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(0,2) triplets are unavailable
~ 4K above (0,2)S. 

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science 309 2180 (2005)

6



(1,1)S

(1,1)S (0,2)S

(0,2)S

ε

2t

(1,1)T0

Measuring Spin Dephasing (T2*): Time-domain Interferometry

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science 309 2180 (2005)

7



(1,1)S

(1,1)S (0,2)S

(0,2)S

ε

2t

(1,1)T0

singlet-to-charge conversion

Measuring Spin Dephasing (T2*): Time-domain Interferometry

J. R. Petta, A. C. Johnson, J. Taylor, A. Yacoby, M.D. Lukin, 
M. Hanson, A. C. Gossard, CMM Science 309 2180 (2005)

8



(1,1)S

(1,1)S (0,2)S

(0,2)S
(1,1)T–

2t

(1,1)T0

(1,1)T+
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at large ε
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Fig. 5. (A) Spin-echo
pulse sequence. The
system is initialized
in (0,2)S and trans-
ferred to S by rapid
adiabatic passage. Af-
ter a time tS at large
negative detuning, S
has dephased into a
mixture of S and T0
due to hyperfine inter-
actions. A z-axis p
pulse is performed by
making detuning less
negative, moving to a
region with sizable
J(e) for a time tE.
Pulsing back to nega-
tive detunings for a
time tS¶ 0 tS refocuses
the spin singlet. (B)
PS as a function of
detuning and tE. The
z-axis rotation angle
f 0 J(e)tE/I results
in oscillations in PS
as a function of both
e and tE. (Inset) Model
of PS using J(e) ex-
tracted from the S-Tþ
resonance condition,
assuming g* 0 –0.44
and ideal measure-
ment contrast (from
0.5 to 1). (C) Echo
recovery amplitude PS
plotted as a function
of tS – tS¶ for in-
creasing tS þ tS¶ (red points), along with fits to a Gaussian with adjustable
height and width. The best-fit width gives T2* 0 9 ns, which is consistent
with the value T2* 0 10 ns obtained from singlet decay measurements

(Fig. 3B). Best-fit heights (black points) along with the exponential fit to the
peak height decay (black curve) give a lower bound on the coherence time T2
of 1.2 ms.
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pulse is performed by
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negative, moving to a
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J(e) for a time tE.
Pulsing back to nega-
tive detunings for a
time tS¶ 0 tS refocuses
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PS as a function of
detuning and tE. The
z-axis rotation angle
f 0 J(e)tE/I results
in oscillations in PS
as a function of both
e and tE. (Inset) Model
of PS using J(e) ex-
tracted from the S-Tþ
resonance condition,
assuming g* 0 –0.44
and ideal measure-
ment contrast (from
0.5 to 1). (C) Echo
recovery amplitude PS
plotted as a function
of tS – tS¶ for in-
creasing tS þ tS¶ (red points), along with fits to a Gaussian with adjustable
height and width. The best-fit width gives T2* 0 9 ns, which is consistent
with the value T2* 0 10 ns obtained from singlet decay measurements

(Fig. 3B). Best-fit heights (black points) along with the exponential fit to the
peak height decay (black curve) give a lower bound on the coherence time T2
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making detuning less
negative, moving to a
region with sizable
J(e) for a time tE.
Pulsing back to nega-
tive detunings for a
time tS¶ 0 tS refocuses
the spin singlet. (B)
PS as a function of
detuning and tE. The
z-axis rotation angle
f 0 J(e)tE/I results
in oscillations in PS
as a function of both
e and tE. (Inset) Model
of PS using J(e) ex-
tracted from the S-Tþ
resonance condition,
assuming g* 0 –0.44
and ideal measure-
ment contrast (from
0.5 to 1). (C) Echo
recovery amplitude PS
plotted as a function
of tS – tS¶ for in-
creasing tS þ tS¶ (red points), along with fits to a Gaussian with adjustable
height and width. The best-fit width gives T2* 0 9 ns, which is consistent
with the value T2* 0 10 ns obtained from singlet decay measurements

(Fig. 3B). Best-fit heights (black points) along with the exponential fit to the
peak height decay (black curve) give a lower bound on the coherence time T2
of 1.2 ms.
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ABSTRACT The course of chemical reactions involving rad-
ical pairs may depend on occurrence and orientation of nuclear
spins in the pairs. The influence of nuclear spins is maximized
when the radical pairs are confined to a space that serves as a cage
that allows a certain degree of independent diffusional and rota-
tional motion of the partners of the pair but that also encourages
reencounters of the partners within a period which allows the nu-
clear spins to operate on the odd electron spins of the pair. Under
the proper conditions, the nuclear spins can induce intersystem
crossing between triplet and singlet states of radical pairs. It is
shown that this dependence ofintersystem crossing on nuclear spin
leads to a magnetic isotope effect on the chemistry of radical pairs
which provides a means of separating isotopes. on the basis of nu-
clear spins rather than nuclear masses and also leads to a magnetic
field effect on the chemistry of radical pairs which provides a
means of influencing the course of polymerization by the appli-
cation of weak magnetic fields.

PHYSICAL MODEL OF NUCLEAR SPIN

"Spin" is the term used to describe an intrinsic and character-
istic property associated with the angular momentum of a par-
ticle. A physical model of spin is conveniently generated by the
supposition that this property is the angular momentum that
arises from a body rotating about its own axis. This classical
model allows recognition of most of the important characteris-
tics of quantum mechanical spin. For example, it provides an
understanding of why charged particles with spin.possess an
intrinsic magnetic moment and why charged particles without
spin do not possess an intrinsic magnetic moment (1, 2) (Fig.
.1).

The magnitude of the spin angular momentum of a particle
is uniquely determined by the spin quantum number which
may be a positive integral or half-integral number that is char-
acteristic of the particle. For example, the value of the elec-
tronic spin quantum number(s) for an electron is +1/2. This
value pertains whatever the state of the electron. On the other
,hand, the value of the nuclear spin quantum number (f) de-
pends on the nucleus. Indeed, some nuclei (e.g., 12C, 160, 180)
do not possess spin (f = 0), whereas others possess half-integral
values (e.g.,. for 170 f = 5/2, for 1H f = 1/2, and for `3C e
= 1/2) or integral values (e.g., for 2H e = 1). For simplicity,
I shall consider some of the consequences of a simple model of
spin for.a particle with spin quantum number of + 1/2.

