

Energetic footprints of quantum noise

Alexia Auffèves CNRS & Université Grenoble-Alpes

Quantum Thermodynamics conference, KITP, June 25-29, 2018

Thermodynamics and noise

Work extraction from thermal noise => Heat engines

Thermal noise =>
Irreversibility &
Fundamental bounds

- > Thermodynamics = Theory of control against noise
 - > Thermodynamics is based on randomness

Measurement induced quantum noise

Quantum measurement backaction => Genuine quantum randomness and quantum noise

Quantum time arrow, quantum heat

- > Forget about temperature!
- Rebuild thermodynamics on quantum measurement

Quantum measurement based thermodynamics

Work extraction from quantum fluctuations?

Quantum fundamental bounds?

Energetic and entropic footprints of quantum control?

Outline

- Introduction: Rebuilding quantum thermodynamics on quantum measurement
- A measurement-powered quantum engine
- Work cost of quantum control
- Conclusion Outlook

Scenery and definitions

- Pure initial state $|\psi(t_o)\rangle$
- Read measurement outcomes:

Stochastic quantum trajectory $|\psi_{\nu}(t)\rangle$

- Unread measurement outcomes :
- $|\psi(t_o)\rangle < \psi(t_o)| \rightarrow \rho(t) = \sum_{\gamma} P[\gamma] |\psi_{\gamma}(t)\rangle < \psi_{\gamma}(t)|$

First Law

Read measurement outcomes

- Internal energy: $U_{\gamma}(t) := \langle \psi_{\gamma}(t) | H(t) | \psi_{\gamma}(t) \rangle$
- Work: $W[\gamma](t_k -> t_{k+1}) := U_{\gamma}(t_{k+1} -) U_{\gamma}(t_k)$
- Quantum heat: $Q_q[\gamma](t_k) := U_{\gamma}(t_k^+) U_{\gamma}(t_k^-)$
- $\Delta U_{\gamma} = W[\gamma] + Q_{q}[\gamma]$

Unread measurement outcomes

- Work : Energy transfers during unitaries
- Quantum heat: Energy transfers during non-unitaries

Second Law

Stochastic entropy production

- $\Delta_i S[\gamma] := log(P_F[\gamma]/P_B[\gamma_r])$ with $\gamma := \{m(t_k)\}$, $\gamma r := \{m(t_{N-k})\}$
 - $P_{F}[\gamma] = p_{o}(m(t_{o})) | < m(t_{k+1}) | G | m(t_{k}) > |^{2}$
 - $P_B[\gamma_r] = p_N(m(t_N)) | < m(t_{k+1}) | G^+ | m(t_k) > |^2$
 - ➤ G: propagator

$$=> \Delta_i S[\gamma] = - log(p_N(m(t_N)) + log(p_o(m(t_o)))$$

Mean entropy production

• $<\Delta_i S[\gamma]> = \Delta S_{VN}$ with $S_{VN} = -Tr[\rho \log \rho]$ Von Neumann entropy

Meet the quantum heat

System: a Qubit, $H=[hv_0/2] \sigma_{Z}$

Transformation: (i) Preparation in $|+_x\rangle$ (ii) Measurement of $M=\sigma_z$

2 stochastic trajectories:

- $\Gamma_1 = [|+_{x}>, |0>]$
- $\bullet \quad \Gamma_2 = [|+_{\times}\rangle, |1\rangle]$

Energetic balance

- \triangleright Initial energy $U_i = 0$
- Final energy $U_f = +/- hv_o/2$
- \triangleright $\Delta U[\gamma] = +/-hv_o/2 = Q_q[\gamma]$
- Energetic footprint of quantum noise: Quantum heat
- A purely quantum term due to measurement backaction

Outline

- Introduction: Rebuilding quantum thermodynamics on quantum measurement and quantum noise
- A measurement-powered quantum engine
- Work cost of quantum control
- Conclusion Outlook

Meet the quantum heat (II)

System: a Qubit, $H=[hv_0/2] \sigma_{Z}$

Transformation: (i) Preparation in $|o\rangle$ (ii) Measurement of $M=\sigma_x$

2 stochastic trajectories:

- $\Gamma_1 = [|0\rangle, |+_{\chi}\rangle]$
- $\Gamma_2 = [|0\rangle, |-\chi\rangle]$

Energetic balance

- ightharpoonup Initial energy $U_i = -hv_0/2$
- \rightarrow Final energy $U_f = o$
- \rightarrow $<\Delta U[\gamma]> = hv_0/2 = <Q_q[\gamma]>$
- [M,H]≠o => Quantum heat is transferred **on average**
- Let us use this property to build a quantum engine

