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The Fractional Quantum Hall Effect(s)
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Why don’t we have yet experimental proof of fractional
statistics?

e Fractional statistics is a fundamental prediction of quamtnechanics in
two dimensions

e |t is a subtle effect involving delicate correlations betnweslowly moving
excitations

e QH experiments for the most part measure transport and e€harg

e FQH Interferometry experiments are difficult, requiringywelean samples
and very low temperatures

e Lack of funding



Statistics and Quantum Mechanics

In Quantum Mechanics the wave-function depends on theiposiof the particles and
their quantum numbersi. . . .. To make the notation simpler, we just denote the labels
11; %2 ... by asingle one::

U,(x1,22,...)

The statistics of the particles comes from the behaviob ainder the interchange

Xr1 < I2.

In 3 4+ 1 dimensions the only allowed symmetry of the wave functiodarrexchange
requires that the particles are either fermions and bosons

\Ifa(ilj’l,a}Q, . ) = :|:\Ifa<£€2,331, . )



Statistics and Adiabatic Evolution

In 2 + 1 dimensions there are more possibilities. We will regarddeatical particles as
having a hard core and we will consider aatiabatic time evolutiomhich corresponds to
anexchangerocess:

e 3 + 1 dimensionsthis path istopologically trivial
e 2+ 1 dimensionsthis path isopologically non- trivial= Braids!

For Laughlin (and Jain) states
\Ija(xth?"') :eieqja(Qanwla"')? = —

Anyonswith Abelian (braid) fractional statistics!



FQH Interferometers and Fractional Statistics
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edge states I; | FQH ﬂwdI I FQH fluid

TN

Chamon, Freed, Kivelson, Sondhi and Wen (1997)

e Internal tunneling only!

e If we hold the electron number (and therefore the quasihoieber) in the central
region fixed, then the conductance will oscillate as a fumctif & with period
= ®o, wheree™ is the quasihole charge.

e If, on the other hand, we var¥,, we can probe the statistics.



Interference and Braiding

A quasihole which is injected at poirt on the bottom edge and tunnels at the first
point-contact arrives at point B in state).

A quasihole which tunnels at the second point contact isersthte="* Bn, ),
whereBy, is the braiding operator for the quasihole to encircle thastholes in the
central regiorande*® is the additional Aharonov-Bohm and dynamical phase
acquired along the second path.

The current which is measuredAtwill be proportional to
1 * T
5 (18] + 1t2P) + Re {tit2 e (6| Bw, 0) }
(¢¥|Bn, |1) is given by theexpectation value of the Wilson lines representing the

world-lines of the quasiholes in the effective Chern-Simbeald theory

In the non-Abelian cas@& measures the Jones polynomiat, (e'™/*) of these
loops! (Fradkin, Nayak, Tsvelik and Wilczek, (1998).)

For a non Abelian state witlv, odd, the interference amplitude vanishes!
Bonderson, Kitaev and Shtengel (2006); Stern and Halp2@0q)
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Edge States: Hydrodynamic picture

EnergyA
e The surface wave of edge distor-

tions is the onlygapless excitatian5/2 hw« j

e Dissipationless chiral Luttinger lig/2 hwe
uid. (Wen, 1990; Stone 1991) 12 1, JISS"

e 1D density rippleJ(x) = ph(x) is T
related tochiral bosong, through
bosonization bulk edge

Ji(z) = —gawﬁbjt

[ + b+
VE T Rt
~ X
L= L 0,6, 0 —vd)ds v h)
4

= = ground state

— excited state



Fractional statistics in QH Jain States

Boson Odd (Laughlin) | v= 2np Fermion
phase || 1=¢" e e(E=520141) | —1=€T
charge ve Q=57 —e

2n = # of attached flux quanta, = effective filling factor
Hanbury-Brown & Twiss (1956)Photons
0
11
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B EJ Intensity-intensity correlation
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T- junction in Jain states
Kim, Lawler, Vishveshwara, Fradkin (2005)

Vo Cross correlations
S(t) = (AL (t)AIx(0))

= Non-equilibriumV; —Vo=Vo—V5 =V, T > 0
Related works on Laughlin statesiat= 0:

|. Safi et. al., S. Vishveshwara
Tunneling Hamiltonian

Eint,l (t) _ Z _Fleiewot‘/}(E) (t)
e=+4

‘/Z(E) (t) _ (FOFl—l)eeiego() (t)e—iegol(t)
wo = e*V/h: Josephson frequengy.p. for edgd with unitary Klein factorst;

b o< Fiet¥t FiF,, = e m F R
Qo2 = Q21 = Qo1 = 0, A = — Qi
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Edge states for the Jain sequence

e Chiral boson Lagrangian (charge magle topological modes y)
Lopez and Fradkin, 1999