According to the rules of quantum mechanics, the spin an-
gular momentum of a rotating body is quantized and may take
up only a discrete set of orientations with respect to any arbi-
trarily selected axis (Fig. 2). With the z axis as a frame of ref-
erence, the allowed- orientations for a spin of +1/2 are "up"
(a spin) and "down" (A spin). Quantum mechanics allows that
only one axial component ofthe spin angular momentum vector
can be specified. We shall arbitrarily select this component to
be projected on the z axis. The specific orientation (termed the
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FIG. 1. Schematicdescriptionof classical spinangularmomentum
of a rotating particle. The spin angular momentum can be represented
as vector quantity.whose magnitude is interpreted as the angular mo-
mentum resulting from the spin and whose direction represents the
senseof the rotation. A particle with both mass and charge generates
a magnetic field as it spins. This field can also be represented by a
vector quantity, a magnetic moment. In the case of a charged particle,
the "right-hand rule" applies for a positively charged particle (atomic
nucleus) for both the direction of the angular momentum and the mag-
netic moment vectors. In the case of a negatively charged particle
(electron), the magnetic moment vector is opposite in direction to the
angular momentum vector. The orientation-in space ofa classical mag-
netic moment can assume any value relative to an applied magnetic
field, but the magnetic moment of an electron or a nucleus in an ex-
ternal magnetic field is only allowed a few orientations-as specified by
the laws of quantum mechanics.

"azimuth") of the vector in the xy plane cannot be determined
precisely according to the rules of quantum mechanics because
.the uncertainty principle requires that, if the z component of
the angular momentum is precisely specified, then the x and
y components cannot be specified. The range possible for ori-
entations ofthe.angular momentum vector in the xy plane traces
out a cone which is termed.a "cone ofprecession.for the vector. "
The magnetic moment vector that is associated with the spin-
ning charged particle behaves qualitatively in the same manner
as the angular momentum vector. The magnetic moment is in-
fluenced by magnetic fields due to nearby spins and by applied
magnetic fields.

In the absence of other magnetic fields, the magnetic mo-
ment vector may be viewed as being at rest at an indeterminate
position in the cone of precession.and may assume any orien-
tation in space. If a magnetic field H is applied along the z axis,
the spin vectors must take up either the a or A3 position (Fig.
2). The vector is now viewed as revolving about the z axis with

Abbreviations: ISC, intersystem crossing; RP, radical pairs; DBK, di-
benzyl ketone; CG6NMe3Cl, -hexadecyltrimethylammonium chloride;
CMC, critical micelle concentration.
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The influence of an applied field on the effectiveness of
nuclear spin interactions

The nuclear electronic hyperfine interaction can serve as a spin
rephasing interaction of each odd electron in a RP. This inter-
action operates even if the radicals are chemically identical but
differ in the orientation of their nuclear spins. As a result, the
rate of ISC of a RP can depend on the nuclear spin states of the
radicals because the orientation of the nuclear spins can influ-
ence the rate ofrephasing of To to S or ofS to To. The hyperfine
interaction can be viewed as operating along all three directions
of an axis system because the nuclear spins can assume various
orientations in space. Thus, when the energy separation of the
three triplet sublevels is small relative to the hyperfine inter-
action, the latter is expected to induce transitions between {T+,
T} and S depends on the strength of an applied external field.

This important influence of an external field on ISC of a RP
may be understood as follows. In general, when a perturbation
induces a transition between states, its effectiveness depends
on the ratio of the strength of the perturbation to the energy
separating the states (AE) involved in the transition. When the
strength of perturbation, P, is comparable or larger than AE,
the probability oftransition is maximal (ifall other requirements
for transition are met). If P << AE, (e.g., P/AE S 0.1), the
probability of transition is small (even if all other requirements
for transition are met). Because the strength of hyperfine cou-
plings are typically <100 G (e.g., P 5 100 G), then hyperfine
interactions will be ineffective or unable to induce transitions
between {T+, T.} and S, when these states are separated by
'1,000 G (i.e., AE - 1,000 G). This means that at "low fields"
(operationally, P ; AE), the three triplet sublevels can undergo
hyperfine induced ISC to S, but at "high fields" (operationally
loP < AE), only To and S can undergo hyperfine-induced ISC
(Fig. 16).

Suppose that, starting from a triplet geminate RP, there ex-
ists a hyperfine interaction that efficiently induces ISC from
{T+, T. To} to S at low field. In this case, substantial ISC to
S may occur and a limiting value of 100% cage reaction may be
observed in the limit. At high field, T, -+ S and T_ - S ISC
are "quenched". If mixing of triplet sublevels is also quenched,
then only To -- S ISC can occur. This means that T+ and T.
will, in the limit, undergo escape processes exclusively, whereas
only To and S will undergo cage reaction-i. e., the cage effect
will drop from -100% at low field to -33% at high field.

s =-- { }--rI
T+ , To

S = {T+, To}

when a > PgH

-To =I S

To =:O S

when a < RgH

FIG. 16. Schematic representation of the Zeeman interaction P3gH
on the energetic separation of T+, T, and To. When the Zeeman in-
teraction is small relative to other interactions (such as the hyperfine
interaction whose strength is given by a, the hyperfine splitting con-
stant), the triplet and singlet states are energetically degenerate, and
all three triplet sublevels interconvert with the singlet state. When
,BgH is large relative to a, only To -. S ISC occurs. The effect of (3gH
is to split T+ and T_ from S energetically and thereby inhibit ISC from
or to these sublevels.

