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• Fractional Quantum Hall Effect, Laughlin Wavefunction, 
Haldane Hamiltonian

• Quantum Dimer Model, Equal Amplitude Superposition 
Wavefunction, Rokhsar-Kivelson Hamiltonian

• Models with emergent gauge symmetry, Wen, Kitaev 
and others

Why do simple models work for something 
complicated like topological order?

Topological order: Hamiltonian has multiple ground states such 
that all matrix elements of local operators are vanishingly small 
between states and all local operators have close to the same 

expectation value in each state

Each of these model Hamiltonians is a sum of projection 
operators that exactly annihilate the ground state, what 

about more realistic models?

〈Ψ0
i , OΨ0

j 〉 = const× δi,j +O(exp(−L))



How do we make a topologically ordered state?
How long does it take?  What is the depth of 

the quantum circuit?
How does a topologically ordered system respond 

to small or large perturbations?
What is the relation between topological 

order and “ordinary” order?

Dimer liquid for Rokhsar-Kivelson Hamiltonian.  Not 
stable to perturbations on square lattice, gapless.  

Stable on triangular lattice, gapped (Moessner, Sondhi).

2 states, odd vs. even, more on higher genus,
both states look the same locally!
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Outline:
• Lieb-Robinson bounds: it takes a time of order l/v for 

information to propagate a distance l under local 
Hamiltonian evolution.

• Producing order: it takes a time of order l/v to produce 
correlations on length l.  It takes a time of order L/v to 
produce topological order on a system of size L.

• Quasi-adiabatic evolution: for a gapped system, the ground 
state evolves under a change in system parameters as if it 
were undergoing local Hamiltonian evolution

• Combining the above results, topological order is stable if 
the gap remains open.

• Quasi-adiabatic flux insertion: Lieb-Schultz-Mattis theorem 
in higher dimensions.



Lieb-Robinson Bounds

[A,B] = 0
Operators A, B separated in space by distance l

Local Hamiltonian (includes exponentially decaying interactions) 
implies bound on commutator at different times:

Precise 
statement:

H =
∑

Z

hZ

‖[A(t), B]‖ ≤ CB(X, t)

CB(X, t) ≤ CB(X, 0) + 2
∑

Z:Z∩X "=∅

‖hZ‖
∫ |t|

0
ds CB(Z, s)

“Wave Equation” for “Lack of Commutation”:

acts only on set Z

A has support on set X, B  has support on set Y

hZ

Initial conditions: X ∩ Y = ∅ → CB(X, t = 0) = 0; X ∩ Y $= ∅ → CB(X, t = 0) = 2‖A‖‖B‖

t ≤ l/v → ‖[A(t), B]‖ ≤ O(exp(−l))



Lightcone for operators:

Alice

Bob

UA x

t

Lightcone OB

is small outside the lightcone

Limit on transmission of information, microcausality.

Ol(t) =
∫

dµ(U)UOU†
To localize operator O to a lightcone of size 
l, integrate over unitary rotations over the 

rest of the system

Result: to exponential accuracy, O(t) can be written as an 
operator which acts only on sites within distance l=vt of O

〈U†
A(t)OBUA(t)〉 − 〈OB〉



Producing correlations:
Evolve system for time t under arbitrary time-

dependent local Hamiltonian:

Backward lightcone Backward lightcone

OA(t) OB(t)

Assume initial state has correlation length 
small compared to l-vt.  Then operators can’t 

be correlated at the final time!

Time to introduce correlations 
proportional to correlation length!

H = H(t′), 0 ≤ t′ ≤ t



Producing topological order:

|〈Ψ0
i , OΨ0

j 〉 − const× δi,j | ≤ ε‖O‖

(ε, l)
Define a set of states       to have topological order to 
accuracy
if for every operator O supported on a set of 
diameter l, we have

Ψ0
i

Suppose we start with states  Ψ0
1,Ψ

0
2

with topological order to given accuracy (ε, l)

“Topologically ordered” if epsilon is exponentially small in L for l of order L

U = exp[
∫ t

0
H(t)dt] 〈UΨ0

i , OUΨ0
j 〉 = 〈Ψ0

i , O(t)Ψ0
j 〉

Topological order as a property of states!

O(t) is still a local operator, so states            are 
topologically ordered with accuracy of order

UΨ1
0, UΨ2

0

(ε +O(exp(−l), l − vt)

If initial state is “topologically ordered”, so is final state!  Converse: takes time t of 
order L to produce topological order.



Quantum Phases of Matter
Parameter dependent Hamiltonian: Hs, 0 ≤ s ≤ 1
Let gap from ground state sector to 
excited states be at least         for 0 ≤ s ≤ 1∆E

“Same 
phase” How does ground state evolve?

