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Spin Liquids and Topological States of Matter

e Liquid phases of electron fluids and spin systemtsiout long range order
with or without time reversal symmetry breaking

e Quasiparticlesvortices withfractional chargandfractional statistics
(Abelian and non-Abelian)

e HiddenTopological OrdeandTopological Vacuum Degeneracy

e Finite-dimensional quasiparticle Hilbert spaeesiniversal topological
guantum computer



“*Known” Topological Quantum Liquids

e 2DEGFractional Quantum Hall Liquids

— Abelian FQH stategLaughlin and Jain): fractional charge aAdelian
fractional statistics

— Non-Abelian FQH stateds v = 5/2 a Pfaffian (Moore-Read) FQH
state? (firm candidate) Is the plateawat 12/5 a parafermion state?
(good possibility)

e Rapidly rotating Bose gasepossible non-Abelian (Pfaffian) FQH state of
bosonsat =1

e Time-Reversal Breaking SuperconductdssSrp,RuQ, ap + ip
superconductor? (looks good)



Challenges

To develop aconsistent theorgf topological phases (i.e. beyond FOQH
states) and to understand the underlying mechanisms

What are thgyeneric phasesf models of topological liquids
Is the gap necessary? Can a topological liquid be gapless?

Concrete examples ddittice modelswith local interactions with topological
phases

Fractional StatisticsAbelian and non-Abelian
There has beesome progressm constructingnodelswith Abelian statistics

To find experimentally realizable models (looks promisimgt, quite there
yet)



Time Reversal Invariant Spin Liquids: Quantum Dimer
Models

e Simple local models describirgirongly frustrated and ring exchange
guantum spin systemith alarge spin gap and no long range spin order

e They typically exhibit spin gap phases with different tyjpésalence bond
crystal orders

e QDM have special solvable points, the Rokhsar-Kivelson)B#int, where
theexact ground state wave functibas the short range RVB form

(WRyB) = Z C), {C} = all dimer coverings of the lattice
{C}

e — Bipatrtite lattices the RK points arguantum (multi) critical points
described by an effective field theory with= 2 and massless
deconfined spinons, or first order transitions

— Non-bipartite latticesQDMs havetopologicalZ,; deconfined phases
with massive spinons and a topologidafiold ground state degeneracy
on a torus (Moessner and Sondhi, 1998)



The Quantum Dimer Model

Hpx = Z(UV; — tF}), Rokhsar and Kivelson (1988)

)
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Here each bar representsgn singlet bond
Fort = v = Hrx = >, QIQ,,withQ; = (1, 71').

e The ground state wave functiow,) hask = 0

[Wo) =

whereZ., is the sum over all dimer configurations

e Equaltime correlators in thejuantum dimer modedt the RK point are given by
correlators of thelassical dimer model

e This is actually doop model loops are the dimer moves from a reference state. This
is the simplest loop model: thelU/ (2), fully packed loop model.



Dimers, heights and effective field theory

Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

The QDM can be mapped toheeight model

Plaquette flipchanges the height of that plaquette-by, and the average height of
the surrounding sites by 1.

Equivalent configurationsh = h + 4.

Continuum limit A = 4¢(x)
Compactification Radiusp(z) = o(x) + 1.

The Quantum Lifshitz model
Hamiltonian:

o 2 1 2 /€2 2 2
H_/da:LH + 3 (Vgo)]
This is theQuantum Lifshitz Model (Henley; Moessner, Sondhi and Fradkin)

Action in imaginary timer < smectic layersn 3D classical statistical mechanics at
the Lifshitz transition.

S = /da:/dT[ +;(v¢)]



Scale Invariant Ground State Wave Functions and 2D
Classical Critical Phenomena

e Ground state wave-functio¥[¢]

Q(Z)Wolp] =0 = x e 2/

%ol :/Dso e_R/d2x (Ve(x))?

e Theground state wave functiaa conformally invariant



Mapping to a 2D- = 1 Euclidean CFT

The probability for a configuratiofy) is theGibbs weightof a 2D classical
Gaussian model, a Euclidean 2D free massless scalar field.

At these quantum critical points tligound state wave functids scale invariant

The equal-time expectation values of the observables arelators in thiss = 1
conformal field theory.

Theequal-time expectation valder operators in the quantum Lifshitz model are
given bycorrelators of the massless free boson conformal field yneh central
chargec = 1. Time-dependent correlatoexhibit power-law behavior with
dynamical exponent = 2.

Matching the correlation functions of the RK and Lifshitz deds, one finds
k=1/2m.

