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Central question 

Some proposed solutions 

1) Two-point-projective measurement (TPM) scheme: apply an energy 

measurement at the beginning and at the end to define a work distribution 
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Classify proposals in terms of their statistics 

Why? A necessary condition for quantum advantages is to generate non classical 

statistics (not formalism dependent). 

How? In communication and cryptography advantages are ultimately related to 

Bell inequalities violations. In thermodynamics? 

Some proposed solutions 
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b. There have been proposals of 𝑝 𝑤  with negativities, but mostly 

discounted. 

 

Remarks: 
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b. Based on the fact that ``generalised anomalous weak values’’ provide 

proofs of contextuality (generalisation of Phys. Rev. Lett. 113, 200401).  
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Conclusions 

1. In the absence of degeneracies: 

Recover TPM for incoherent + non-classical statistics  

  negativity of the work distribution (or dependence on decomposition) 

 

2. Negativity of weak value quasi-probability  

  non-classical statistics 

 

Future direction 

 

Prove a quantum advantage in a thermodynamic task:  

based on quantum contextuality?  

Thanks for listening! 
[Phys. Rev. Lett. 120, 040602] 

 


