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Spin Liquids and Topological States of Matter
• Liquid phases of electron fluids and spin systemswithout long range order,

with or without time reversal symmetry breaking

• Quasiparticles: vortices withfractional chargeandfractional statistics

(Abelian and non-Abelian)

• HiddenTopological OrderandTopological Vacuum Degeneracy

• Finite-dimensional quasiparticle Hilbert spaces⇒ universal topological

quantum computer
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“Known” Topological Quantum Liquids
• 2DEGFractional Quantum Hall Liquids

– Abelian FQH states(Laughlin and Jain): fractional charge andAbelian

fractional statistics

– Non-Abelian FQH states: Is ν = 5/2 a Pfaffian (Moore-Read) FQH

state? (firm candidate) Is the plateau atν = 12/5 a parafermion state?

(good possibility)

• Rapidly rotating Bose gases: possible non-Abelian (Pfaffian) FQH state of

bosons atν = 1

• Time-Reversal Breaking Superconductors: Is Sr2RuO4 ap + ip

superconductor? (looks good)
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Challenges
• To develop aconsistent theoryof topological phases (i.e. beyond FQH

states) and to understand the underlying mechanisms

• What are thegeneric phasesof models of topological liquids

• Is the gap necessary? Can a topological liquid be gapless?

• Concrete examples oflattice modelswith local interactions with topological

phases

• Fractional Statistics: Abelian and non-Abelian

• There has beensome progressin constructingmodelswith Abelian statistics

• To find experimentally realizable models (looks promising,not quite there

yet)
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Time Reversal Invariant Spin Liquids: Quantum Dimer
Models

• Simple local models describingstrongly frustrated and ring exchange
quantum spin systemswith a large spin gap and no long range spin order

• They typically exhibit spin gap phases with different typesof valence bond
crystal orders

• QDM have special solvable points, the Rokhsar-Kivelson (RK) point, where
theexact ground state wave functionhas the short range RVB form

|ΨRVB〉 =
∑

{C}

|C〉, {C} = all dimer coverings of the lattice

• – Bipartite lattices: the RK points arequantum (multi) critical points,
described by an effective field theory withz = 2 and massless
deconfined spinons, or first order transitions

– Non-bipartite lattices: QDMs havetopologicalZ2 deconfined phases
with massive spinons and a topological4-fold ground state degeneracy
on a torus (Moessner and Sondhi, 1998)
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The Quantum Dimer Model

HRK =
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• The ground state wave function|Ψ0〉 hasE = 0

|Ψ0〉 =
1√
Zcl

X

C

|C〉 ,

whereZcl is the sum over all dimer configurations

• Equal-time correlators in thequantum dimer modelat the RK point are given by

correlators of theclassical dimer model.

• This is actually aloop model: loops are the dimer moves from a reference state. This

is the simplest loop model: theSU(2)1 fully packed loop model.
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Dimers, heights and effective field theory
Moessner, Sondhi and Fradkin; Ardonne, Fendley and Fradkin

• The QDM can be mapped to aheight model

• Plaquette flipchanges the height of that plaquette by±4, and the average height of

the surrounding sites by±1.

• Equivalent configurations: h ∼= h+ 4.

• Continuum limit: h ∼= 4ϕ(x)

Compactification Radius: ϕ(x) ∼= ϕ(x) + 1.

• The Quantum Lifshitz model

Hamiltonian:

H =

Z
d2x

»
1

2
Π2 +

κ2

2

`
∇2ϕ

´2
–

This is theQuantum Lifshitz Model. (Henley; Moessner, Sondhi and Fradkin)

• Action in imaginary timeτ ⇔ smectic layersin 3D classical statistical mechanics at

the Lifshitz transition.