When H = 0 (Earth's magnetic field)

ft
a

Slow R R Fast

T+ T_ To S

When H > a

T R-

To
T... S

a/3
Tw-S R R FsTo--*-S ~~Fast

+ R scavenged

FIG. 17. Schematic representation of the influence of a laboratory
magnetic field on the efficiency of the cage reaction of a triplet RP in
a micelle. In the earth's field, ISC from T+, T, and To to S is maximal
and the fraction a of triplet RPs undergo cage combination. When the
applied field is strong enough to inhibit T+ -. S ISC, the fraction of
cage combination (in the limit) decreases to a/3.

Applied magnetic field effects on the reactivity of caged
triplet geminate RPs

Let us consider how the above ideas will impact on the behavior
of caged triplet geminate RPs (Fig. 17). At low fields all three
triplet sublevels will undergo hyperfine coupling-induced ISC
to S, whereas at high fields only To will be able to undergo ISC.
This means that the percentage cage combination will be de-
pendent on the strength of the applied magnetic field and will
initially decrease and then reach a limiting value.

Fig. 18 shows that these expectations are met for the cage
efficiency for formation of diphenylethane. Qualitatively, we
assume that, from the starting point of 3RP', a competition is
set up between hyperfine-induced ISC and escape from the
micelle. At low fields the percentage cage for photolysis in
C16NMe3Cl micelles is 30%, whereas at high fields (>500 G)
it is 16%.
An interesting effect of 13C nuclear spins on the percentage

cage formation of diphenylethane was found. When DBK en-
riched 90% in 13C in both CH2 carbon atoms is photolyzed in
C16NMe3Cl micelles, at low fields the percentage cage jumps
from 30% to 45%. This result is interpreted to mean that a gem-
inate benzyl-benzyl RP enriched in 13C at each ofthe methylene
carbons undergoes recombination more efficiently than a gem-
inate benzyl-benzyl RP that contains 13C in natural abundance
(=1%). An important finding is that the percentage cage for
DBK that is enriched in 13C at the carbonyl carbon is the same
as that for DBK possessing 13C in natural abundance. This is an
expected result because the decarbonylation step produces a
geminate triplet benzyl-benzyl

C6H513CH2 13CH2C6H5 -- 45% cage

C6H512CH2 12CH2C6H5 -- 30% cage

Review: Turro
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2

oscillations as a function of time and a long time sat-
uration value that depends solely on the ratio Enuc/J .
We find that PS is in fair agreement with this theory if
we account for the readout inefficiency by an empirical
visibility V such that:

PS(τS) = 1− V (1− P 0
S (τS)). (1)

The double quantum dot device used in the ex-
periment, shown in Fig. 1(a), is fabricated on
a GaAs/Al0.3Ga0.7As heterostructure with a two-
dimensional electron gas (density 2× 1015 m−2, mobility
20 m2/Vs) 100 nm below the surface. Ti/Au top gates
define a double quantum dot in which each dot can be
tuned from zero to several electrons. The inter-dot tunnel
coupling tc and (0,2)-(1,1) detuning ε are also separately
tunable. A charge sensing quantum point contact of con-
ductance gs held at ∼ 0.2e2/h allows absolute calibration
of the occupancy of each dot separately [16, 17]. We mon-
itor gs using a lock-in amplifier with a 1 nA current bias
at 335 Hz.

The device was measured in a dilution refrigerator at
base electron temperature Te ≈ 100 mK measured from
the width of the (1,1)-(0,2) transition [18]. Gates L and
R (see Fig. 1) were connected via filtered coaxial lines to
the output channels of a Tektronix AWG520. We report
measurements for two settings of tunneling strength, con-
trolled using voltages on gate T and measured from the
width of the (1,1)-(0,2) transition: tc ≈ 23 µeV (“large
tc”) and tc < 9 µeV (“small tc”) [18]. Except where
otherwise stated, all measurements were taken in a per-
pendicular magnetic field of 200 mT, corresponding to a
Zeeman energy EZ = 5 µeV % Enuc.

The experiment was performed near the (1,1)-(0,2)
charge transition where previous measurements have
demonstrated coherent control of coupled electron
spins [6]. Figure 1(b) shows schematically the energy lev-
els near this transition as a function of ε. In the absence
of tunnel coupling, the (1,1) singlet S and ms = 0 triplet
T0 are degenerate; the ms = ±1 triplets T± are split off
in energy from T0 by ∓EZ . Finite tc leads to hybridiza-
tion of the (0,2) and (1,1) singlets, inducing an exchange
splitting J between S and T0. The (0,2) triplet (not
shown) is split off by the much larger intra-dot exchange
energy J(0,2) ∼ 600 µeV [19] and is inaccessible. Hy-
perfine spin mixing occurs between pairs of states whose
energies differ by less than ∼ Enuc. The two such near-
degeneracies in our system are at large negative detuning
(lower left of Fig. 1(b),) where S and T0 mix, and at de-
tuning such that J = EZ (black dot in Fig. 1(b),) where
S and T+ mix.

Pulsed-gate techniques are used to prepare and mea-
sure two-electron spin states in the {S,T0} basis. The
pulse sequence [6] is illustrated in Fig. 1(b). A
200 ns preparation step (denoted P in Fig. 1) config-
ures the dot in (0,2) at a position where the series
(0,2)T→(0,1)→(0,2)S is energetically allowed and occurs
rapidly, giving efficient initialization to a singlet. The
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FIG. 2: (Color online) (a) Period tR of first Rabi oscillation versus
exchange point detuning for small and large tunnel coupling. (b)
Exchange energy as a function of detuning, deduced from the data
in (a), together with empirical power-law fits J ∝ |ε|−1.4±0.1. tR
corresponding to the fits is shown as curves in (a). (c) Comparison
(for small tc) of exchange energy deduced from Rabi oscillations
and from S-T+ degeneracy location. Points: data in (b). Curve:
fit from (b). Color plot: Singlet probability as a function of S-point
detuning and magnetic field in the pulse scheme of Fig. 1(b). The
bright band indicates rapid decoherence where J ≈ |g|µBB, where
µB is the Bohr magneton. The two methods give a consistent J(ε).
The same agreement is seen in the data for large tc (not shown).