EO — % x¢c(_at¢c - 8:C¢c) + i(abeNatng)
TV 4

e Quasi particle at = 0:
BT (1) o bt ITEON) — ig(t)

(W)t (0)) = efPMPO) = C(t)e~12%9)  C(4) =

K= Qp(mipﬂ) : scaling dimension3 = 1/kgT
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Perturbative calculation of the Cross Noise Correlations

e S5¢(t) to lowest nontrivial order

~é / a2 cosfwolt — ty — &) (C(t — £1)C/(t2))?

X{(&% tztl—tz) 2 X0 }

ni,mn2

n = +/—: forward/backward Keldysh time contour

€¢ = +/—: relative tunneling orientation

o The phasesuy, . x(0) =3,  mnae'®e " Ihd
1) comes from contour ordering

2) carries the information of statistics

= S(t) = Alwot; T /Ty, K) + cos 0 B(wot; T/ Ty, K)
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Anatomy of the phase factor

R (t1 <t3<0)and Ry (ts <ty <0) allow virtual exchanges.
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e virtual exchange of gp’s
= x[Ra;n)=e"""x[Ru; 1]

e virtual exchange of p-h’s
= x[Ra;n)=e""""x[R1; 7]

e Phase factor sum iR; and R-
> X[Ri;n)=e) ocsin g
n—t

Z X[ Re2; 1] = ei(%@)n) xsin 6 cos
=t
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Frequency spectrum

Direct termA(w) v.s. exchange term(w)

A'(w/wo) B
15 .
T pomE = BOm K
2 3
..... ._._._-_._-_.k w/bu'o
—15 5 ; .,

o S(w/wy;T)=A+ cosb B.

e “Bunching” Laughlin gp(f < 7/2) v.santi-bunching” non-Laughlin qp
0 > 7/2).
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Goldman’s Interferometer Experiment

Camino, Zhou, Goldman (2005)
Superperiod oscillation witl\® = 5¢y.
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Does this experiment measure fractional statistics?
Oscillations of the tunneling conductance, Eun-Ah Kim,@&anat/0604359

(Related works Kim and Fradkin (2003); Chamon, Freed, siwe] Sondhi and Wen (1997)

Assumptions:

e Therv = 1/3fluid is an open system (connects to the leads)

e No direct tunneling between outer edge and the inner puddle.

e Coherent propagation df/3 quasihole along outer edge.

e Both FQH fluids are incompressible and self-consistentjysidheir area withB
e Ther = 1/3 quasiholes have fractional statistics witk= 7 /3.

e Perturbative calculation of the conductance oscillatior@owers ofl’; andI’y
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Hierarchical Picture of the Incompressildg FQH
liquid
e 1/3 gp’s condense to form a puddle Df5 state

e Incompressibility of2 /5 state=- flux superquantization

(total charge of puddl€&)) /e

® = V2/5

BS/¢0
e B ) require@ 1} :/N extral/3 gp condense to the puddle of area

o 1/1/3% - %N = 1/2/5%, (Jain, Kivelson, Thouless,1993)

_ | |B]s
N = 5]
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Interference conditions

e Two independent periods:
— Aharanov-Bohm phase due to flux

ry W B through the are&
B “ |B|S _ o_1]|B|S
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e S/s =143 ~7/5= A|B|s = 5¢y:
consistent with the experiment

e The existence of periodic Aharonov-Bohm oscillations vaériodslarger
than the fundamental quantum of flux is a consequence ofdreait
statistics in ther = 1/3 FQH fluid!
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Temperature dependence of the conductance oscillatior
Perturbative calculation to leading orderin

T
2 szt¢L2¢R2+hc

F —zw 1
Hy = — - Jt¢31¢L1‘|‘€72

2

G(wo,v/R, T)=G(wo/T) + cosy §G(wg,v/R,T), wy = e*V/h

5G(T)/5G(T=11mK)
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Kim'’s fit to data from Goldman'’s group
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Conclusions

Interferometers can provide direct evidence for Abeliath aon-Abelian
Fractional Statistics

We have shown that noise cross current correlations prdoick direct way
to measure the statistical angle of the quasiholes an AbEliH state

Evidence for bunching and anti-bunching behavior in déefdérstates of the
Jain series

These experiments are feasible within current technology
We are currently working on the extension to the non Abelasec

Goldman’s recent experiment appears to be consistent vaittidnal
statistics; more detailed experiments are needed
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