

The Qubits and pieces

A survey of the theoretical battle field

Telephone game

A perfect messenger

3/7/06

Pefect messenger ? Parallel transport

Vortices

A distorted view

Hendrik Lenstra: A sequence of maps

http://escherdroste.math.leidenuniv.nl/index.php

3/7/06

How well did we/Escher do?

The perfect Escher ...

The solution

3/7/06

Qubits & pieces

So the story goes on and on and on ...

The other Eschers...

A sound experiment

Interference & topology: $L_b - L_c = n\lambda$

$$\oint \frac{1}{\lambda} dx = n$$

3/7/06

$$\oint p dx = \hbar \oint \frac{1}{\lambda} dx = 2\pi n\hbar$$

3/7/06

 $p \Rightarrow p + qA$

Qubits & pieces

Flux qubits

TopQC

Flux qubits

3/7/06

Quasiparticle interferometers (Goldman et al.)

3/7/06

3/7/06

Qubits & pieces

Interference patterns

Charge-flux composites: anyons

Holonomy

3/7/06

Quantum statistics: Exchange of indistinguishable particles

$$q_1 = q_2$$

$$\Phi_1 = \Phi_1$$

$$e^{2\pi iS} = e^{iq\Phi} = e^{i\theta}$$

3/7/06

D=3 versus D=2

D= 3:
$$\tau = \tau^{-1}$$

D= 2:
$$\tau \neq \tau^{-1}$$

Braid group generators

3/7/06

Relation between generators (Yang Baxter)

Defining relations between generators

$D \ge 3$ Permutation group S_n :

$$\tau=\tau^{-1} \rightarrow \tau^2=1 \rightarrow \tau=\pm 1 +1 \rightarrow Bosons$$

-1 \rightarrow Fermions

$$D = 2$$
 Braid group B_n :

$$\tau_1 \tau_2 \tau_1 = \tau_2 \tau_1 \tau_2 \rightarrow \tau_j = e^{i\theta}$$
 Anyons

$$(\tau \neq \tau^{-1})$$

→ Matrices non-Abelian anyons

Braids & Knots

Braids & Knots

Ribbon algebras

Ribbon diagrams

3/7/06

Two anyon—anti-anyon pairs

3/7/06

Anyon interchange

3/7/06

Spin-statistics connection as a topological equivalence

Qubits & pieces

Effect of interchange is equivalent to 2π rotation

3/7/06

Chern-Simons Theory (d=2+1)

The Chern-Simons action:

$$S_{CS} = \frac{k}{4\pi} \int_{M} \operatorname{tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$$

With indices:

$$S_{CS} = -\frac{k}{4\pi} \int dt \int_{\Sigma} \epsilon^{ij} \operatorname{tr} \left(A_i \partial_0 A_j - A_0 F_{ij} \right)$$

Field equations:

$$E_x = j_y \quad E_y = -j_x$$

$$\varepsilon_{\mu\nu\sigma}F^{\nu\sigma} = j_u \Leftrightarrow$$

$$B = \rho$$

The observables:

$$W_R(C) := \operatorname{tr}_R P \exp \oint_C A$$

CS classification: Group cohomology

- Classification CS theories by H⁴(BG,Z)
- For finite group $H \rightarrow$ $H^n(BH,Z) = H^n(H,Z)$ $H^n(H,Z) = H^{n-1}(H,U(1))$
- \rightarrow H⁴(BH,Z) = H³(H,U(1))

CS for finite abelian groups

- Consider $H = (Z_N)^k$ then:
- $\blacksquare H^1(H,U(1)) = (Z_N)^k$
- $\blacksquare H^2(H,U(1)) = (Z_N)^{1/2k(k-1)}$
- $= H^3(H,U(1)) = (Z_N)^{k+\frac{1}{2}k(k-1)+\frac{1}{6}k(k-1)(k-2)}$

Three types of CS actions (?)