Basic mechanism

A qubit exchanges work with a resonant driving field

- |+_x> = good for work extraction ©
- |-x> = bad for work extraction \odot

Basic mechanism

- Solution: Stabilize the qubit in |+x>
- \triangleright Measurement of $\overline{\sigma_X}$
- \rightarrow Feedback in $|+_{x}>$

- New quantum Maxwell's demon experiment
- Energy <Q_q> is extracted from the measurement and converted to work <W>

Measurement powered engine (MPE)

o. Initialize in $|+_x>$, couple to a resonant field

MPE performances: Yield

Zeno limit:

- Qubit « frozen » in the |+√> state ☺
- W_{ext} ->h $v_0\theta/2$; $W_{er}\approx\theta^2\ln(\theta)$ => Yield η ->1

MPE performances: Extracted power

Zeno limit: Qubit « frozen » in the |+,> state

- W_{ext} -> $h\nu_0\theta/2$; $\theta=\Omega dt$, P-> $P_{\text{max}} = \Omega h\nu_0/2$
- Power and yield simultaneously optimized

Proposal for circuit QED

Experiment still to come!

Outline

- Introduction: Rebuilding quantum thermodynamics on quantum measurement and quantum noise
- A measurement-powered quantum engine
- Work cost of quantum control
- Conclusion Outlook

« Naïve » feedback stabilizing protocol

A perfect feedback requires $W_{fb} [\Gamma] = -Q_{q} [\Gamma]$

A realistic feedback stabilizing protocol

- Generalization of our framework to continuously monitored quantum systems with feedback loop
- > Thermodynamic analysis of a stabilized qubit

No feedback => decoherence: γ converges towards | o> or | 1>

Perfect feedback & stabilization

Histograms of quantum heat and work fluctuations

A realistic feedback stabilizing protocol

- Generalization of our framework to continuously monitored quantum systems with feedback loop
- > Thermodynamic analysis of a stabilized qubit

Power bounded feedback => Imperfect stabilization

Energetic cost of quantum control

- Thermal noise
- Energy scale of classical control: kT

Cryostat

- Quantum noise: Pure dephasing
- kT << hv

Quantum heat: A new energy scale to assess the energetic cost of quantum control

Outline

- Introduction: Rebuilding quantum thermodynamics on quantum measurement and quantum noise
- > A measurement-powered quantum engine
- Work cost of quantum control
- > Thermodynamics of spontaneous emission
- Conclusion Outlook

Scenery of spontaneous emission

- A Qubit prepared in |+> and coupled to a T=o bath
- Quantum jump unraveling (Monitored by a photo-counter)

Thermodynamic analysis

- $<\Delta U[\gamma]> = -hv_0/2$
- No work exchanged

> The bath plays a double role

- Exchange of classical heat with the Qubit Q_{cl} = o or hν_o
- Extraction of information on the Qubit's state => Quantum heat component Q_{α}

First Law: $\langle \Delta U[\gamma] \rangle = -h\nu_0/2 = \langle Q_q[\gamma] \rangle + \langle Q_{cl}[\gamma] \rangle$

- Jump: $Q_{cl}[\gamma] = -h\nu_{o}$, $Q_{g}[\gamma] = h\nu_{o}/2$ (measurement in |1>)
- No-Jump: $Q_{cl}[\gamma] = 0$, $Q_{g}[\gamma] = -hv_{o}/2$ (measurement in $|o\rangle$)

Jump trajectories

After the jump:

- Entropy production diverges
- Classical heat $Q_{cl} = -h\omega_{o}$
- Quantum heat $Q_q = h\omega_0/2$

No jump trajectories

For t large

- Classical heat $Q_{cl} = o$
- Quantum heat $Q_q = -h\omega_0/2$
- Entropy production $\Delta_i S = \Delta S_{VN}$
- Entropy of measurement

Conclusions

- Energetic footprint of quantum noise:
 Quantum heat => Proper energy scale to assess the work cost of quantum control
- Work extraction from quantum noise instead of thermal noise => Measurement Powered Engine
- Doable with state of the art devices of cQED
- Key role of randomness in the building of thermodynamical concepts

Outlooks & collaborations

Quantum engines

M. Richard, Grenoble

B. Huard, Lyon

Thdyn of entanglement fluorescence

G. Haack Geneva

Thdyn of

M. Esposito Luxembourg

J. Anders Exeter

C. Elouard Rochester

D. Herrera-Marti Grenoble

Thermodynamics of reservoir engineering

M. Santos D. Gerace A. Carvalho Rio Pavia

Brisbane

Quantum foundations

P. Grangier, Orsay & N. Farouki, Grenoble

- 25 interdisciplinary PhD scholarships for quantum engineering in Grenoble along 4 calls (2017-2018)
- Next and LAST deadline: October 2018

quantum.univ-grenoble-alpes.fr