S =

Z
d2x

Z
dτ

»
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Scale Invariant Ground State Wave Functions and 2D
Classical Critical Phenomena

• Z
d2~x

»
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2

“ δ
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”2

+
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2
(∇2ϕ)2

–
Ψ[ϕ] = EΨ[ϕ]

Q(x) ≡ 1√
2

„
δ

δϕ
+ κ∇2ϕ
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Q†(x) ≡ 1√

2

„
− δ
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«

• Ground state wave-function, Ψ0[ϕ]

Q(~x)Ψ0[ϕ] = 0 ⇒ Ψ0[ϕ] ∝ e
−κ

2

Z
d2x (∇ϕ(x))2

‖Ψ0‖2 =

Z
Dϕ e

−κ
Z
d2x (∇ϕ(x))2

• Theground state wave functionis conformally invariant
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Mapping to a 2Dc = 1 Euclidean CFT
• The probability for a configuration|ϕ〉 is theGibbs weightof a 2D classical

Gaussian model, a Euclidean 2D free massless scalar field.

• At these quantum critical points theground state wave functionis scale invariant

• The equal-time expectation values of the observables are correlators in thisc = 1

conformal field theory.

• Theequal-time expectation valuefor operators in the quantum Lifshitz model are

given bycorrelators of the massless free boson conformal field theory with central

chargec = 1. Time-dependent correlatorsexhibit power-law behavior with

dynamical exponentz = 2.

• Matching the correlation functions of the RK and Lifshitz models, one finds

κ = 1/2π.

• This is a multicritical point with many relevant perturbations: e.g diagonal dimers

drive the system into aZ2 topological phase
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Phase diagram for a quantum eight vertex model
Ardonne, Fendley and Fradkin
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Strategy for a Generalization
• Each basis state in the Hilbert space is aloop configurationin 2D

• We start with the statistics we wish to have, and work backward

• Algebraic characterization of braiding in bothSU(2)k andSO(3)k Chern-Simons

theories.

• Braid matrix of a 2+1-dimensional theory as a limit of theS-matrix of an associated

relativistic 1+1 dimensional model

• We construct quantum 2D models with these braid relations byutilizing the structure

of the factorizableS-matrices of integrable 1D models.

• We embed the 1D model in 2D Euclidean space, and find a (Rokhsar-Kivelson-type)

quantum Hamiltonian whose ground state has the properties expected of a model

with non-Abelian statistics.

• Loop gases:

– SU(2)k case:O(n) lattice model withn = 2 cos(π/(k+ 2)) (self-avoiding and

mutually-avoiding loops)

– SO(3)k case: domain walls of aQ-state Potts model with

Q = 4 cos2(π/(k + 2)) (loops intersect and branch: nets)
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Wave Function Engineering in2 + 1 Dimensions from
Field Theories in1 + 1 Dimensions

• Project the world lines of the particles down to the plane⇒ loops

• The basis states|s〉 of the Hilbert space are configurations of 2D loops

• This assumes that the2 + 1-dimensional theory is in some senseholographic

• The wave functionΨ of this ground state can be written as

〈s|Ψ〉 =
e−S(s)

√
Z

• S(s): action of theclassical 2D loop model for the configurations.

• Z is the 2D partition function with weight|〈s|Ψ〉|2, which is the functional integral

over all configurationss with weighte−S(s)−S∗(s).
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2D wave functions and 1DS-matrices
• The plane is a1 + 1-dimensional Euclidean space time

• A strand configurationis the“time” evolution of a system of particles in 1D

1 2 4 5 63

• A 2D wave functionis given by anevolution in 1+1 dimensions

• it is the evolution of a vector inV ⊗N , specified at the boundary

a 1D wave function specified in terms of a set of coordinates and momenta of the

particles,x1, p1, . . . , xN , pN at the boundary

• The evolution is specified by the 1DS-matrix which is a matching condition for

xi < xi+1 andxi > xi+1
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• ψVi⊗Vi+1
(xi ≫ xi+1) = Si(θi,i+1)ψVi⊗Vi+1

(xi ≪ xi+1)

whereθi,i+1 is the relativerapidity of the two particles

• For integrable systems theS-matrix obeys the Yang-Baxter Equation

(same for Boltzmann weights in lattice models)