This is a multicritical point with many relevant perturlmats: e.g diagonal dimers
drive the system into @, topological phase
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Phase diagram for a quantum eight vertex model

Ardonne, Fendley and Fradkin
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Strategy for a Generalization

Each basis state in the Hilbert space Ie@ configurationn 2D
We start with the statistics we wish to have, and work backwar

Algebraic characterization of braiding in ba#t/(2); andSO(3), Chern-Simons
theories.

Braid matrix of a 2+1-dimensional theory as a limit of thematrix of an associated
relativistic 1+1 dimensional model

We construct quantum 2D models with these braid relationstitiging the structure
of the factorizableS-matrices of integrable 1D models.

We embed the 1D model in 2D Euclidean space, and find a (Rokhigalson-type)
guantum Hamiltonian whose ground state has the propexpescted of a model
with non-Abelian statistics.

Loop gases
— SU(2), case:O(n) lattice model withn = 2 cos(w/(k + 2)) (self-avoiding and
mutually-avoiding loops)

— SO(3) case: domain walls of @-state Potts model with
Q = 4cos®*(m/(k + 2)) (loops intersect and branch: nets)
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Wave Function Engineering i+ 1 Dimensions from
Field Theories inl + 1 Dimensions

e Project the world lines of the particles down to the plasdoops
e The basis states) of the Hilbert space are configurations of 2D loops
e This assumes that ttf#=+ 1-dimensional theory is in some sertsgographic

e The wave functionl of this ground state can be written as

—S(s)
vVZ

e S(s): action of theclassical 2D loop model for the configuration

€

(s|W) =

e Z is the 2D partition function with weights|¥)|*, which is the functional integral

over all configurations with weighte=5(5)=57(s),
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2D wave functions and 19-matrices
e The planeis d + 1-dimensional Euclidean space time

e A strand configuratiors the“time” evolution of a system of particles in 1D
\( \/
)\ \ \
1 2 3 4 5

e A 2D wave functions given by arevolution in 1+1 dimensions

6

e itis the evolution of a vector ifv ", specified at the boundary
a 1D wave function specified in terms of a set of coordinatelsmanmenta of the
particles,xz1,p1,...,xN,pn at the boundary

e The evolution is specified by the 1&-matrix which is a matching condition for
Ti < Tit1 andx; > Tit1
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Vv, ovig, (T > Tig1) = Si(0ii41) Vv, 0v;, (T8 < Tiga)
whered; ;11 Is the relativaapidity of the two particles

For integrable systems thfe matrix obeys the Yang-Baxter Equation
(same for Boltzmann weights in lattice models)

Correspondence between thanatrix and the braid generators
B = elim S(6), B ' = Qlim S(—6)
S obeys Yang-Baxter>- B obeys the Braid Group algebra

There is a natural representation of the Braid Group as®atta a given integrable
theory with a factorizabl&'-matrix

This connection gives a prescription for constructing wiawvestions with excitations
with non-Abelian braid statistics

Topological theory Unitarity requires that braiding be compatible with the
Jones-Wenzl projection

A 2D Hamiltonian can be found a la Rokhsar-Kivelson
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Quantum Loop Lattice Models with Non Abelian
Statistics, and Generalized Potts Models

Consider a 2D classical problem with+ 1 statese.g. an RSOS model with dual spins
(or heights) taking values, . . ., k + 1 with a Landau-Ginzburg potential

fV(9)

\V%\

A
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Strands and Domain Walls

The heights can only change Byl across a domain wall

We can regard thdomain wallsof this model as thetrandscarrying aS = 1/2
representation d/, (slz)

We can also associatespin S = % representationto a height=1,..., k+ 1

Crossing a stranes tensor products of spin of the region on the I&ft | and the
spin (1/2) of the strand Sy, ® 1/2 = (S, +1/2)® (St —1/2) < hr =hr £ 1

The Jones-Wenzl projector is satisfidgd+ 1 consecutive strands cannot have spin
(k+1)/2

N~
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Quantum Loop Models on a Honeycomb Lattice

We want to define local Hamiltonians on a honeycomb latticesglground state
wave functions are given by the weights of loop models

The Hamiltonians have the RK forrthey are a sum of projection operators
The ground state is annihilated by all projection operaamoic has zero energy

The off-diagonal terms in the Hamiltonians are ergodic en¢bnfiguration space
— Every link of the lattice is either occupied by a strand or gmp
— SU(2)x: occupied links are assigned a spif2 representation af/, (slz)
— SO(3)k: occupied links are assigned a spirepresentation d/, (sl2)
— An empty site corresponds to the identity

— At each vertex the configurations that appear in the grouate sibey the fusion
rules ofU, (sl2)
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The SU(2); lattice loop model

The ground state must consist of a superposition of configmsawhere the strands
form self- and mutually-avoiding loops which are not fullggiked

Each loop should have a weigiitand to be a purely topological ground state, there
should be no weight per unit length.