■ I: (decoupled U(1) theories)

$$L = \sum \mu_i A^{(i)} \cdot F^{(i)}$$

■ II: (coupled U(1) theories)

$$L = \sum \mu_{ij} A^{(i)} \cdot F^{(j)}$$

– III:

Non-abelian theories! E.g. $(Z_2)^3 \leftarrow \rightarrow \underline{D}_2$

Uniaxial nematic

Uniaxial nematic ←→ Alice electrodynamics

G=S0(3)
H = O(2) = U(1) x
$$|Z_2|$$

Goldstone modes

Generator

 T_{x}

Ty

The Z₂ defect

$$\Pi_1$$
 (G/H) = Π_0 (H) = Z_2

Frame dragging by the Z₂ defect

Topological interaction of modes with defect

Presence of defect

→ Obstruction to global implementation of certain symmetries

Lattice

Lattice with spins

Breaking the Euclidean group

G = Euclidean group of continuous rotations and translations $(E_3 = 6 \text{ parameter goup }, E_2 \text{ is three parameter group})$ $(R_1, a_1) (R_2, a_2) = (R_1R_2, a_1 + R_1a_2)$

H = Discrete symmetry group of crystal lattice (Square lattice in d=2: H = $Z_4 \times Z$ (Z x Z)

Excitations:

- 1. Goldstone modes → Phonons G/H (fundamental)
- 2. Solitons (defects) $\rightarrow \pi_1(G/H) = \pi_0(H) = H$ (topological)
 - → group H classifies line/point defects

Volterra moves: a defect classification

Dislocation: translational defect

- Defect (1, a)
- Burgersvector a

5-fold symmetry?

Disclination

Disclination: Rotational defect

Two non-commuting defects

Braiding of noncommuting defects

 $(1,a)(R,0) \rightarrow$

 \rightarrow (1, a)(R,0) (1,-a)(1, a)

= (R, a - Ra) (1, a)

= (R, a)

Braiding of noncommuting defects

 T^{-1} :

 $(1,a)(R,0) \rightarrow$

 \rightarrow (R,0)(R⁻¹,0)(1,a)(R,0)

 \rightarrow (R,0)(1,R⁻¹ a)

= (R,a)

Non-abelian flux in discrete gauge theories

Composition rules: Fusion of defects

Composition rules: Fusion of defects

3/7/06

Qubits & pieces

3/7/06

Qubits & pieces

Algebraic argument

- \blacksquare R(ba) = a'b'
- in fact ba = a'b' (c=c)
- we note that b'=b
- \rightarrow ba = a'b
- \Rightarrow a'=bab⁻¹

Multiparticle braid relations

3/7/06

Qubits & pieces

Braid group B_n on n strands

3/7/06

Qubits & pieces

Braid group generators

Relation between generators (Yang Baxter)

Consistency of braiding and fusion

Associativety of fusion rules

Pentagon relation

Hexagon relation

Knots in d=3 etc.

Hopf-algebra's

Hopf algebra AEx: Group algebra CHBasis: $\{h_i\}$ $h_i \in H$ Dual Hopf algebra A^* Functions on the group F(H) $\{f_i\}$ $f_i = f_{h_i} = P_{h_i}$ $f_i(x) = \delta_{h_i,x}$

	Algebra		Dual algebra	
product unit	e	$h_1 \cdot h_2 = h_1 h_2$ $eh = he = h$	$\overset{\star}{e^*}$	$f_1 \star f_2(x) = f_1 \otimes f_2 \Delta(x)$ $e^* f(x) = \varepsilon(x) = 1$
	Co-algebra		Dual co-algebra	
∞-product ∞-unit antipode	$\Delta \ arepsilon S$	$\Delta(h) = h \otimes h$ $\varepsilon(h) = 1$ $S(h) = h^{-1}$	Δ^* ε^* S^*	$\begin{split} &\Delta^*(f)\;(x,y)=f(x\cdot y)\\ &\varepsilon^*\;(f)=f(e)\\ &S^*(f)\;(x)=f(S(x))=f(x^{-1}) \end{split}$

The Quantum Double D(H) (Drinfeld, DPR)

Double algebra $\mathcal{D} = \mathcal{A}^* \times \mathcal{A}$ Ex: Hopf double algebra $D(H) = F(H) \times \mathbb{C}H$ Basis: $\{f_i \times h\}$ $h \in H$

product unit	Algebra e	$(f_1 \times h_1) \cdot (f_2 \times h_2)(x) = f_1(x)f_2(h_1xh_1^{-1}) \times h_1h_2$ $(1 \times e)(x) = e$
co-product co-unit antipode	Co-algebra Δ ε S	$\Delta(f \times h)(x,y) = f(xy)h \otimes h$ $\varepsilon(f \times h)(x) = f(e)$ $S(f \times h)(x) = f(h^{-1}x^{-1}h)h^{-1}$
Central (ribbon) element R-element $R \in \mathcal{D} \otimes \mathcal{D}$	$\stackrel{c}{R}$	$c = \sum_{h} (f_h \times h)$ $R = \sum_{h} (f_h \times e) \otimes (1 \times h)$