• Correspondence between theS-matrix and the braid generators

B = lim
θ→∞

eS(θ), B−1 = lim
θ→∞

eS(−θ)

• eS obeys Yang-Baxter⇒ B obeys the Braid Group algebra

• There is a natural representation of the Braid Group associated to a given integrable

theory with a factorizableS-matrix

• This connection gives a prescription for constructing wavefunctions with excitations

with non-Abelian braid statistics

• Topological theory: Unitarity requires that braiding be compatible with the

Jones-Wenzl projection

• A 2D Hamiltonian can be found à la Rokhsar-Kivelson

15



Quantum Loop Lattice Models with Non Abelian
Statistics, and Generalized Potts Models

Consider a 2D classical problem withk + 1 states;e.g. an RSOS model with dual spins

(or heights) taking values1, . . . , k + 1 with a Landau-Ginzburg potential

φ

V (φ)
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Strands and Domain Walls
• The heights can only change by±1 across a domain wall

• We can regard thedomain wallsof this model as thestrandscarrying aS = 1/2

representation ofUq(sl2)

• We can also associate aspinS = h−1
2

representation to a heighth = 1, . . . , k + 1

• Crossing a strand⇔ tensor products of spin of the region on the left (SL) and the

spin (1/2) of the strand: SL ⊗ 1/2 = (SL + 1/2) ⊕ (SL − 1/2) ⇔ hR = hL ± 1

• The Jones-Wenzl projector is satisfied: k + 1 consecutive strands cannot have spin

(k + 1)/2

11

1 2 33 4r

S 0 1
2

3
2
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Quantum Loop Models on a Honeycomb Lattice
• We want to define local Hamiltonians on a honeycomb lattice whoseground state

wave functions are given by the weights of loop models

• The Hamiltonians have the RK form: they are a sum of projection operators

• The ground state is annihilated by all projection operatorsand has zero energy

• The off-diagonal terms in the Hamiltonians are ergodic in the configuration space

– Every link of the lattice is either occupied by a strand or empty

– SU(2)k: occupied links are assigned a spin1/2 representation ofUq(sl2)

– SO(3)k: occupied links are assigned a spin1 representation ofUq(sl2)

– An empty site corresponds to the identity

– At each vertex the configurations that appear in the ground state obey the fusion

rules ofUq(sl2)
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TheSU(2)k lattice loop model
• The ground state must consist of a superposition of configurations where the strands

form self- and mutually-avoiding loops which are not fully packed

• Each loop should have a weightd, and to be a purely topological ground state, there

should be no weight per unit length.

• The strands form closed non-intersecting loops, i.e. each vertex has either 0 or 2

links with occupied links touching it.

• topologically identical configurations must have the same weight

• d-isotopy: If two configurations are identical except for one having a closed loop

around a single plaquette then the weight of the configuration without the

single-plaquette loop isd times that of the one with it.

• Freedman, Nayak and Shtengel constructed local Hamiltonians on a honeycomb

lattice satisfying these rules for generald (without Jones-Wenzl projection)

• Ford ≤ 2 the ground states are critical and correspond to the CFT of theO(n) loop

models withn = d = 2 cos(π/(k + 2))
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TheSO(3)k loop model on the honeycomb lattice
• The strands are assigned a spin1 representation ofUq(sl2)

• The strand configurations form representations of a BMW algebra

• At a vertex we either have 0, 2 or 3 strands

• A typical configuration in the spin-1 loop model

• The lines in this figure represent “spin-1” particles

• We must now allow for trivalent vertices, i.e. the loops are now allowed to branch

and merge⇒ the spin-1 loop model has branching loops

• spin1 appears in the tensor product of two spin-1 reps⇒ trivalent vertices

• The BMW relationE2
j = (Q− 1)Ej implies thatisolated loops in the spin-1 model

receive a weight ofQ− 1 = d2 − 1
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• Because trivalent vertices occur here, however, all loops need not be isolated. The

projector onto spin-1 is proportional toX − E, so we associate this with two

neighboring trivalent vertices,

=  X E

• The relation(Xj − Ej)
2 = (Q− 2)(Xj − Ej) means that a configuration with a

loop with just two lines emanating from it has a weightQ− 2 times the

configuration with the loop removed.