gates then shift (waiting 200 ns at P′ to reduce pulse
overshoot) to a separation point (S) in (1,1) for a time
τS during which singlet-triplet evolution occurs. Overlap
of the electron wavefunctions during this separation step
(controlled by tc and ε) sets J . Finally, the gates are set
to the measurement point (M) for τM = 5 µs, provid-
ing a spin to charge conversion: Inside the pulse triangle
marked in Fig. 1(c), the triplet states will remain in (1,1)
over the measurement time τM [20, 21]. Since ∼90% of
the pulse cycle is spent at M, the slowly averaged (lock-
in time constant τ = 30 ms) charge sensor conductance
gs reflects the time-averaged charge configuration at the
measurement point. The measured charge sensing sig-
nal is converted to a calibrated singlet state probability
PS(τS) by comparing the signal in the pulse triangle with
the values measured in the (1,1) and (0,2) regions of the
charge stability diagram. When the gates are configured
so that M is outside the pulse triangle in (0,2), both sin-
glet and triplet relax rapidly to (0,2), and gs has a value
taken to define PS = 1; when M is in (1,1), gs has a value
taken to define PS = 0.

Experimental results are organized as follows. We first
measure J(ε), Enuc and V at two separate values of
tc. This allows us to measure the saturation probability
PS(∞) as a function of J , finding good agreement with
theory [15], including universal dependence on Enuc/J .
Finally we measure PS(τS), observing damped oscilla-
tions in approximate agreement with theory [15].

We measure J(ε) using two methods. In the first,
we employ the Rabi pulse technique described in [6],
in which an adiabatic (compared with Enuc) ramp over
1 µs to (1,1) is used to prepare and measure the electron
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2

oscillations as a function of time and a long time sat-
uration value that depends solely on the ratio Enuc/J .
We find that PS is in fair agreement with this theory if
we account for the readout inefficiency by an empirical
visibility V such that:

PS(τS) = 1− V (1− P 0
S (τS)). (1)

The double quantum dot device used in the ex-
periment, shown in Fig. 1(a), is fabricated on
a GaAs/Al0.3Ga0.7As heterostructure with a two-
dimensional electron gas (density 2× 1015 m−2, mobility
20 m2/Vs) 100 nm below the surface. Ti/Au top gates
define a double quantum dot in which each dot can be
tuned from zero to several electrons. The inter-dot tunnel
coupling tc and (0,2)-(1,1) detuning ε are also separately
tunable. A charge sensing quantum point contact of con-
ductance gs held at ∼ 0.2e2/h allows absolute calibration
of the occupancy of each dot separately [16, 17]. We mon-
itor gs using a lock-in amplifier with a 1 nA current bias
at 335 Hz.

The device was measured in a dilution refrigerator at
base electron temperature Te ≈ 100 mK measured from
the width of the (1,1)-(0,2) transition [18]. Gates L and
R (see Fig. 1) were connected via filtered coaxial lines to
the output channels of a Tektronix AWG520. We report
measurements for two settings of tunneling strength, con-
trolled using voltages on gate T and measured from the
width of the (1,1)-(0,2) transition: tc ≈ 23 µeV (“large
tc”) and tc < 9 µeV (“small tc”) [18]. Except where
otherwise stated, all measurements were taken in a per-
pendicular magnetic field of 200 mT, corresponding to a
Zeeman energy EZ = 5 µeV % Enuc.

The experiment was performed near the (1,1)-(0,2)
charge transition where previous measurements have
demonstrated coherent control of coupled electron
spins [6]. Figure 1(b) shows schematically the energy lev-
els near this transition as a function of ε. In the absence
of tunnel coupling, the (1,1) singlet S and ms = 0 triplet
T0 are degenerate; the ms = ±1 triplets T± are split off
in energy from T0 by ∓EZ . Finite tc leads to hybridiza-
tion of the (0,2) and (1,1) singlets, inducing an exchange
splitting J between S and T0. The (0,2) triplet (not
shown) is split off by the much larger intra-dot exchange
energy J(0,2) ∼ 600 µeV [19] and is inaccessible. Hy-
perfine spin mixing occurs between pairs of states whose
energies differ by less than ∼ Enuc. The two such near-
degeneracies in our system are at large negative detuning
(lower left of Fig. 1(b),) where S and T0 mix, and at de-
tuning such that J = EZ (black dot in Fig. 1(b),) where
S and T+ mix.

Pulsed-gate techniques are used to prepare and mea-
sure two-electron spin states in the {S,T0} basis. The
pulse sequence [6] is illustrated in Fig. 1(b). A
200 ns preparation step (denoted P in Fig. 1) config-
ures the dot in (0,2) at a position where the series
(0,2)T→(0,1)→(0,2)S is energetically allowed and occurs
rapidly, giving efficient initialization to a singlet. The
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FIG. 2: (Color online) (a) Period tR of first Rabi oscillation versus
exchange point detuning for small and large tunnel coupling. (b)
Exchange energy as a function of detuning, deduced from the data
in (a), together with empirical power-law fits J ∝ |ε|−1.4±0.1. tR
corresponding to the fits is shown as curves in (a). (c) Comparison
(for small tc) of exchange energy deduced from Rabi oscillations
and from S-T+ degeneracy location. Points: data in (b). Curve:
fit from (b). Color plot: Singlet probability as a function of S-point
detuning and magnetic field in the pulse scheme of Fig. 1(b). The
bright band indicates rapid decoherence where J ≈ |g|µBB, where
µB is the Bohr magneton. The two methods give a consistent J(ε).
The same agreement is seen in the data for large tc (not shown).

gates then shift (waiting 200 ns at P′ to reduce pulse
overshoot) to a separation point (S) in (1,1) for a time
τS during which singlet-triplet evolution occurs. Overlap
of the electron wavefunctions during this separation step
(controlled by tc and ε) sets J . Finally, the gates are set
to the measurement point (M) for τM = 5 µs, provid-
ing a spin to charge conversion: Inside the pulse triangle
marked in Fig. 1(c), the triplet states will remain in (1,1)
over the measurement time τM [20, 21]. Since ∼90% of
the pulse cycle is spent at M, the slowly averaged (lock-
in time constant τ = 30 ms) charge sensor conductance
gs reflects the time-averaged charge configuration at the
measurement point. The measured charge sensing sig-
nal is converted to a calibrated singlet state probability
PS(τS) by comparing the signal in the pulse triangle with
the values measured in the (1,1) and (0,2) regions of the
charge stability diagram. When the gates are configured
so that M is outside the pulse triangle in (0,2), both sin-
glet and triplet relax rapidly to (0,2), and gs has a value
taken to define PS = 1; when M is in (1,1), gs has a value
taken to define PS = 0.