Representation Theory

Representations Π^A_α of $D(H) = F(H) \times \mathbb{C}H$

representation	Π^A_{α} A α	$A \sim \text{defect/magnetic label}, \ \alpha \sim \text{ordinary/electric label}$ $C_A \sim \text{Conjugacy class (orbit of representative element } h_A).$ $\alpha \sim \text{is a representation of the normalizer } N_A \text{ of } h_A \text{ in } H.$
carrier space	V^A_{α}	$ v>: H \to V_{\alpha} \ \{ v(x)>\ \ v(xn)>=\alpha(n^{-1})\ v(x)>,\ n\in N_A\}$
action of $D(H)$ on V_{α}^{A}		$\pi_{\alpha}^{A}(f \times h) v(x)> = f(xhx^{-1}) v(h^{-1}x)>$
central element spin factor	$c \\ s^A_{\alpha}$	$\begin{array}{l} \Pi_{\alpha}^{A}(c) v(x)>=\alpha(h_{A}^{-1}) v(x)>\\ s_{\alpha}^{A}\equiv\alpha(h_{A}^{-1}) \end{array}$
tensor products	$\Pi^A_{lpha}\otimes\Pi^B_{eta}$	$\Pi^A_{\alpha} \otimes \Pi^B_{\beta}(f \times h)V \otimes W \equiv \Pi^A_{\alpha} \otimes \Pi^B_{\beta}\Delta(f \times h)V \otimes W$
		Clebsch Gordon series: $\Pi^A_{\alpha} \otimes \Pi^B_{\beta} = \sum_{C,\gamma} N^{AB\gamma}_{\alpha\beta C} \ \Pi^C_{\gamma}$

Action of braidgroup on two particle state

$$\mathcal{R}^{AB}_{\alpha\beta} := \sigma \circ (\Pi^A_{\alpha} \otimes \Pi^B_{\beta})(R).$$

$$\mathcal{R}\mid {}^{A}\!h_{i}, \, {}^{\alpha}\!v_{j}\rangle\mid {}^{B}\!h_{m}, \, {}^{\beta}\!v_{n}\rangle \ = \ \mid {}^{A}\!h_{i} \, {}^{B}\!h_{m} \, {}^{A}\!h_{i}^{-1}, \, \beta(\, {}^{A}\!\tilde{h}_{i}\,)_{ln} \, {}^{\beta}\!v_{l}\rangle\mid {}^{A}\!h_{i}, \, {}^{\alpha}\!v_{j}\rangle$$

Braiding etc.

Braiding relations:

Braiding R commutes with action of D(H):

$$\Delta^{op}(f \times h)R = R\Delta(f \times h)$$

 $\Delta^{op} \equiv \sigma \Delta$ (i.e. Δ followed by a trivial permutation σ of the two strands).

- \Rightarrow The n-particle states form representations of $D(H) \otimes B(n)$
- Non-abelian statistics if higher dimensional reps of B_n are involved.
- Generalized spin-statistics theorem (suspenders relation) (see also Figure)

$$(c\otimes c)\Delta c^{-1}=(R_{21}R_{12})\Delta$$

Suspenders diagram

The dihedral group D₂

Conjugacy class

$$e = \{e\}$$

 $\bar{e} = \{\bar{e}\}$
 $X_1 = \{X_1, \bar{X}_1\}$
 $X_2 = \{X_2, \bar{X}_2\}$
 $X_3 = \{X_3, \bar{X}_3\}$

Qubits & pieces

The double dihedral group D₂

Conjugacy class	Centralizer
$e = \{e\}$	$ar{D}_2$
$\bar{e} = \{\bar{e}\}$	$ar{D}_2$
$X_1 = \{X_1, \bar{X}_1\}$	$\mathbf{Z_4} \simeq \{e, X_1, \bar{e}, \bar{X}_1\}$
$X_2 = \{X_2, \bar{X}_2\}$	$\mathbf{Z_4} \simeq \{e, X_2, \bar{e}, \bar{X}_2\}$
$X_3 = \{X_3, \bar{X}_3\}$	$\mathbf{Z_4} \simeq \{e, X_3, \bar{e}, \bar{X}_3\}$

Table 3.1: Conjugacy classes of the double dihedral group \bar{D}_2 together with their centralizers.

