical system with
very di↵erent characteristic scales to be used to realize
the underlying phenomenon.

Our system was well described by the 1D Dirac Hamil-
tonian

ĤD = cp̂x�z +mc
2
�x, (1)

where p̂x is the momentum operator and �z, �x are
Pauli operators. The 1D Dirac Hamiltonian acts on  
= ( 2,  1), a two component spinor wavefunction, and
describes free particles with velocities ±c, that are then
coupled with strength mc

2 to give the familiar E(p) =
±(p̂2xc

2+m
2
c
4)1/2 dispersion relation for relativistic par-

ticles and antiparticles. We probe Schwinger’s limit for
pair production by measuring the number of ‘pairs’ pro-
duced as a function of rest mass and applied force.

We emulated ĤD with the lowest two bands of a 1D op-
tical lattice, which describes a pair of relativistic modes

⇤ Contact information: apineiro@umd.edu

FIG. 1. Schematic representation for quantum simulating pair
production. The Dirac dispersion relation that underlies pair
production is mapped to the dispersion relation of a 1D op-
tical lattice at the edge of the Brillouin zone where q = kL.
This mapping is valid within the shaded region. Our system is
restricted to the ground and first excited bands of the lattice,
yielding a two level quantum system.

at the edge of the Brillouin zone as shown in Fig. 1.
Here, the rest mass, m⇤

c
⇤2, is generated by the lattice

laser coupling strength and is represented with units of
recoil energy. The speed of light c is replaced with the
recoil velocity ~kL/mRb, an experimentally accessible pa-
rameter that makes the e↵ective speed of light c

⇤ =
4.3 mm/s. The single photon recoil momentum, ~kL =
2⇡~/�L, specifies the recoil energy EL = ~2k2L/2mRb = h
⇥ 2.02 kHz. The Compton wavelength is a length scale
in high energy physics. The physical interpretation of
this parameter in our analog system can be understood
as the recoil distance, where �C = h/m⇤

c
⇤ ⇡ 16⇡/skL,

where s is lattice depth in energy recoil units and kL

the wavenumber. These recoil units set the scale for all
physical quantities in our analog system.

The analogue to the Dirac vacuum state is one in which
the states on the lower (antiparticle) band of the Dirac
dispersion are occupied, while the upper (particle) band
states are empty. For pair production, particles are trans-
ferred from the antiparticle band to the particle band.
The transferred atoms leave behind an empty state on
the antiparticle band, while creating an occupied state
on the particle band. Thus creating a particle and hole
pair, where the hole represents the anitparticle. We sim-
ulate this process by preparing Bose-condensed atoms in
the antiparticle band, where they undergo Bloch oscilla-
tions [7]. A constant force applied to the atoms models

3

FIG. 3. Pair production dependence on E/EC = 1/2�. This
figure shows the probability for pair production for 5 emulated
electric field strengths. The dashed line indicates Swinger’s
limit and where the physics occurs. The inset plot demon-
strates the linear relationship between the rest mass and
sweep rate.

is Swinger’s critical electric field strength. We observe
the probability of pair production for various values of
the electric field strength while varying the e↵ective rest
mass. It is evident that the physics of pair production
shows universal behavior when the field is expressed in
units of EC , i.e. all of our data has the same profile and
it is in quantitative agreement with the Landau-Zener
tunneling e↵ect. The vertical dashed line corresponds to
the ratio E/EC = 1, Schwinger’s limit for pair produc-
tion: evidently nearly all of our data is in the high-field
limit and e↵ectively exceeding this critical electric field
strength. This is extremely di�cult to achieve in other
physical contexts. The inset to Fig. 3 plots the rest mass
required to achieve a 50% probability of pair production
as a function of the field strength, and the solid curve is
the Landau-Zener prediction. Together these data show
the clear connection between the Landau-Zener tunnel-
ing of a single quantum state and the phenomenon of pair
production, however, this is far from the Dirac vacuum
state. Here we also demonstrate how the e↵ective rest
mass can be tuned in our physical system.

We concluded our studies by creating an initial state
where each negative energy state was occupied with equal
probability, mimicking the occupation probabilities for
vacuum state of the Dirac equation. We created this con-
figuration by adiabatically loading Bose-condensed atoms
into the lowest band at zero quasimomentum (q = 0) of
a deep optical lattice, where V= 3.41EL. Following an
applied force, the atoms were held for a long time - 1 sec-
ond - in this deep lattice. [7]. This applied force along
with the long hold time allowed for momentum chang-
ing collisions [9] to take place and thus the antiparticle

band was filled with a uniform distribution of momen-
tum states. Here, the antiparticle band represents a uni-
formly filled ‘vacuum’ modeling the Dirac vacuum. The
deep lattice was quickly converted into a shallow lattice
depth V= 0.78EL and a second linear force was applied to
the atoms. After some hold time t, a fraction of the mo-
mentum distribution of the atoms were transferred to the
particle band. The lattice was then adiabatically ramped
o↵ and again the preserved quasi-momenta were mapped
onto corresponding free particle momentum states. Fig. 4
a shows the fraction of atoms transferred to the particle
band and the missing atoms in the antiparticle band for
time = 0.5 and 2.5ms. For a hold time of 2.5ms, a signifi-
cant fraction of atoms were trasferred to the particle band
and is represented by a wedge shape at q(kL)=-2. Fig. 4 b
is a 2D stack plot showing a range of hold times from 0.5
to 3.75 ms. Here the slope, represented by dashed lines,
is precisely the sweep rate. Repeating this experiment
for various hold times demonstrates that the fraction of
atoms transferred to the particle band increases linearly
with time, see Fig. 4 c. This can be interpreted as an
analog for the rate of pair production since in some time
�t, q changes by �q. A fraction �q/2kL of all atoms
have experienced the avoided crossing.
The observable sharp peaks at the edges of the Bril-

louin zone in Fig. 4 a are imaging artifacts as they do not
change as a function of time. Through refocusing analy-
sis techniques Ref XXX, we were able to flatten out these
sharp peaks. The observed wedge shape of the various
atom transfered fractions in Fig. 4, implies the ‘trans-
fered’ atoms are slowing...
We have implemented an ultracold atomic system that

demonstrates a direct quantitative experimental test of
the theory of pair production and show that pair produc-
tion can be understood as a quantum tunneling process.
We show that all of our data is in the high-field limit and
e↵ectively exceeding Schwinger’s limit. We present an
analog for the rate of pair production and show that the
creation of particle antiparticle pairs increases linearly
with time.
Various high intensity laser experiments are working on

realizing pair production that extend beyond Schwinger’s
limit to induce interactions between particle-antiparticle
pairs Ref XXX. This would lead to new opportunities for
cold atom experiments to observe these interaction shifts.
The ability to observe these interactions is feasible with
fermionic atoms.
This work was partially supported by the Army Re-
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and Technology, and the National Science Foundation
through the Physics Frontier Center at the Joint Quan-
tum Institute. A.M.P. received fellowship support from
the U.S. National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE 1322106.
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