Experimental results are organized as follows. We first
measure J(ε), Enuc and V at two separate values of
tc. This allows us to measure the saturation probability
PS(∞) as a function of J , finding good agreement with
theory [15], including universal dependence on Enuc/J .
Finally we measure PS(τS), observing damped oscilla-
tions in approximate agreement with theory [15].

We measure J(ε) using two methods. In the first,
we employ the Rabi pulse technique described in [6],
in which an adiabatic (compared with Enuc) ramp over
1 µs to (1,1) is used to prepare and measure the electron
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PS(τS) = 1− V (1− P 0
S (τS)).

The device used in the experiment, shown in Fig.
1(a), is fabricated on a GaAs/Al0.3Ga0.7As heterostruc-
ture with a two-dimensional electron gas (density 2 ×
1015 m−2, mobility 20 m2/Vs) 100 nm below the surface.
Ti/Au top gates define a double quantum dot in which
each dot can be tuned from zero to several electrons. The
inter-dot tunnel coupling tc and (0,2)-(1,1) detuning ε are
also separately tunable. A charge-sensing quantum point
contact with conductance gs ∼ 0.2e2/h allows the occu-
pancy of each dot to be separately measured [17, 18]. We
monitor gs using a lock-in amplifier with a 1 nA current
bias at 335 Hz, with a 30 ms time constant.

Measurements were made in a dilution refrigerator at
base electron temperature Te ≈ 100 mK measured from
the width of the (1,1)-(0,2) transition [19]. Gates L and
R (see Fig. 1) were connected via filtered coaxial lines to
the output channels of a Tektronix AWG520. We report
measurements for two settings of tunneling strength, con-
trolled using voltages on gate T and measured from the
width of the (1,1)-(0,2) transition: tc ≈ 23 µeV (“large
tc”) and tc < 9 µeV (“small tc”) [19]. Except where
otherwise stated, all measurements were taken in a per-
pendicular magnetic field of 200 mT, corresponding to a
Zeeman energy EZ = 5 µeV % Enuc.

Figure 1(b) shows schematically the relevant energy
levels near the (1,1)-(0,2) charge transition, where mea-
surements are carried out, as a function of energy detun-
ing ε between these two charge states. In the absence of
tunnel coupling, the (1,1) singlet S and ms = 0 triplet T0

are degenerate; the ms = ±1 triplets T± are split off in
energy from T0 by ∓EZ . Finite tc leads to hybridization
of the (0,2) and (1,1) singlets, inducing an exchange split-
ting J between S and T0. The (0,2) triplet (not shown)
is split off by the much larger intra-dot exchange energy
J(0,2) ∼ 600 µeV [20] and is inaccessible. Rapid mixing
due to hyperfine interaction occurs between states whose
energies differ by less than Enuc. In the present configu-
ration, this occurs at large negative ε (lower left of Fig.
1(b)), where S and T0 mix, and at J(ε) = EZ (black dot
in Fig. 1(b)), where S and T+ mix.

A cycle of gate configurations is used to prepare and
measure two-electron spin states in the {S,T0} basis [9],
as illustrated in Fig. 1(b). A 200 ns preparation step (de-
noted P in Fig. 1) configures the dot in (0,2) at a position
where the series (0,2)T→(0,1)→(0,2)S is energetically al-
lowed and occurs rapidly, giving efficient initialization to
a singlet. The gates then shift (waiting 200 ns at P′

to reduce pulse overshoot) to a separation point (S) in
(1,1) for a time τS during which singlet-triplet evolution
occurs. Finally, the gates are set to the measurement
point (M) for τM = 5 µs, providing a spin-state to charge
conversion. Inside the pulse triangle marked in Fig. 1(c),
the triplet states will remain in (1,1) over the measure-
ment time τM [8, 21]. Since ∼90% of the pulse cycle is
spent at M, the relatively slow measurement of the sensor
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FIG. 2: (Color online) (a) Period tR of first Rabi oscillation versus
exchange point detuning for small and large tunnel coupling. (b)
Exchange energy as a function of detuning, deduced from the data
in (a), together with empirical power-law fits J ∝ |ε|−1.4±0.1. tR
corresponding to the fits is shown as curves in (a). (c) Color scale
plot of PS as a function of S-point detuning and magnetic field B
obtained using the pulse sequence in Fig. 1(b). The bright band
indicates rapid decoherence where J = gµBB. The white points
and the dashed line are the same data and fits plotted in (b). The
two methods of measuring J(ε) are qualitatively consistent.

gs gives a time-averaged charge configuration at the M
point. The time-averaged gs signal is calibrated to give a
singlet state probability PS(τS) by comparing the signal
in the pulse triangle with the values measured in the (1,1)
and (0,2) regions of the charge stability diagram. When
the gates are configured so that M is outside the pulse
triangle in (0,2), both singlet and triplet relax rapidly to
(0,2); gs in this region defines PS = 1. When M is in
(1,1), the value of gs defines PS = 0.