\bar{D}_2	e	\bar{e}	X_1	X_2	X_3
1	1	1	1	1	1
J_1	1	1	1	-1	-1
J_2	1	1	-1	1	-1
J_3	1	1	-1	-1	1
χ	2	-2	0	0	0

Z_4	e	X_a	\bar{e}	\bar{X}_a
Γ_{0}	1	1	1	1
Γ^1	1	\imath	-1	$-\imath$
Γ^2	1	-1	1	-1
Γ^3	1	$-\imath$	-1	\imath

Table 3.2: Character tables of \bar{D}_2 and \mathbf{Z}_4 .

Representations of $D(\underline{D}_2)$

→ Spectrum of excitations

Particle types:

	J 1						
		1	:=	(e, 1)	$\bar{1}$:=	$(\bar{e}, 1)$
ele	ectric	J_a	:=	(e, J_a)	\bar{J}_a	:=	(\bar{e}, J_a)
		χ	:=	(e, χ)	$\bar{\chi}$:=	(\bar{e}, χ)
m	agnetic	σ_a^+	:=	(X_a, Γ^0)	σ_a^-	:=	(X_a, Γ^2)
dy	onic	τ_a^+	:=	(X_a, Γ^1)	τ_a^-	:=	(X_a, Γ^3)

Spin factor:

particle	$\exp(2\pi \imath s)$
$1, J_a$	1
$\bar{1}, \bar{J}_a$	1
$\chi, \bar{\chi}$	1,-1
σ_a^{\pm}	± 1
τ_a^{\pm}	$\pm \imath$.

Fusion rules for different particle types

$$J_a \times J_a = 1$$
,

$$J_a \times J_b = J_c$$
,

$$J_a \times \chi = \chi$$
,

$$J_a \times J_a = 1$$
, $J_a \times J_b = J_c$, $J_a \times \chi = \chi$, $\chi \times \chi = 1 + \sum_a J_a$.

$$J_a \times \bar{1} = \bar{J}_a, \qquad \chi \times \bar{1} = \bar{\chi}.$$

$$\chi \times \bar{1} = \bar{\chi}$$
.

$$J_a \times \sigma_a^+ = \sigma_a^+$$
,

$$J_b \times \sigma_a^+ = \sigma_a^-$$
,

$$J_a \times \sigma_a^+ = \sigma_a^+, \quad J_b \times \sigma_a^+ = \sigma_a^-, \quad \chi \times \sigma_a^+ = \tau_a^+ + \tau_a^-.$$

Fusion rules for different particle types

$$\bar{1}\times\bar{1}=1, \qquad \bar{1}\times\sigma_a^{\pm}=\sigma_a^{\pm}, \qquad \bar{1}\times\tau_a^{\pm}=\tau_a^{\mp}.$$

$$J_a \times \tau_a^{\pm} = \tau_a^{\pm}, \qquad J_b \times \tau_a^{\pm} = \tau_a^{\mp}, \qquad \chi \times \tau_a^{\pm} = \sigma_a^{+} + \sigma_a^{-},$$

$$\sigma_a^s \times \sigma_a^s = 1 + J_a + \bar{1} + \bar{J}_a
\sigma_a^s \times \sigma_b^s = \sigma_c^+ + \sigma_c^-
\sigma_a^s \times \tau_a^s = \chi + \bar{\chi}
\sigma_a^s \times \tau_b^s = \tau_c^+ + \tau_c^-
\tau_a^s \times \tau_a^s = 1 + J_a + \bar{J}_b + \bar{J}_c
\tau_a^s \times \tau_b^s = \sigma_c^+ + \sigma_c^- ,$$

Cheshire charge

Entanglements

The truncated braid group B(3,4)

$$\tau_1 \tau_2 \tau_1 = \tau_2 \tau_1 \tau_2$$

$$\tau_1^4 = \tau_2^4 = e.$$

The group B(3,4) has 96 elements and 15 conjugacy classes.