= (Q 2)

• Because(Xj − Ej)Ej = 0, no graph can contain any loop with just one external

line attached to it⇒ no “tadpoles” are allowed.
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The Chromatic Loop Model
• For the spin-1 loop model we will use the weights of theclassical 2DQ state Potts

model whoseS-matrix yields theSO(3) braid matrix

• The Potts spins reside on the dual (triangular) lattice and its domain walls occupy the

links of the honeycomb lattice

• The low temperature expansion of a 2DQ state Potts model of coupling constantK

can be written as a sum over configurations{L} of domain walls (“loops”)

Z =
X

L

e−KL(L)χQ(L)

whereL(L) is the length of the domain walls in configurationL, andχQ(L) is their

multiplicity.

• The domain walls can intersect but do not have tadpoles

• If we shade each region of like dual spins with some color⇒ χQ is the number of

ways this shading can be done withQ colors so that no two adjacent regions have

the same color
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• The number of dual spin configurations which have the same loop configurationL is

the number ofQ-coloringsχQ(L).

• χQ(L) is thechromatic polynomial of the graph dual toL.

• The chromatic polynomial reduces to the number of coloringsof the graph whenQ

is an integer, but can be defined for allQ by a recursion relation

• Consider two nodes connected by a linel (i.e. two loops sharing a boundary in the

original picture). Then defineDlL to be the graph with the line deleted, andClL to

be the graph with the two nodes joined into one. Then we have

χQ(L) = χQ(DlL) − χQ(ClL).

• χQ(L) vanishes for any configuration with a tadpole, or a strands with dangling end
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The Chromatic Loop Model: the ground state of the
SO(3) quantum loop gas

• Strands form closed loops, but now we allow trivalent vertices

• topologically identical configurations have the same weight

• Each loop configurationL receives a weightχQ(L). For example, if two

configurations are identical except for one having a closed loop around a single

plaquette (a loop of length 6 on the honeycomb lattice, length 4 on the square), then

the weight of the configuration without the single-plaquette loop isQ− 1 times that

of the one with it.

• We are only interested in the regime in which the domain wallsproliferate: this is the

disordered phase

• We have given an explicit construction on the honeycomb lattice
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Topological Phases and Phase Transitions
• To determine the phase diagram, remember that a configuration s is weighted by

|Ψ(s)|2 in the quantum theory.

• Thus each weight is squared: each loop gets a weight(Q− 1)2.

• This suggests that the phase diagram is that of theQeff -state Potts model, where

Qeff − 1 = (Q− 1)2 = (d2 − 1)2 = 1 + 2 cos[2π/(k + 2)]

• Critical theoryfor Qeff ≤ 4: k = 1, 2, 3. k = 1 is trivial, k = 2 is abelian.

• k = 3 is a CFT with the braiding rules of Fibonacci fractional statistics

• The critical point withd = (1 +
√

5)/2 and

Qeff = 1 +

"„
1 +

√
5

2

«2

− 1

#2

=
5 +

√
5

2

is a conformal field theory withc = 14/15 (before Jones-Wenzl projection)

• The consistency of this statement can be proven using Tutte’s theorem (and a

fugacity for trivalent vertices) (Freedman)

• After projection it presumably becomes a topological phase
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Entanglement Entropy of 2D Quantum Critical States
ongoing project with Joel Moore and Matías Negrete

• Recent work by Kitaev and Preskill, and by Levin and Wen has shown that the

entanglement (von Neumann) entropyS of a region of linear sizeL in 2D

topological phaseshas the behavior

S = αL+ γ +O(1/L)

whereα is anon-universalcoefficient (i.e. dependent on the short distance physics)

andγ is auniversalfinite constant determined by the quantum dimensions of the

excitations of the topological phase.