We first measure J(ε), Enuc, and V at two values of
tc, allowing the saturation probability PS(∞) to be mea-
sured as a function of J . This saturation probability is
found to depend on the ratio Enuc/J approximately as
predicted by theory [16]. We then measure the time evo-
lution PS(τS), which shows damped oscillations, also in
reasonable agreement with theory [16]. J(ε) is measured
using the Rabi (or Larmor) sequence described in Ref. [9],
in which an adiabatic (compared with Enuc) ramp over
1 µs to (1,1) is used to prepare and measure the electron
spin state in the {|↑↓〉 , |↓↑〉} basis. An exchange pulse
produces coherent rotations with a period tR (shown in
Fig. 2(a)) from which we deduce the exchange coupling
J(ε) = h/tR [22]. Values of J(ε) for small and large tc
are shown in Fig. 2(b), along with a fit to an empiri-
cal power-law form J ∝ ε−α, giving α ∼ 1.4 [23]. In
Fig. 2(c), these values of J(ε) are compared with the re-
sults of an alternative method in which rapid dephasing
at the S-T+ degeneracy produces a dip in PS when the
value of ε at the S point satisfies J(ε) = EZ. J(ε) can
then be measured from a knowledge of the field, using
EZ = gµBB where µB is the Bohr magneton, and taking
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Hahn Echo in S - T0 basis
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FIG. 1: Results of numerical calculations of echo envelopes
of the Hahn and various CPMG pulse sequences (with ν =
1, 2, and 3 labelled by number of pulses, 2ν, in the plot) for a
quantum dot in GaAs with a Fock-Darwin radius of 50 nm and
quantum well thickness of 10 nm with the external magnetic
field, B, pointing along the thickness direction aligned with
the [001] lattice direction. The solid lines show convergent
cluster expansion (exact) results while the dotted lines show
lowest order perturbative results (within the cluster expansion
framework).

A lowest order analysis of the inter-nuclear perturba-
tion applied to Eq. (1), with λ as the perturbation pa-
rameter, yields

vC(τ) = 1 −O(ν2λ4), (6)

where we are solving the problem for some small cluster
C. Due to increased symmetry, relative to the Hahn echo
experiment, of the even-pulsed CPMG echo experiment,
the second order in λ, which was the lowest order for the
Hahn echo, has been removed (i.e. via cancellations). For
this reason, we predict an enhancement of even CPMG
echoes over odd echoes such as the Hahn echo. Another
consequence of this is that, in the lowest order of the
cluster expansion, we must consider including 3-clusters
and 4-clusters as well as pairs since they all have the
possibility of yielding O(λ4) contributions. However, our
analysis also shows that 4-clusters give no O(λ4) contri-
bution due to other cancellations. It is indeed important
to include 3-clusters to obtain results shown in Fig. 1
and Fig. 2 but 4-clusters are negligible until convergence
of the cluster expansion begins to fail. The onset of this
failure coincides with the departure of the exact solutions
(solid lines) from the perturbative results (dotted lines).
Fortunately, the perturbative results appear to be con-
servative compared with the exact results (4-cluster con-
tributions actually enhance coherence in this case) and
may therefore be used as a conservative estimate.

For a large system, Eq. (6) is not applicable directly
but only via the cluster expansion. This can be imple-
mented [9] by exponentiating a sum of cluster contribu-
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FIG. 2: Results of numerical calculations of echo envelopes
of the Hahn and various CPMG pulse sequences (with ν =
1, 2, and 3 labelled by number of pulses, 2ν, in the plot)
for the Si:P donor electron in natural Si with the external
magnetic field, B, aligned with the [001] lattice direction. The
solid lines show convergent cluster expansion (exact) results
while the dotted lines show lowest order perturbative results
(within the cluster expansion framework). The ordinate range
is the first 10% (0.9 to 1) of echo decay where the cluster
expansion is convergent for all pulse sequences shown.

tions which have the scaling property of Eq. (6). Thus,

vCPMG(τ) = exp (−O(ν2λ4)), (7)

and to lowest order in the inter-nuclear perturbation, the
logarithm of the CPMG echo, as a function of τ (not t),
scales with the number of pulses squared. The shape
of the decay for each system will be used, later in this
Letter, to determine how τ and t effectively scale with
the number of pulses in this perturbative approximation.

Although clusters for which the inter-nuclear perturba-
tion is applicable dominate the decay of the Hahn echo,
for a broad range of “intermediate”-sized quantum dots
in GaAs, the τ -expansion (which is generally applicable
in a complementary regime to the inter-nuclear perturba-
tion) is also applicable. The reason, discussed in Ref. [9],
is that the many pairs that dominate the decay are char-
acterized by a narrow distribution of frequencies. As
a consequence, these GaAs quantum dots exhibit Hahn
echo decays of the form exp (−τ4) because the lowest
non-trivial order of the τ expansion for the Hahn echo is
O(τ4) and is exponentiated as an implementation of the
cluster approach. For the CPMG case, a lowest order
expansion of Eq. (1) in τ reveals that

vC(τ) = 1 −O(τ6) ⇒ (8)

vCPMG(τ) = exp (−O(τ6)). (9)

Similarly to the symmetry related cancellations of the
inter-nuclear perturbation expansion, the increased sym-

Theory: W. M. Witzel and S. Das Sarma cond-mat/0604577 

Carr-Purcell Echo in S - T0 basis
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Carr-Purcell Pulse Sequences
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3

dard 2x2 determinants.

ES± =ẼS ± 0.5
√

(Cε)2 + 4t11

ET± =ẼT ± 0.5
√

(δ − Cε)2 + 4t12
(1)

where ẼT ≡ (E0
T + E1

T )/2 and ẼS ≡ (E0
S + E1

S)/2 and
where Cε ≡ eC(φL−φR)−εR1−εL1−Vinter+Vintra = 0 at
the singlet crossing point, from which the triplet deviates
by δ ≡ ε0R2−ε0R1−V ex

inter +V ex
intra. The exchange splitting

is the difference between the two lower branches in 1:

J(ε) = ẼT−ẼS−0.5
√

(Cε− δ)2 + 4t212+0.5
√

(Cε)2 + 4t211
(2)

note that ẼT − ẼS is independent of ε.
Figure 2a illustrates ideal anti-crossings. Away and to

the left of the anti-crossings, the gap between the ground
states S and T is E0

T − E0
S ≡ ∆ST (1, 1) = −V ex

inter [20].
The gap between the (bare) excited states is E1

T −E1
S ≡

∆ST (0, 2) = εR2 − εR1 − V ex
intra, i.e. it depends on a

single particle level spacing in dot R. In Fig. 2b we fit
J(ε) from Fig. 1c (the curve with the smaller dot-dot
coupling) with equation 2. The fit is exceedingly good as
long as points far into the (0,2) region are excluded [21].

