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A survey of the theoretical battle field

Einstein Gravity <« » (2+1)-dim Gravity

M-theory i i

& String theory &> Conformal Field theory €< Chern-Simons theory

AdS/CFT 1 1

Gauge theory <= —» Discrete gauge theories

Condensed matter theory Anyons A4grable models

Quantum Hall Systems =  Topological Phases <€ Lattice systems
Bose-Einstein condensation Quantum computation @gjufer]
Phenomena
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Telephone game

‘ Mother died in accident

Mother died in/gpspital A Mother.was killed in accident

e

mother d@d UOGERYES k'[bed

You killed your mother!

Her son wasn't very nice to her Mother killedby who

O — Joul
\
_O_
Who killed mother

3/7/06 Qubits & pieces




A perfect messenger

_I_
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Pefect messenger ?
Parallel transport
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Deficit angle
A® =Q




Vortices
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Hendrik Lenstra: A sequence of maps

‘ http://escherdroste.math.leidenuniv.nl/index.php

—

Rotation 410 §
Scaling 0.75
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How well did we/Escher do?

_|,
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The perfect Escher ...
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The solution
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So the story goes on and on and on ...
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The other Eschers




A sound experiment

Interference & topology: L, -L .= nA
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Flux qubits

40 60 80
t (nanoseconds)




Flux qubits




Quasiparticle interferometers
(Goldman et al.)
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Interference patterns
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Charge-flux composites: anyons

_|,

9
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Holonomy
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Quantum statistics:
Exchange of indistinguishable particles
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D=3 versus D=2

_|,

D=2: T1# 17
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Braid group generators
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Relation between generators (Yang Baxter)
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Defining relations between generators

_|,

D =2 3 Permutation group S,:

=715 12=1 >5T1=+1 +1 > Bosons
-1 > Fermions

D =2 Braid group B,:
T,T, T, =T,T,T, > T;=e9% Anyons

(T #7171 - Matrices non-Abelian
anyons
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Braids & Knots
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Ribbon algebras
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Ribbon diagrams

2 n rotation
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Two anyon—anti-anyon pairs
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Anyon interchange
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Spin-statistics connection

+

as a topological equivalence

Effect of interchange is equivalent to 2n rotation
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Chern-Simons Theory (d=2+1)

The Chern-Simons action:

2 i:}
- ﬁ [ANAA+ ZANANA)

—l: /({It-LEi‘jtl‘ (A;;_ﬁ).;.flj — :101?”}

Field equations:

. ve - :
= ,u,r.fc:rF = Ju =

The observables:

Wa(C) = traPexp ff, A




CS classification: Group cohomology

m Classification CS theories by H*(BG,Z)
m For finite group H =

H"(BH,Z) = H"(H,2)

H"(H,Z) = H™1(H,U(1))

s 2> H%BH,Z) = H3(H,U(1))




CS for finite abelian groups

m Consider H = (Z,) ¥ then:

= HI(H,U(L) = (Z)*
 H(H,U(1) = (Z) "D

m H3(H,U(1)) = (Z,) 2Kk D+1/6k(k-1)(k-2)
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Three types of CS actions (?)

_|,

m [: (decoupled U(1) theories)
L=3u AO-FO

m II: (coupled U(1) theories)
L =3 y; AD-FO)

m []]:
Non-abelian theories! E.g. (Z,) > €-> D,
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Uniaxial nematic

UniaL?iaI nematic <-> Alice electrodynamics

G=S0(3)
H=0(2)=U(1) x| Z,
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Goldstone modes

Generator T

X
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The Z, defect

_|,
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Frame dragging by the Z, defect

3/7/06 Frame gets rotated by angle n around x-axis




Topological interaction of modes with defect

Presence of defect
—> Obstruction to global implementation of certain symmetries




Lattice
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Breaking the Euclidean group

_|,

G = Euclidean group of continuous rotations and translations
(E5; = 6 parameter goup , E, is three parameter group)

(Ry, a1) (Ry 3y) = (R{Ry, 3; + Rja,)

H = Discrete symmetry group of crystal lattice
(Square lattice in d=2: H=2, X (Zx Z2)

Excitations:

1. Goldstone modes - Phonons G/H (fundamental)
2. Solitons (defects) - n;(G/H) = n, (H) = H (topological)

—> group H classifies line/point defects
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Disclinations

Volterra moves




Dislocation: translational defect

_|,

m Defect (1, a)
m Burgersvector a
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5-fold symmetry?