• This topological entropy plays a crucial role in single point contacts in non-Abelian

FQH states (Fendley, Fisher and Nayak) and gives new meaningto the boundary

entropy of quantum impurity problems and 1D boundary CFTs (Affleck and Ludwig)

• The proximity of the2D conformal quantum critical pointswe discussed here to2D

topological phasessuggest that they may hold clues on this behavior.

• Is there auniversal signaturein the von Neumann entropy of quantum critical

systems?
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Can you hear the shape of Schrödinger’s Cat?
• In 1 + 1-dimensional CFTs the entanglement entropy of a 1D intervalof lengthL (in

an otherwise infinite system) behaves as

S =
c

3
logL+O(1)

wherec is the central charge of the CFT (Calabrese and Cardy). This result has been

verified in many 1D critical systems.

• Ford > 1, it has been conjectured thatS scales likeLd−1. This is known to hold for

free fields (Srednicki) and it has been conjectured to generally hold at quantum

criticality (Calabrese and Cardy), and it has been suggested (Verstraete and

coworkers) that this behavior also holds for the systems we discussed here.

• We have found that in the case of aQCP with a conformally invariant ground state

wave function, the entanglement entropyS obtained by observing a regionA which

is a subsystem of a regionA ∪B obeys the law

S = FA + FB − FA∪B

whereF = − logZ = − log ||Ψ0||2, the normalization of the ground state wave

function, withDirichlet BC’s in that region
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• For the QCPs we are discussing hereZ is the partition function of a CFT with

Dirichlet BCs. For a bounded region of linear sizeL and smooth boundary, it obeys

the ‘Mark Kac law’ (‘Can you hear the shape of a drum?’)

F = aL2 + bL− c

6
χ logL+O(1) (Cardy and Peschel)

wherea andb are non-universal, andχ is theEuler characteristic of the region

(manifold):

χ = 2 − 2h− b, h = # handles, b = # boundaries

• This result suggests the existence of alogL dependence with anuniversal coefficient

associated with the central chargec of the associated CFT

• This result implies that for a QCP described by a scale (and conformally) invariant

ground state wave function,the entanglement entropy of regionsA andB with a

smooth common boundary has a universal logarithmic termof the form

∆S = − c
6

(χA + χB − χA∪B) logL
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For regionsA ⊆ B the coefficient of the

logL is zerosince in this case

χA + χB = χA∪B ⇒ ∆S = 0

AB

If the regionsA andB are physically

separate and have no common intersec-

tion, χA + χB − χA∪B 6= 0. In this

case, which corresponds to a process

in which the system physically splits in

two disjoint parts, there is a universal

logL term in the entanglement entropy

at quantum criticality, proportional to the

central chargec of the associated CFT!

A

B

A ∪B

29



If the A andB share a common bound-

ary, there is alogL term whose coeffi-

cient is determined by the angles at the

intersections
A

B

Or if the boundary ofA is not smooth,

in which case the coefficient depends on

the anglesγi for both regions
A

B

γ1

γ2

γ3

γ4

Finite terms in the entanglement entropy depend on scale-invariant aspect ratios
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Conclusions
• There are lattice models and field theories which exhibittopological orderand

conformal quantum critical points. ForSO(3)k, Potts; forSU(2)k,O(n) model.

• The ground state wave function of the critical theory is a 2D CFT whose equal-time

correlators at the critical points can be computed

• There is agappedtopological field theorydescribing the low energy physics.

• Do we always need a Chern-Simons description for these topological field theories?

• The excitations of this theory obeynon-abelian statistics.

• Wanted: simpler and physically realizable models!

• There is a relation for systems with a scale-invariant ground state wave function

between theentanglement entropyand thecentral charge of the associated CFT
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