Clearly, from Fig. 2b, as J increases near ε = 0 so
too does dJ/dε. For spin manipulation with noise immu-
nity it would be advantageous to find a regime where J
was appreciable but dJ/dε was not. This turns out to be
possible. In what follows we (a) show that the expres-
sion Equ. 2 has exactly one extremum, dJ/dε = 0, except
where t11 = t12; (b) show in what parameter region the
extremum is a minimum and how the parameters can be
modulated, specifically with a magnetic field B, to accen-
tuate that minimum; and (c) exhibit full CI calculations
of J(ε) at various B where the minimum is verified and
pronounced.

Point (a) is achieved by taking the derivative of Equ.
2:

dJ

dε
= −0.5

(Cε− δ)√
(Cε− δ)2 + 4t212

+ 0.5
Cε√

(Cε)2 + 4t211
(3)

and observing that the two terms are sigmoidal curves
which (for t11 #= t12) must intersect in one point, specif-
ically εm = δ/(1 − (t12/t11)). A second derivative test
shows that for t12 > t11 (the usual case), the extremum
is a minimum. Note also that, assuming t12 > t11,
δ > 0 ⇒ εm < 0 (the minimum is in the (1,1) zone)
and δ < 0⇒ εm > 0.

The plots of J(ε) in Fig. 1c do not show minima. In
these cases the triplet anti-crossing is too far into the
(0,2) zone and mixture with higher lying states occurs.
Within our double-anti-cross model we can evaluate the
depth of the minimum as D ≡ J(εm) − J(ε → −∞) =
0.5δ(1 −

√
1 + 4|t12 − t11|2/|δ|2 ≈ |t12 − t11|2/|δ|. Typi-

cally, we find t12/t11 ∼ 1.3 and typical values of 2t11 and
2t12 can be read off of the anti-crossings in Fig. 1b. From
its definition, δ is the level spacing of dot R corrected by
inter- and intra-dot exchange energies and, at B=0, is
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FIG. 3: dJ/dε (solid, left scale) and J(ε), from Equs. 3 and
2, resp., for tunnel and δ parameters in Fig. 2b. Note, off-
set energies, ẼS ẼT taken as zero throughout figure, so off-
sets of J arbitrary. Expanded view in (b) shows minimum
(dJ(εm)/dε ≡ 0) and depth of minimum. As ε→ −∞, J sat-
urates above the figure. For same tunnel coefficients, dJ/dε
(c) and J(ε) (d), for a range of values of δ. Minimum of J (i.e.
εm) switches sign to positive when δ changes sign to negative.

of order 1.2 meV from calculations for the device in Ref.
[2]. Note that δ forms the major portion of ∆ST (0, 2)
(cf. Fig. 2a) and that reducing ∆ST (0, 2) while keeping
∆ST (1, 1) relatively fixed causes the two anti-crossings to
move closer to one another. This suggests that a mag-
netic field could increase the depth of the minimum. For
non-zero B in a circular parabolic potential, the lowest
branch of the 2 state converges toward the 1 state and the
exchange term (”Hund’s coupling”) can induce a transi-
tion in the N = 2 single dot to a triplet ground state;
Fig. 4a and Ref. [22]. Simultaneously, B induces a
singlet to triplet transition in the (1,1) ground state by
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where ẼT ≡ (E0
T + E1

T )/2 and ẼS ≡ (E0
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set energies, ẼS ẼT taken as zero throughout figure, so off-
sets of J arbitrary. Expanded view in (b) shows minimum
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of order 1.2 meV from calculations for the device in Ref.
[2]. Note that δ forms the major portion of ∆ST (0, 2)
(cf. Fig. 2a) and that reducing ∆ST (0, 2) while keeping
∆ST (1, 1) relatively fixed causes the two anti-crossings to
move closer to one another. This suggests that a mag-
netic field could increase the depth of the minimum. For
non-zero B in a circular parabolic potential, the lowest
branch of the 2 state converges toward the 1 state and the
exchange term (”Hund’s coupling”) can induce a transi-
tion in the N = 2 single dot to a triplet ground state;
Fig. 4a and Ref. [22]. Simultaneously, B induces a
singlet to triplet transition in the (1,1) ground state by

Magnetic field control of exchange and noise immunity in double quantum dots
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We employ density functional calculated eigenstates as a basis for exact diagonalization studies of
semiconductor double quantum dots, with two electrons, through the transition from the symmetric
bias regime to the regime where both electrons occupy the same dot. We calculate the ”spin funnel”
characteristic of the singlet-triplet splitting as a function of bias detuning J(ε) and explain its
functional shape with a simple, double anti-crossing model. A voltage noise suppression “sweet
spot,” where dJ(ε)/dε = 0, is predicted and shown to be manipulable with a magnetic field B.