Investigate the following three particle fusion product

$$\tau_1^+ \times \tau_1^+ \times \tau_1^+ = 4 \tau_1^+.$$
 (2 x2 x2 = 4 x 2)

Conjugacy classes of B(3,4)

```
C_0^1 = \{e\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                     (3.B.
C_0^2 = \{\tau_1\tau_2\tau_1\tau_2\tau_1\tau_2\}
C_0^3 = \{\tau_2^2 \tau_1^2 \tau_2^2 \tau_1^2\}
C_0^4 = \{\tau_2^2 \tau_1^3 \tau_2^2 \tau_1^3\}
C_1^1 = \{\tau_1, \tau_2, \tau_2\tau_1\tau_2^3, \tau_2^2\tau_1\tau_2^2, \tau_2^3\tau_1\tau_2, \tau_1^2\tau_2\tau_1^2\}
C_1^2 = \{ \tau_1^3 \tau_2 \tau_1^2 \tau_2, \ \tau_2^3 \tau_1 \tau_2^2 \tau_1, \ \tau_2 \tau_1^3 \tau_2 \tau_1^2, \ \tau_2^2 \tau_1^2 \tau_2^2 \tau_1, \ \tau_1 \tau_2^3 \tau_1 \tau_2^2, \ \tau_1^2 \tau_2^2 \tau_1^2 \tau_2 \}
C_1^3 = \{ \tau_2 \tau_1^3 \tau_2 \tau_1^3 \tau_2, \ \tau_1^2 \tau_2 \tau_1^3 \tau_2^2 \tau_1, \ \tau_2^3 \tau_1 \tau_2^3 \tau_1^2, \ \tau_1 \tau_2^2 \tau_1^3 \tau_2^2 \tau_1, \ \tau_2 \tau_1 \tau_2^3 \tau_1^2 \tau_2^2, \ \tau_2 \tau_1^2 \tau_2^3 \tau_1^2 \tau_2 \}
C_1^4 = \{\tau_2^2 \tau_1^3 \tau_2^2, \tau_1^2 \tau_2^3 \tau_1^2, \tau_2^3 \tau_1^3 \tau_2, \tau_1^3, \tau_2 \tau_1^3 \tau_2^3, \tau_2^3\}
C_2^1 = \{ \tau_1 \tau_2, \tau_2 \tau_1, \tau_1^2 \tau_2 \tau_1^3, \tau_1^3 \tau_2 \tau_1^2, \tau_2 \tau_1^2 \tau_2^2 \tau_1, \tau_2^2 \tau_1 \tau_2^3, \tau_2^3 \tau_1 \tau_2^2, \tau_1 \tau_2^2 \tau_1^2 \tau_2 \}
C_2^2 = \{\tau_1^2 \tau_2 \tau_1^3 \tau_2 \tau_1, \tau_1 \tau_2 \tau_1^3 \tau_2 \tau_1^2, \tau_2 \tau_1^2 \tau_2^2 \tau_1^3, \tau_1 \tau_2 \tau_1^2 \tau_2^2 \tau_1^2,
                                               \tau_2\tau_1^3\tau_2^2\tau_1^2, \tau_1\tau_2\tau_1^3\tau_2^2\tau_1, \tau_1^2\tau_2\tau_1^3\tau_2^2, \tau_1^2\tau_2^2\tau_1^3\tau_2
C_2^3 = \{ \tau_1^3 \tau_2 \tau_1^3 \tau_2^2 \tau_1, \tau_1 \tau_2^2 \tau_1^3 \tau_2 \tau_1^3, \tau_2 \tau_1^3 \tau_2^2, \tau_2^2 \tau_1^3 \tau_2, \tau_2^3 \tau_1^3, \tau_1 \tau_2^3 \tau_1^2, \tau_1^2 \tau_2^3 \tau_1, \tau_1^3 \tau_2^3 \}
C_2^4 = \{ \tau_1^3 \tau_2^3 \tau_1^2 , \ \tau_1^2 \tau_2^3 \tau_1^3 , \ \tau_2^3 \tau_1 , \ \tau_1 \tau_2^3 , \ \tau_1 \tau_2 \tau_1 \tau_2 , \ \tau_1^3 \tau_2 , \ \tau_2 \tau_1^3 , \ \tau_2 \tau_1 \tau_2 \tau_1 \}
C_3^1 = \{\tau_1^2, \tau_2^2, \tau_1\tau_2^2\tau_1^3, \tau_2^2\tau_1^2\tau_2^2, \tau_1^2\tau_2^2\tau_1^2, \tau_1^3\tau_2^2\tau_1\}
C_3^2 = \{ \tau_2 \tau_1^2 \tau_2, \tau_1 \tau_2^2 \tau_1, \tau_1^2 \tau_2^2, \tau_2^3 \tau_1^2 \tau_2^3, \tau_1^3 \tau_2^2 \tau_1^3, \tau_2^2 \tau_1^2 \}
C_4^1 = \{\tau_1\tau_2\tau_1, \tau_1^2\tau_2, \tau_2^2\tau_1, \tau_2\tau_1^2, \tau_1\tau_2^2, \tau_1^3\tau_2\tau_1^3, \tau_1^3\tau_2\tau_1^3\tau_2^2\tau_1^2,
                                               \tau_2 \tau_1^3 \tau_2^2 \tau_1, \tau_1^2 \tau_2^2 \tau_1^3, \tau_1 \tau_2^2 \tau_1^3 \tau_2, \tau_1^3 \tau_2^2 \tau_1^2, \tau_1 \tau_2 \tau_1^3 \tau_2^2
C_4^2 = \{ \tau_1 \tau_2 \tau_1 \tau_2 \tau_1 \tau_2 \tau_1 \tau_2 \tau_1, \tau_2 \tau_1^2 \tau_2^2, \tau_1 \tau_2^2 \tau_1^2, \tau_2^2 \tau_1^2, \tau_2^2 \tau_1^2 \tau_2, \tau_1^2 \tau_2^2 \tau_1, \tau_2 \tau_1^3 \tau_2, \tau_1^2 \tau_2^2 \tau_1^2, \tau_2^2 \tau_1^
                                               \tau_2^3 \tau_1^3 \tau_2^3, \tau_2^3 \tau_1^2, \tau_1^3 \tau_2^2, \tau_2^2 \tau_1^3, \tau_1^2 \tau_2^3, \tau_1 \tau_2^3 \tau_1.
```