The strands form closed non-intersecting lgogs each vertex has either O or 2
links with occupied links touching it.

topologically identical configurations must have the samreeit

d-isotopy If two configurations are identical except for one havingasel loop
around a single plaquette then the weight of the configuratithout the
single-plaquette loop id times that of the one with it.

Freedman, Nayak and Shtengel constructed local Hamilisroa a honeycomb
lattice satisfying these rules for genedialwithout Jones-Wenzl projection)

Ford < 2 the ground states are critical and correspond to the CFTeadth) loop
models withn = d = 2 cos(w/(k + 2))
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The SO(3); loop model on the honeycomb lattice
The strands are assigned a spirepresentation df/, (sl2)

The strand configurations form representations of a BMWhalge

At a vertex we either have 0, 2 or 3 strands

A typical configuration in the spin-loop model

WD

>

The lines in this figure represent “spiriparticles

We must now allow for trivalent verticese. the loops are now allowed to branch
and merge= the spini loop model has branching loops

spin1 appears in the tensor product of two spineps=- trivalent vertices

The BMW relationE; = (Q — 1) E; implies thatisolated loops in the spif-model
receive aweightof) — 1 = d* — 1

20



e Because trivalent vertices occur here, however, all logesimot be isolated. The
projector onto spirkis proportional taX — F, so we associate this with two
neighboring trivalent vertices,

N

VRN

e The relation( X, — E,)® = (Q — 2)(X; — E;) means that a configuration with a
loop with just two lines emanating from it has a weight- 2 times the
configuration with the loop removed.

= (Q-2

e Becausd X; — E;)E,; = 0, no graph can contain any loop with just one external
line attached to it= no “tadpoles” are allowed.
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The Chromatic Loop Model

For the spint loop model we will use the weights of tlodassical 2D() state Potts
model whoseS-matrix yields theSO(3) braid matrix

The Potts spins reside on the dual (triangular) lattice esxddamain walls occupy the
links of the honeycomb lattice

The low temperature expansion of a 2Dstate Potts model of coupling constdt
can be written as a sum over configuratidus} of domain walls (“loops”)

Z =Y e (L)
L

whereL (L) is the length of the domain walls in configuratigdnandyx (£) is their
multiplicity.

The domain walls can intersect but do not have tadpoles

If we shade each region of like dual spins with some cetof, is the number of
ways this shading can be done wifhcolors so that no two adjacent regions have
the same color

22



The number of dual spin configurations which have the sanedoafiguration’ is
the number of)-coloringsx o (L).

X (£) is thechromatic polynomial of the graph dual tc.

The chromatic polynomial reduces to the number of colorwfghe graph wheid)
IS an integerbut can be defined for af) by a recursion relation

Consider two nodes connected by a lifee. two loops sharing a boundary in the
original picture). Then defin®, L to be the graph with the line deleted, and to
be the graph with the two nodes joined into one. Then we have

X0 (L) = xq(DiL) — xq(CL).

X (£) vanishes for any configuration with a tadpole, or a strandis @angling end
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The Chromatic Loop Model: the ground state of the
SO(3) quantum loop gas

Strands form closed loops, but now we allow trivalent vexdic
topologically identical configurations have the same weigh

Each loop configuratiod receives a weight, (£). For example, if two
configurations are identical except for one having a closed hround a single
plagquette (a loop of length 6 on the honeycomb lattice, ledgin the square), then
the weight of the configuration without the single-plageétiop is() — 1 times that
of the one with it.

e \We are only interested in the regime in which the domain waltdiferate: this is the
disordered phase

e \We have given an explicit construction on the honeycomixatt
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Topological Phases and Phase Transitions

To determine the phase diagram, remember that a confignratsowveighted by
|W(s)|? in the quantum theory.