Adiabatic evolution?  H(t) = Hs=t/t0

Ψ0
i → T exp[i

∫ t0

0
H(t)dt]Ψ0

i

If t0∆E >> 1 leaves system close to ground state

However, the error scales only as a power of           , but also scales 
with system size.  Needs long times for macroscopic systems!

t0∆E



Better: Quasi-adiabatic evolution

Õ+(iτ) ≡ 1
2π

∫
dtA(t)

1
it + τ

exp[−(t/tq)2/2]

Linear perturbation theory

An integral representation, positive 
and negative frequency parts

A local approximation

A local approximation to positive and 
negative frequency parts, with 

exponentially small error

Result: can represent change in ground state wavefunction 
by local Hamiltonian evolution if gap remains open

Error exponentially small in         
even in thermodynamic limit

tq∆E

local Hamiltonian evolution

∂sΨ0
i 〉 =

∑

a

∂s(Hs)ai
1

E0 − Ea
Ψa〉

= −
∫ ∞

0
dτ [(∂sHs)+(iτ)− (∂sHs)−(−iτ)]Ψ0

i 〉

≈ −
∫ ∞

0
dτ [ ˜(∂sHs)+(iτ)− ˜(∂sHs)−(−iτ)]Ψ0

i 〉

Ψ0
i → S ′ exp[i

∫ s

0
D(s′)ds′]Ψ0

i



Quasi-adiabatic evolution with 
multiple approximately 

degenerate ground states:

Ground state splitting ε

Matrix elements of quasi-adiabatic evolution operator,          , between 
ground states vanish linearly in 

D(s)
tqε

Hence, the matrix Q agrees with the usual 
(non-abelian) geometric phase to zeroth 

order in

Q is a unitary matrix

tqε

S ′ exp[i
∫ s

0
D(s′)ds′]Ψi

0 ≈ QΨi
0(s)



Stability of Topologically 
Ordered States

Ψ0
i → S ′ exp[i

∫ s

0
D(s′)ds] Quasi-adiabatic evolution is local 

Hamiltonian evolution

From before, this means that topological order 
cannot be lost under this evolution for short enough 
times compared to system size.  This means that any 
finite change in parameters which keeps the gap open 
in the thermodynamic limit keeps the same structure 

of topologically ordered states!

Example: disorder in FQHE, compare Wen and Niu to 
first order in perturbation theory



Stability of States with 
Ordinary Order

Ψ0
i → S ′ exp[i

∫ s

0
D(s′)ds] Quasi-adiabatic evolution is local  

Hamiltonian evolution

Can always construct dressed operators with the 
same correlation functions.  For example, transverse 

field Ising model.  In ordered phase, long range 
correlations present.  Operators with Ising symmetry 
cannot break ground state degeneracy if gap remains 

open.

H = J
∑

<ij>

Si
zS

j
z + B

∑

i

Si
x 〈Si

zS
j
z〉 = 1, B = 0

Need Ising symmetry of perturbation to make matrix elements vanish at B=0 between ground states.
Order is less robust, can be broken by parallel field.



Flux Insertion
Thouless and Gefen in FQHE: insert flux slow 

enough to avoid exciting local states above gap but 
fast enough to “shoot through” level crossings.

states above gap
∆E

θ
Quasi-adiabatic evolution under change in 

Hamiltonian parameters provides a way to do this.

Due to gauge symmetry, this works even if gap is present only at θ = 0

Inserting flux drives system between 
different topologically ordered states

2π 4π 6π0



Lieb-Schultz Mattis 
Theorem:

• Assume gap at

• Apply quasi-adiabatic flux insertion

• Provably create state with different 
momentum

• Either multiple ground states with topological 
order or symmetry breaking or

• Valid for systems with conserved charge at 
any non-integer filling 

θ = 0

∆E ≤ log(L)/L



• Bounds on propagation of information

• Locality theorems: gap implies exponential decay of 
correlations, also results for Fermi systems at non-zero 
temperature

• Stability of phases while a gap remains open

• Existence of topological order in certain systems, higher 
dimensional Lieb-Schultz-Mattis theorems

• Local projective Hamiltonian, algorithms for simulating 
quantum systems

• Matrix product form for density matrix at non-zero temperature

• Area laws for production of entropy under time evolution

Combining Lieb-Robinson with a gap:

 General technique, other extensions: geometric phase for quasi-
adiabatic evolution, area laws and related for gapped systems, 

improved algorithms, LSM theorems for even width systems (dimer 
liquids), more?