Character table of B(3,4)

	C_0^1	C_0^2	C_0^3	C_0^4	C_1^1	C_1^2	C_1^3	C_1^4	C_2^1	C_2^2	C_2^3	C_2^4	C_3^1	C_3^2	C_4^1	C_4^2
Λ_0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Λ_1	1	-1	1	-1	z	-1	z	-2	-1	1	-1	1	-1	1	-2	ı
Λ_2	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
Λ_3	1	-1	1	-1	-2	\imath	-1	\imath	-1	1	-1	1	-1	1	\imath	-1
Λ_4	2	2	2	2	0	0	0	0	-1	-1	-1	-1	2	2	0	0
Λ_5	2	-2	2	-2	0	0	0	0	1	-1	1	-1	-2	2	0	0
Λ_6	2	$2\imath$	-2	$-2\imath$	η	$-\eta^*$	$-\eta$	η^*	\imath	-1	-2	1	0	0	0	0
Λ_7	2	2i	-2	$-2\imath$	$-\eta$	η^*	η	$-\eta^*$	\imath	-1	-2	1	0	0	0	0
Λ_8	2	$-2\imath$	-2	2i	$-\eta^*$	η	η^*	$-\eta$	-1	-1	\imath	1	0	0	0	0
Λ_9	2	-2ı	-2	2i	η^*	$-\eta$	$-\eta^*$	η	-1	-1	ı	1	0	0	0	0
Λ_{10}	3	3	3	3	1	1	1	1	0	0	0	0	-1	-1	-1	-1
Λ_{11}	3	-3	3	-3	ı	-1	ı	-2	0	0	0	0	1	-1	ı	-1
Λ_{12}	3	3	3	3	-1	-1	-1	-1	0	0	0	0	-1	-1	1	1
Λ_{13}	3	-3	3	-3	-2	ı	-1	ı	0	0	0	0	1	-1	-1	ı
Λ_{14}	4	4	-4	-4	0	0	0	0	1	1	-1	-1	0	0	0	0
Λ_{15}	4	-4	-4	4	0	0	0	0	-1	1	1	-1	0	0	0	0

Table 3.4: Character table of the truncated braid group B(3,4). We used $\eta := i + 1$.

