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Real life examples

FQH liquids. 



Real life examples

FQH liquids.

Hope: Frustrated magnets
- Many theoretical models
- A few candidate materials

- Cs2CuCl4
- κ-(BEDT-TTF)2Cu2(CN)3



Theory of topological phases



Theory of topological phases

We understand:
- Low energy/Long distance physics

We’re missing:
- Connection with microscopics!



How do topological phases 
emerge from microscopic spins?

How can we realize them? What 
interactions favor them?
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Outline

I. Physical picture

II. Quantitative results
A. Explicit ground state wave functions
B. Exactly soluble Hamiltonians

III. Examples
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Data

1. String types: Number of string types N.

i (i = 1,…,N)

2. Branching rules: Triplets {i, j, k} allowed 
to meet at a point.
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1. Number of string types: N = 2.

2. Branching rules: {2, 2, 2}, {1, 2, 2}.



String-net Hamiltonian

String 
kinetic
energy

String
tension

H  =   t Ht +    U HU



String-net Hamiltonian

String-net condensedNormal

t/U << 1 t/U >> 1

H  =   t Ht  +   U HU



So what?

String-net condensed phases ARE 
topological phases!
Mechanism for topological phases
Very general: all non-chiral topological 
phases can be realized
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Examples

SO3(3) × SO3(3) 
Chern-Simons

Z2 gauge theory S3 gauge theory
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Representative wave functions

Φ

Φ
Φ

Φ
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Want “fixed-point” wave functions:
Φ( ) = … 



Ansatz
1. Amplitude of Φ only depends on topology of 

string-net: e.g., Φ(         ) = Φ(        )

2. Φ satisfies local constraint equations:
Φ(           ) = di Φ(          )

Φ(              ) = 0    if i ≠ j

Φ(           ) = ∑n Fijm
kln Φ(            )
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Local constraints specify Φ
completely
Φ( ) = ∑l Fikj

kilΦ(           )

= Fikj
ki0Φ(           )

= Fikj
ki0didkΦ(vacuum)

= Fikj
ki0didk
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But rules are not usually 
self-consistent!



Self-consistency conditions

∑n Fmlq
kpn Fjip

mns Fjsn
lkr = Fjip

qkrFriq
mls (a)

Fijm
kln = Flkm

jin = Fjim
lkn = Fimj

knl (dmdn/djdl)1/2 (b)

Fijk
ji0 = (dk/didj)1/2 δijk (c)

(where δijk = 1 if {i,j,k} allowed, 0 otherwise).



Self-consistency conditions

∑n Fmlq
kpn Fjip

mns Fjsn
lkr = Fjip

qkrFriq
mls (a)

Fijm
kln = Flkm

jin = Fjim
lkn = Fimj

knl (dmdn/djdl)1/2 (b)

Fijk
ji0 = (dk/didj)1/2 δijk (c)

(where δijk = 1 if {i,j,k} allowed, 0 otherwise).

Solutions ⇔ fixed point wave functions Φ



Classification of non-chiral
topological phases

Solutions (Fijm
kln,di,δijk)

of (a)-(c)

String-net condensates/
non-chiral topological 
phases



Classification of non-chiral
topological phases

Solutions (Fijm
kln,di,δijk)

of (a)-(c)

String-net condensates/
non-chiral topological 
phases

“Tensor categories”
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Exactly soluble lattice models
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Hamiltonians
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H = -∑I QI - ∑p Bp

Generalization of Kitaev’s toric code



First term: QI

Defined by:

QI |         〉 = δijk |         〉
k

i j
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First term: QI

Defined by:

QI |         〉 = δijk |         〉
k

i j
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i j

“Electric charge”



Second term: Bp
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Second term: Bp
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Defined by: Bp = ∑s ds Bs
p where:
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“Magnetic flux”



Properties of Hamiltonian

1. {Bp}, {QI} commuting projectors ⇒
H is exactly soluble.

2. Ground state wave function is Φ.

3. Model describes a topological phase.

θie



Properties of Hamiltonian

4. Fixed points: Correlation length ξ= 0
~ zero coupling gauge theory

“Right way” to put topological theories
on lattice.



Properties of Hamiltonian

4. Fixed points: Correlation length ξ= 0
~ zero coupling gauge theory

“Right way” to put topological theories
on lattice.

Turaev/Viro (1992)
Ooguri (1992)

Loop quantum gravity:
“spin networks”



Example #1

1. String types: N = 1
2. Branching rules: No branching

What phase occurs when strings
condense?



Example #1
Two solutions to self-consistency equations:

d0 = 1
d1 = F110

110 = ± 1
F000

000 = F101
101 = F011

011 = 1
F000

111 = F110
001 = F101

010 = F011
100 = 1

Two sets of local rules:

Φ(        ) = ± Φ(        )
Φ(        ) = ± Φ(        )

Two solutions: Φ±(X) = (±1)Nloops(X)



Lattice realization

Each “spin” can be in 2 states: |0〉, |1〉

Convenient to use spin-1/2 notation:
|0〉 = |σx = +1〉
|1〉 = |σx = -1 〉



Lattice realization

Each “spin” can be in 2 states: |0〉, |1〉

Convenient to use spin-1/2 notation:
|0〉 = |σx = +1〉
|1〉 = |σx = -1 〉
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Hamiltonian: Φ+
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Hamiltonian: Φ+
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Toric code: Lattice model for Z2 gauge theory!



Hamiltonian: Φ-
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f(σx) = i(1-σx)/2



Hamiltonian: Φ-
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b ⋅ ∏c i(1-σxc)/2

f(σx) = i(1-σx)/2

U(1)×U(1) Chern-Simons theory with semions!



Two string condensed phases

Normal
phase

Z2 phase

U(1)×U(1) 
C-S phase

Φ+

Φ-



Example #2

1. String types: N = 1
2. Branching rules: {1,1,1}

What phase occurs when string-nets
condense?



Example #2

Only one set of self-consistent local rules:

Φ(      ) = τ Φ(      )
Φ(      ) = 0
Φ(      ) =  τ-1 Φ(      ) + τ-1/2 Φ(      )
Φ(      ) = τ-1/2 Φ(      )  - τ-1 Φ(      )

τ = (1+51/2)/2



Example #2

Wave function: No closed form!

Hamiltonian: Spin-1/2 model (complicated)

Topological phase: SO3(3)×SO3(3) Chern-Simons 
theory
- “Fibonacci theory”
- Non-abelian anyons
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Fractional statistics
Ground state deg.

??



How do topological phases 
emerge from microscopic spins?

How can we realize them? What 
interactions favor them?

TQFT
Fractional statistics
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String-net
condensation!