_|,

-\ A

R17 virus




Disclination
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Disclination: Rotational defect

+

Defect (R, 0)

R=R(-n/2)
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Two non-commuting defects
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Braiding of noncommuting defects

+

(1,a)(R,0) =

T:

= (R, a)
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Braiding of noncommuting defects

+

T-1:

(1,a)(R,0) =

2> (R,0)(1,R* a)

= (R,a)
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Non-abelian flux in discrete gauge theories

_|,

Setting: continuous G breaks to discrete H

group element of H 2lgeirs

\ W’ = hah
C, = {hah'i}
W =

d
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Composition rules: Fusion of defects
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Composition rules: Fusion of defects
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Interchange: braiding of defects

.
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Interchange: braiding of defects

R(ba) = a’b’
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Interchange: braiding of defects
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Interchange: braiding of defects

_|,

Nl




Interchange: braiding of defects
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Interchange: braiding of defects

_|,

~




Interchange: braiding of defects

_|,

a =bab
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Algebraic argument

_|,

m R(ba) = a'b’

m in fact ba = ab” (c=c)
m we note that b'=b

m > ba=ab

m - a’'=bab!




_|,

.

N
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Multiparticle braid relations

+
Vel AWM

001

O 0O O

A
\VENY
‘ A :; y C .
£ Y, Q
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Braid group B, on n strands




Braid group generators
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Relation between generators (Yang Baxter)

_|,
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Consistency of braiding and fusion

_|,
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Associativety of fusion rules

_|,
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Pentagon relation
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Hexagon relation
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Knots in d=3 etc.




Hopf-algebra’s

Hopf algebra A
Ex: Group algebra CH

Basis: {h;} h;

= H

Dual Hopf algebra A*
Functions on the group F(H)

i}

frn, = Py,

»
i =

filz) = 6p, =

Algebra Dual algebra
product hi-ho= hihs * fi* folz) = f1 @ follz)
unit e eh=he=h et e fir)=¢c(x)=1
Co-algebra Dual co-algebra
co-product A AlRy=hah Al A fi(zy)= flz-y)
co-unit € s(h) =1 et ifr= fle)
antipode S S(h)= h™1 i SY ) (x)= f(S(x)) = flz™1)




The Quantum Double D(H) (Drinfeld, DPR)

Double algebra D = A* x A4
Ex: Hopf double algebra D(H) = F(H) « CH
Basis: {fi x h} he H
Algebra
product - (f1 < hy) - (fox ha)(z)= fi(z)fal h.l;rhl_l ) % hihs
unit e (1 < elixr)=0¢€
Co-algebra

co-product A Alf =< h)(z,y)= flzv)h 2 h
co-unit € =(f x h)iz) = fle)
antipode S S(f = h)z)= f(h~'z=1h)h~!
Central (ribbon) element c c=23,(fn x k)
R-element R = DD R R=Y,(fnxe)@(1 xh)




Representation Theory

Representations 112 of D(H) = F(H) « CH

representation I A ~ defect /magnetic label, a ~ ordinary/electric label

A 'y ~ Conjugacy class (orbit of representative element b ).

O a ~ 1s a representation of the normalizer N4 of hy in H.
carrier space %% w > H—=V, {lv(z) > | |v(zn) >=a(n™) |v(z) >, ne Ny}
action of D(H) on VA4 T2 (f % h)|v(z) >= flzhe™) |v(h~1z) >
central element c [T4(c)|v(x) == af h;‘ EHEI =
spin factor s s = of h:l )
tensor products Men? (Mend(fxhVeW=02OEA(f xA)V oW

e 3 L x ‘L; bl 4 La ] ‘L; \ 4

Clebsch Gordon series:
A-TIB — N ABy o
na I_IIB - Zf 'y *\ alBC 11

-




Action of braidgroup on two particle state

_|,

R | Ah 2y al-‘ j | Bh e :3{7;1. - | Ahz Bh i 4h.— : ) —:h '4}.7 t :'."r. :31"" | 4h‘ ) f‘.v)
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Braiding etc.