Non abelian braidgroup representations

Decompose the tensor product representation under $D(D2) \times B(3,4)$

For
$$D(D2) \rightarrow$$

For D(D2)
$$\rightarrow$$
 $\tau_1^+ \times \tau_1^+ \times \tau_1^+ = 4 \tau_1^+$.

Under B(3,4)
$$\rightarrow$$
 $\Lambda_{B(3,4)} = 4 \Lambda_1 + 2 \Lambda_5$,

Combined
$$\rightarrow$$
 $2(\tau_1^+, \Lambda_1) + (\tau_1^+, \Lambda_5),$

Non abelian Ahoronov Bohm scattering (E. Verlinde)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}|_{\mathrm{in}\to\mathrm{all}} \ = \ \frac{1}{4\pi p \sin^2(\theta/2)} \ [1 - \mathrm{Re}\langle \mathrm{in}|\mathcal{R}^2|\mathrm{in}\rangle].$$

Summary/Perspective

- Variety of defects/quasiparticles: anyonic composites
- Determination of a consistent labeling of charge/flux sectors
- Non-abelian fusion and braiding properties
- Quantum groups/ Hopf algebras
 - → provide a natural language in which ordinary/electric and topological/magnetic quantum numbers appear on equal footing!
- Multi (quasi)particle reps of braid group (non-abelian statistics)
- Breaking of quantum symmetries by electric/magnetic/dyonic condensates
- Classification of many possible confinement phenomena
- Applications in Hall effect en BEC/Discrete gauge theories/ Gravity/Nematics, Defect mediated melting etc
- (Topological) Quantum computation
- Similar phenomena in d>2
- Statistics distribution functions etc

Hopf symmetry breaking

- Imagine a condensate to form in a state /v> in Π_{α}^{A}
- Look for maximal Hopf algebra that leaves |v> invariant:

$$\pi_a^e(P) / v > = \varepsilon(P) / v > = f(e) / v >$$

- Examples:
- Electric condensate:

$$\pi_{\alpha}^{A}(f \underline{x} p) | v > = f(e) \alpha(p) | v > = f(e) | v >$$

$$\Rightarrow p \varepsilon N_{v} \text{ and } T = F(H) \underline{x} CN_{v}$$

Magnetic condensate:

$$\pi_o^A (f \underline{x} p) |v(y)\rangle = f(y g_A y^{-1}) |v(p^{-1}y)\rangle$$

$$\rightarrow p \varepsilon N_q \text{ and } T = F(H/K) \underline{x} CN_q$$

Gauge invariant condensates

Gauge invariant magnetic condensate:

$$|v\rangle = \sum v(y)$$
 with $\sum yg_Ay^1 = C_A$

$$\Pi_0^A (f \underline{x} p) | v(y) \rangle = \Sigma | v(p^{-1}y) \rangle = | v \rangle$$

(class sum is per definition invariant under conjugation)

$$\rightarrow T = F(H/K) \underline{x} CH$$

Dyonic condensates

What is the physics of breaking?

- Construct representations Ω_i of $T \leq D(H)$
- Decompose Π^{A}_{α} into $\{\Omega_{i}\}$
- Look at braid relations of |v> and states in othe T reps. (hard)
- If /v> and $/w> <math>\epsilon \Omega_i$ have nontrivial braiding (R^2) then:
 - \rightarrow /v> cannot be single valued around /w>
 - $\rightarrow \Omega_i$ particles will have a string (domain wall) attached
 - $\rightarrow \Omega_i$ particle will be confined!
- Particles with trivial braiding survive
- $\Box \quad \text{Tenssor products } \Omega_i \times \Omega_j = N_{ijk} \Omega_k$

Residual Hopf symmetry

- The nonconfined representations of T form a closed set under tensor product of T
- This set can be viewed as the representations of yet another Hopf algebra U
- There is a surjective map $\Gamma: T \rightarrow U$
- Walls are characterized by reps of $Ker \Gamma$

