q-Q.H.E. and Topology

Vincent Pasquier

Service de Physique Théorique
C.E.A. Saclay
France
From the Hall Effect to integrability

1. Hall effect.
2. Transfer Matrix.
3. Annular algebras.
4. deformed Hall effect wave function as a toy model for TQFT.
5. Conclusion.
Hall effect

- Lowest Landau Level wave functions

\[\psi_n(z) = z^n e^{-\frac{zz}{l^2}} \]

\[r = l\sqrt{n} \]

\[n=1, 2, \ldots, \frac{A}{2\pi l^2} \]
\[\frac{A}{2\pi l^2} = n_0 \]
Number of available cells also the **maximal degree** in each variable

\[Z_1^{\lambda_1} \ldots Z_n^{\lambda_n} \]
Is a basis of **states** for the system
Interactions

\[(Z_i - Z_j)^m\]

\(m\) measures the strength of the interactions.

Competition between interactions which spread electrons apart and high Compression which minimizes the degree \(n\).
With adiabatic time $\text{QHE}=\text{TQFT}$

- Bulk and edge.

Compute Feynman path integrals
Two layer system.

- Spin singlet projected system of 2 layers

\[\prod (x_i - x_j)^m (y_i - y_j)^m \]

When 3 electrons are put together, the wave function vanishes as:

\[\mathcal{E}^m \]
Projection onto the singlet state

Crossings forbidden to avoid double counting
RVB basis:

Projection onto the **singlet state**

\[
\begin{align*}
\tilde{e}_{5\ 3\ 1} & = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{array}{c}
\text{Diagram 1}
\end{array} \\
\tilde{e}_{5\ 2\ 3\ 1} & = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 6 \end{pmatrix} = \begin{array}{c}
\text{Diagram 2}
\end{array} \\
\tilde{e}_{4\ 3\ 2\ 1} & = \begin{pmatrix} 1 & 2 \\ 3 & 5 \\ 4 & 6 \end{pmatrix} = \begin{array}{c}
\text{Diagram 3}
\end{array} \\
\tilde{e}_{4\ 5\ 2\ 3\ 1} & = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 4 & 6 \end{pmatrix} = \begin{array}{c}
\text{Diagram 4}
\end{array} \\
\tilde{e}_{3\ 4\ 5\ 2\ 3\ 1} & = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{array}{c}
\text{Diagram 5}
\end{array}
\end{align*}
\]
RVB Basis
Also with fluxes
Exemples of wave functions

• Haldane-Rezayi: singlet state for 2 layer system.

\[
\text{Perm} \left[\frac{1}{x_i - y_j} \right] \prod (x_i - x_j)(y_i - y_j)(x_i - y_j)
\]

When 3 electrons are put together, the wave function vanishes as:

\[e^{2} \]
Moore Read

No spin

When 3 electrons are put together, the wave function vanishes as: \mathcal{E}^2

$$\text{Pfaff}\left[\frac{1}{z_i - z_j}\right]\prod (z_i - z_j)$$
Razumov Stroganov Conjectures

I.K. Partition function:

Also eigenvector of:

Stochastic matrix

\[H = \sum_{i=1}^{6} e_i \]
$e_1 =$

\[
H = \begin{pmatrix}
3 & 2 & 2 & 0 & 2 \\
1 & 2 & 0 & 1 & 0 \\
1 & 0 & 2 & 1 & 0 \\
0 & 2 & 2 & 3 & 2 \\
1 & 0 & 0 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
1 \\
2 \\
1
\end{pmatrix}
\]

Stochastic matrix
If $d=1$
Not hermitian
Transfer Matrix
Consider inhomogeneous transfer matrix:

\[T \left(z, z_i \right) = tr \left(L \left(\frac{Z^1}{z} \right) \ldots \ L \left(\frac{Z^n}{z} \right) \right) \]

\[L = \underbrace{\quad + \quad \quad} \]

\[qz - q^{-1}z^{-1} \quad \quad \quad \quad z - z^{-1} \]
Transfer Matrix

\[T(z, z_i) \Psi(z_1 \ldots z_n) = \Lambda(z_1 \ldots z_n) \Psi \]

\[[T(z), T(w)] = 0 \]
I.K. Partition function

Total partition function can be expressed as a Gaudin Determinant

When $d=q+1/q=1$ symmetrical and given by a Schur function.