Braiding relations:

e Braiding R commmutes with action of D(H):
AP(f x h)R = RA(f x h)

A? = gA (1.e. A followed by a trivial permutation o of the
two strands).

e = The n-particle states form representations of D(H) & B(n)

e Non-abelian statistics if higher dimensional reps of B,, are in-
volved.

e Generalized spin-statistics theorem (suspenders relation) (see
also Figure )

(c @ c)Ac™! = (RyRy2)A




Suspenders diagram

_|,




The dihedral group D,

Conjugacy class
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The double dihedral group D,

Conjugacy class Centralizer

Table 3.1: Conjugacy dasses of the double dihedral group D2 together with their central-

1zers.

B = = = = |y

Table 3.2: Character tables of D, and Z,.




Representations of D(D,)
- Spectrum of excitations

Particle types:

electric

magnetic

dyonic

Spin factor: particle exp(2mes)
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Fusion rules for different particle types
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Fusion rules for different particle types
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Entanglements

+

UXe>[X>-1X> [ X >

UX> X >+ [X5> [ X5> +
1
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{|10>|01>+|01>|10>}

{|10>]|01>-|01>|10>}
1




The truncated braid group B(3,4)

The group B(3,4) has 96 elements and 15 conjugacy classes.

Investigate the following three particle fusion product

(2XxX2x2=4x2)
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Table 3.4: Character table of the truncated braid group B(3,4). We used n:=1214 1.
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Non abelian braidgroup representations

‘ Decompose the tensor product representation under D(D2) x B(3,4)

For D(D2) >

Under B(3,4) > -"\8(3.4) = 4\ 42 A5,

Combined =
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Non abelian Ahoronov Bohm scattering
(E. Verlinde)

do B 1

dglin—all = [1 — Re(in|R?[in)]

drpsin®(6/2)
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Summary/Perspective

Variety of defects/quasiparticles: anyonic composites
Determination of a consistent labeling of charge/flux sectors
Non-abelian fusion and braiding properties

Quantum groups/ Hopf algebras

—> provide a natural language in which ordinary/electric and
Fopological/magnetic quantum numbers appear on equal
ooting!

Multi (quasi)particle reps of braid group (non-abelian
statistics)

Breaking of quantum symmetries by electric/magnetic/dyonic
condensates

Classification of many possible confinement phenomena

H
m Applications in Hall effect en BEC/Discrete gauge theories/
Gravity/Nematics, Defect mediated melting etc

(Topological) Quantum computation
Similar phenomena in d>2

Statistics — distribution functions etc
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Hopf symmetry breaking

Imagine a condensate to form in a state /v> in ﬂaA
Look for maximal Hopf algebra that leaves |v> invariant:
ne(P) [v> = ¢(P) [v> = f(e) [v>
Examples:
Electric condensate:
nA(fxp)lv>= f(e) alp)|v> =1(e)[v>
> peN, and T= F(H) x CN,
Magnetic condensate:
nA(fxp) [v(y)> =fygay™)Ivip1y)>
2> peN, and T= F(H/K) x CN,
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Gauge invariant condensates

s Gauge invariant magnetic condensate:
[v>=2Xv(y) with ¥ yg,y!=C,

nA(fxp) [v(y)> =2 [viply)> = [v>
(class sum is per definition invariant under conjugation)
> T = F(H/K) x CH

s Dyonic condensates
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What is the physics of breaking?

3/7/06

Construct representations @;of T < D(H)
Decompose 1714, into {Q; }

Look at braid relations of |v> and states in othe T reps.
(hard)

If /v>and /w> e Q, have nontrivial braiding (R ¢) then:
- [v> cannot be single valued around /w>

> €, particles will have a string (domain wall) attached
~ Q; particle will be confined!

Particles with trivial braiding survive
Tenssor products 2, X 2, = N, Q,

Qubits & pieces



Residual Hopf symmetry

_|,

s The nonconfined representations of T form a closed set
under tensor product of 7

This set can be viewed as the representations of yet another
Hopf algebra U

There is a surjective map I': T 2> U

Walls are characterizec by reps of Ker I

3/7/06 Qubits & pieces




Final picture

Quantum group

Irreps classify excitations

D(H)
7

‘ Symmetry

breaking

by condensate \ 4

of unbroken phase

Injective Hopf map

Residual Hopf symmetry
T

Reps classify excitations
in broken phase

Hopf kernel Ker T >

Confinement

Irreps Ker I

label domain walls U

v
Unconfined algebra

Surjective Hopf map
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Reps classify unconfined
reps in broken phase
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