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Invariant tensors

If G is a group, you can calculate with its in-
variant tensors using Feynman-like diagrams,
or “spin networks” .

Example:

G = SU(3)

V = C3, the defining irrep.
e € Inv(V®3), ¢ € Inv(V®3)

Then, €.9., e €4 = 6%. As a spin network:

Note: The “spin” spaces are any irreps V of
any group G.



Tensor categories

A rigid pivotal tensor category is any abstract
calculus of planar “spin” networks. All dia-
grams evaluate as vertex colors, by some con-
sistent rules. Edges may be colored or ori-
ented.

If the diagrams are on a sphere, it is spherical.

If the diagrams are tangled, it is braided.

If neither planarity nor tangling matters, it is
symmetric.

If vertex colors are vector spaces, the category
is additive-linear.

If all projectors are equivalent to edge colors,
the category is abelian-linear.



A simple example

The Temperley-Lieb category has a single un-
oriented edge type, no ab initio vertices, and
the relation:

G = d € C(or )

It becomes abelian-linear, if we add projectors
as edge colors, e.qg.:
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(These are called Jones-Wenzl projectors.) When
d = —2, T-L is = to the invariants of SU(2).

Quantum groups and a famous polynomial

If d = —q — q~ 1, we get Uy(sl(2)) or SU(2),.
We can also define crossings:
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This yields the Jones polynomial of a knot.
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The basis result

The 2n-endpoint spin network space has di-
mension Cy,:

NG = 90 0L
W A 0 AT NC
The crossingless matchings are a special basis.

The isomorphism says that these must also be
a basis of Invg o) (V®2").

This is an old result of Rumer, Teller, and Weyl
(1930) that can be proved in three steps:

e All (2n — 1)!l matchings together span.
e Crossings are not needed.
e dimInv(V®2n) = C



More bases

The basis result extends to any invariant space
of spins

InV(Vj1®Vj2® T ®V3n)

If we add (half) projectors, some basis vectors
vanish:

=0

The remaining vectors form a basis:
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More bases

The proof is based on minimal cut paths:
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...and the fact that dimInv(V;,®V,,®V,;) < 1.

Even more bases

A pivotal category induces relations for graphs

on a surface >_:
:O

These form an algebra if we stack networks in
> X I. The algebra acts on another state space
V(X), which is the “best” space to assign to
> . (But it has a central “charge”.)



What we want, and wishful thinking

I have said nothing about unitarity, or even C
at all. If ¢ = e™/T and r € N, then the T-
L category has a unitary quotient, given by
Killing the rth projector:

LﬂL:o,

This is great for quantum computation. For
example, when r = 5, there are 4 surviving
edge colors (= projectors). We get the Fi-
bonacci category times a vestigial binary col-
oring.

(Actually it is the Yang-Lee category. But Fi-
bonacci is a more marketable name.)

The bad news: The nice basis properties are
destroyed by the quotient. But the T-L cate-
gory is still great for calculations, e.g., the F
matrix or 6j-symbol. (C.f. Masbaum-Vogel.)
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Where do we go from here?

To generalize, we need some new inductive
principle. One idea: We allow trivalent pla-
nar graphs, but we suppose that “positively
curved” faces can be reduced:

We also suppose that:
e [ he right sides are |I.i.
e [ he relations are confluent.

(The first condition fails for j = 1 spin net-
works.)



It works!

Surprisingly, it all works. The confluence equa-
tions have these solutions, up to a trivial rescal-

ing:
a=¢"+q¢*+q+1+q +qg*+q¢7°

b=—¢>—q°—q—q ' —qg*-¢q3
c=q¢"+1+q7?

di=—q—q*

dpy=q+1+q*

e1 = —e; =1

The state space of a disk with n endpoints has
a basis of non-positively curved graphs:
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What is it?

How many non-positively curved graphs with n
endpoints are there?

1,0,1,1,4,10,35,120,455,1792,7413, ...
This equals

dimInvg, (V™).
Furthermore,

Q =¢+q*+q+14+q¢ +q+q7

is the quantum dimension of V7. The category
is the invariant theory of G».

There are similar (but simpler) categories for

A> = SU(3) and B, = SP(4) = Spin(5). The
one for A, has oriented trivalent graphs:
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What else works

The rank 2 theories also have crossings

A= 1/2_|_q 1/QI + 1/2_|_q—1/2 >_<

—-3/2 3/2
q — q
+q1/2_|_q—1/2 —~ +q1/2_|_q—1/2 > <

You also get network algebras on surfaces,
projectors, and unitary reductions at principal
roots of unity. All of these exist by general
algebra (Drinfel’d et al) or by TQFT theory
(Witten et al). The direct skein relations for
graphs are “new’ .

Proving the basis results makes essential use
of minimal cut paths.

What doesn’t work

The structure of elliptic confluence and bases
does not exist for higher-rank Lie algebras.
There is recent progress in finding semi-confluent
relations (D. Kim, B. Westbury).
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What could work

It may be possible to compute the rank 2 F-
matrix, generalizing the famous Racah formula.

It amounts to evaluating a tetrahedron of pro-
jectors:
C23

R

c34
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