Stroganov
Hecke and Yang generators

- Consider Hecke algebra generators:
 \[t_1 t_2 t_1 = t_2 t_1 t_2 \]
 Braid group relations

- And Yang operators:
 \[(t_1 - q)(t_1 + q^{-1}) = 0 \]

- Permutation relations:
 \[Y_1 = \frac{z_1 t_1 - z_2 t_1^{-1}}{q z_2 - q^{-1} z_1} \]
 Or Yang-Baxter algebra

\[Y_1 Y_2 Y_1 = Y_2 Y_1 Y_2 \]

\[Y_1 Y_1 = 1 \]
T.L. (Jones)

\[x = 9 \]

Diagram: Two disconnected loops connected by a line.
\[Y_4 \]

\[[Y_i, Y_j] = 0 \]
\[y_1 T^{-1} = T y_2 \]
Content of Representation

Read eigenvalues of y_i

Initial height 1 2 3 4

Final height
Bosonic Ground State

$$\Psi = 1 = \sum \pi \otimes \pi$$

$$t_i \Psi = \Psi \Psi t_i,$$

$$y_i \Psi = \Psi y_i,$$

Look for dual representation of AHA on polynomials
AHA

- Spin representation

\[y_1 \]
\[y_2 = t_1 y_1 t_1 \]
\[y_3 = t_2 y_2 t_2 \cdots \]

- Polynomial representation

\[y_1 = t_1 \cdots t_n \sigma \]

With: \[z_i \sigma = z_{i+1} \]

And: \[z_{i+n} = sz_i \]

Triangular matrices
Two \(q \)-layer system.

- Spin singlet projected system of 2 layers

\[
\prod (q^{-1} x_i x_j)(q^{-1} y_i y_j)
\]

(\(P \)) If \(i < j < k \) cyclically ordered, then

\[
\Psi(z_i = z, z_j = q^2 z, z_k = q^4 z) = 0
\]

Imposes \(s = q^6 \) for no new condition to occur
(e + \tau) \Psi = (\Psi(z_1, z_2) - \Psi(z_2, z_1)) \frac{z_1 q - z_2 q^{-1}}{z_1 - z_2}

e + \tau \text{ projects onto polynomials divisible by: }

z_1 q - z_2 q^{-1}

e \text{ Measures the Amplitude for 2 electrons to be in the same layer}
k q-layer system

- Spin singlet projected system of k layers

\[\prod_{a=1} \left(q \ x_i^a - q^{-1} x_j^a \right) \]

If \(i < j < k \) cyclically ordered, then

(\(P \)) \[\Psi(z_i = z, z_j = q^2 z, z_k = q^{2k} z) = 0 \]

Imposes \(S = q^{2(k+1)} \) for no new condition to occur
Other generalizations

• q-Haldane-Rezayi

\[
\text{Det} \left[\frac{1}{(x_i - y_j)(qx_i - q^{-1}y_j)} \right]
\]

Generalized Wheel condition, Gaudin Determinant
Related in some way to the Izergin-Korepin partition function?

Fractional hall effect Flux \(\frac{1}{2} \) electron
Kasatani wheel conditions

\[t^{k+1} q^{r-1} = 1 \]

\[\frac{Z_{i_{a+1}}}{Z_{i_a}} = tq^{b_{aa+1}} \]

\[b_{aa+1} = 0 \Rightarrow i_{a+1} > i_a \]

\[\sum b_{aa+1} \leq r - 2 \]

With \(r \), Flux=1/r particle.
Moore-Read

- Property (P) with s arbitrary.
- Affine Hecke replaced by Birman-Wenzl-Murakami.
- R.S replaced by Nienhuis De Gier in the symmetric case.

\[
sq^{2(k+1)} = 1
\]

\[
Pfaff \left[\frac{1}{qx_i - q^{-1}x_j} \right]
\]
The case q root of unity

- When $q+1/q=1$, Hecke representation is no more semisimple and degenerates into a trivial representation.
- Stroganov Partition function (Schur function) can be recovered as the unique symmetrical polynomial of the minimal degree obeying (P).

- Other roots of unity?
Conclusions

• T.Q.F.T. realized on q-deformed wave functions of the Hall effect.

• All connected to Razumov-Stroganov type conjectures. Proof of conjecture still missing.

• Relations with works of Feigin, Jimbo, Miwa, Mukhin and Kasatani on polynomials obeying wheel condition.

• Excited states of the Hall effect.

cond-mat/0506075

math.QA/0507364