Thus each weight is squared: each loop gets a weight 1)2.
This suggests that the phase diagram is that ofxhe state Potts modglvhere

Qe —1=(Q—1)"=(d"—1)> =1+ 2cos[2n/(k + 2)]
Critical theoryfor Qg < 4: k= 1,2,3. kK = lis trivial, k = 2 is abelian.
k = 3 is a CFT with the braiding rules of Fibonacci fractional stats
The critical point withd = (1 + +/5) /2 and

(1+\/5>21r 5+ /5

e =1 —
Qe + 5 5

is a conformal field theory witle = 14/15 (before Jones-Wenzl projection)

The consistency of this statement can be proven using $uttebrem (and a
fugacity for trivalent vertices) (Freedman)

After projection it presumably becomes a topological phase
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Entanglement Entropy of 2D Quantum Critical States

ongoing project with Joel Moore and Matias Negrete

e Recent work by Kitaev and Preskill, and by Levin and Wen hasvsithat the
entanglement (von Neumann) entropyf a region of linear sizé. in 2D
topological phaselas the behavior

S=alL+~v+0O(1/L)

wherea is anon-universatoefficient (i.e. dependent on the short distance physics)
and~ is auniversalfinite constant determined by the quantum dimensions of the
excitations of the topological phase.

e This topological entropy plays a crucial role in single gaiantacts in non-Abelian
FQH states (Fendley, Fisher and Nayak) and gives new me#mithg boundary
entropy of quantum impurity problems and 1D boundary CFTH€ék and Ludwig)

e The proximity of the2D conformal quantum critical pointge discussed here &D
topological phasesuggest that they may hold clues on this behavior.

e [s there auniversal signatura the von Neumann entropy of quantum critical
systems?
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Can you hear the shape of Schrodinger’s Cat?

e In 1+ 1-dimensional CFTs the entanglement entropy of a 1D intervedngth L (in
an otherwise infinite system) behaves as

S = glogL—FO(l)

wherec is the central charge of the CFT (Calabrese and Cardy). €hidirhas been
verified in many 1D critical systems.

e Ford > 1, it has been conjectured thétscales likeL%~*. This is known to hold for
free fields (Srednicki) and it has been conjectured to gdgdrald at quantum
criticality (Calabrese and Cardy), and it has been sugdd€strstraete and
coworkers) that this behavior also holds for the systemsis@idsed here.

e \We have found that in the case o€QCP with a conformally invariant ground state
wave functionthe entanglement entroyobtained by observing a regiofiwhich
IS a subsystem of a regioh U B obeys the law

S=Fa+ Fp — Faus

2, the normalization of the ground state wave

whereF = —log Z = — log || V|
function, withDirichlet BC’sin that region
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e For the QCPs we are discussing heres the partition function of a CFT with
Dirichlet BCs. For a bounded region of linear size&nd smooth boundary, it obeys
the ‘Mark Kac law’ (‘Can you hear the shape of a drum?’)

F =al’+bL — %xlogL + O(1) (Cardy and Peschgl

wherea andb are non-universal, angd is theEuler characteristic of the region
(manifold).

X =2—2h—0, h = # handles, b = # boundaries

e This result suggests the existence db@ L dependence with amiversal coefficient
associated with the central chargef the associated CFT

e This result implies that for a QCP described by a scale (anfbcanally) invariant
ground state wave functiothe entanglement entropy of regioAsand B with a
smooth common boundary has a universal logarithmic terthe form

C

AS = o (xa +xB — xauB) log L

28



For regionsA C B the coefficient of the
log L is zerosince in this case

XA+ XxB =XauB = AS =0

If the regions A and B are physically
separate and have no common intersec-
tion, xa + x5 — xaus # 0. In this
case, which corresponds to a procé
in which the system physically splits

two disjoint parts there is a universa
log L term in the entanglement entropy
at quantum criticality, proportional to the
central charge of the associated CFT!
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If the A and B share a common bound-
ary, there is dog L term whose coeffi-
cient is determined by the angles at the

intersections 0

Or if the boundary ofA is not smooth, N
iIn which case the coefficient depends on
the anglesy; for both regions

Finite terms in the entanglement entropy depend on scaégtant aspect ratios
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Conclusions

There are lattice models and field theories which exhdpblogical ordeand
conformal quantum critical point&or SO(3), Potts; forSU (2)x, O(n) model.

The ground state wave function of the critical theory is a ZEX@vhose equal-time
correlators at the critical points can be computed

There is agappedopological field theorydescribing the low energy physics.

Do we always need a Chern-Simons description for thesedgpall field theories?
The excitations of this theory obeywn-abelian statistics

Wanted: simpler and physically realizable models!

There is a relation for systems with a scale-invariant gdostate wave function
between the&ntanglement entromnd thecentral charge of the associated CFT
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