PACS numbers:

The goals of computation and information process-
ing at the quantum level have stimulated the efforts of
many researchers to coherently manipulate a variety of
elementary quantum systems. The scope of these can-
didate systems is wide [1]. Advanced fabrication tech-
nology and inherent scalability, however, make semicon-
ductor systems especially promising, and the consequent
intense investigation of these systems has recently pro-
duced some auspicious results [2–6]. The goal of these
particular studies is to coherently manipulate and probe
the spin and charge state of a small (typically electron
number N=1 or 2) system using: (i) time-varying electric
fields from pulsed gates; (ii) charge sensors from nearby
quantum point contacts (QPCs) [7, 8]; and (iii) exter-
nally applied magnetic fields B. Attention has focused
recently on the regime adjacent to the degeneracy line be-
tween the double dot charge states (NL, NR) = (1,1) and
(0,2) [2]. Here NL and NR denote the electron numbers
on the “left” and “right” dots. In Ref. [2] the authors
pulsed lateral gates, to produce a “detuning” ε of the
potential (ε is the bias difference between left and right
gates as measured from the degeneracy point of (1,1) and
(0,2)), in order to first prepare two electrons in a singlet
state in one (say, the right) dot, separate them into the
two dots, and then recombine them in the right dot, i.e.
(0, 2) → (1, 1) → (0, 2). For the employed gate voltages
and dot level spacings, the recombination was suppressed
by Pauli blocking in the case where the (1,1) electron is
in a triplet [9]. The singlet-triplet splitting, or exchange
coupling J , the spin phase coherence time and the damp-
ing of Rabi oscillations between singlet and triplet were
all thereby measured as functions of ε, the inter-dot tun-
nel coupling t, and magnetic field B. As ε → 0−, J(ε)
exhibited a rapid rise such that dJ/dε increased with
J . The effect of large dJ/dε is to enhance sensitivity to
voltage noise. The damping of Rabi oscillations, whose
frequency is determined by J , appeared to increase with
frequency, evidently due to this voltage noise.

Electrical noise in mesoscopic circuits originates from
various sources including gate voltage fluctuation, plas-
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FIG. 1: (a) Self-consistent effective 2D potential profile at
2DEG level, gate pattern superimposed; (b) Lowest two sin-
glet and triplet CI energies and difference of lowest triplet and
singlet J (triangles, right axis) versus detuning ε, upper panel
of (b) shows density of four states at ε = −18 mV (dots indi-
cated) with S0 and T0 delocalized and S1 and T1 mostly in
right dot; (c) J(ε) for two (singlet) tunnel coupling strengths
t (triangles and boxes) and lowest singlet and triplet occu-
pancies of left dot (right axis) for each t. All energies in Ry∗.

mons in the surrounding 2D electron gas and discrete
charge switching events. Minimizing environmental feed-
back is essential to the implementation of all devices rely-
ing on quantum coherence and substantial effort has been
dedicated to locating optimally isolated operating condi-
tions for various types of qubits [10]. For heterostructure-
based electrons, in order to manipulate spin the ex-
change, J , should be as large as possible so that op-
erations can take place before spin decoherence occurs
(via, for example, hyperfine coupling to nuclei). Here we
present results of calculations for double quantum dots
with N = 2 and with the gate pattern and wafer profile
taken from Ref. [2]. We employ our recently-developed
configuration interaction (CI) method [11] which uses a
basis of functions that is calculated with density func-
tional theory (DFT) [12] and which thereby includes
full geometric fidelity in the calculation of the electronic
structure. We calculate J from the symmetric limit at
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We employ density functional calculated eigenstates as a basis for exact diagonalization studies of
semiconductor double quantum dots, with two electrons, through the transition from the symmetric
bias regime to the regime where both electrons occupy the same dot. We calculate the singlet-triplet
splitting J(ε) as a function of bias detuning ε and explain its functional shape with a simple, double
anti-crossing model. A voltage noise suppression “sweet spot,” where dJ(ε)/dε = 0 with nonzero
J(ε), is predicted and shown to be tunable with a magnetic field B.

PACS numbers:

The goals of computation and information processing
at the quantum level have stimulated the efforts of many
researchers to coherently manipulate a variety of elemen-
tary quantum systems. The scope of these candidate
systems is wide [1]. Advanced fabrication technology
and inherent scalability, however, make semiconductor
systems especially promising. The investigation of these
systems has recently produced some auspicious results
[2, 3, 4, 5, 6]. The goal of these particular studies is
to coherently manipulate and probe the spin and charge
state of a small (typically electron number N=1 or 2)
system using: (i) time-varying electric fields from pulsed
gates; (ii) charge sensors from nearby quantum point con-
tacts (QPCs) [7, 8]; and (iii) externally applied magnetic
fields B. Attention has focused recently on the regime
adjacent to the degeneracy line between the double dot
charge states (NL, NR) = (1,1) and (0,2) [2]. Here NL

and NR denote the electron numbers on the left and right
dots.

In Ref. [2] the lateral gates confining the double dot
were pulsed to produce a controllable “detuning” ε of
the potential (ε is the potential difference between left
and right gates measured from the degeneracy point of
(1,1) and (0,2)), in order to first prepare two electrons
in a singlet state in one (say, the right) dot, separate
them into the two dots, and then recombine them in the
right dot, i.e., (0, 2) → (1, 1) → (0, 2). For the employed
gate voltages and dot level spacings, the recombination
was suppressed by Pauli blocking in the case where the
(1,1) electron is in a triplet [9]. The singlet-triplet split-
ting, or exchange coupling J(ε), the spin phase coherence
time and the damping of Rabi oscillations between singlet
and triplet were all thereby measured as functions of ε at
the separation point, the inter-dot tunnel coupling t, and
magnetic field B. As ε → 0−, J(ε) exhibited a rapid rise
such that dJ/dε increased with J . The effect of large
dJ/dε is to enhance sensitivity to voltage noise. The
damping of Rabi oscillations, whose frequency is deter-
mined by J(ε), appeared to increase with frequency, pre-
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FIG. 1: (a) Self-consistent effective 2D potential profile at
2DEG level, gate pattern superimposed; (b) Lowest two sin-
glet and triplet CI energies and difference of lowest triplet and
singlet J (triangles, right axis) versus detuning ε, upper panel
of (b) shows density of four states at ε = −18mV (dots indi-
cated) with S0 and T0 delocalized and S1 and T1 mostly in
right dot; (c) J(ε) for two (singlet) tunnel coupling strengths
t (triangles and boxes) and lowest singlet and triplet occu-
pancies of left dot (right axis) for each t.

sumably due to dephasing caused by this voltage noise.
In this Letter we identify ranges of parameters where a

noise-immunity “sweet spot” in exchange can be found,
that is, where exchange is present (|J(ε)| > 0) but
the system is insensitive to first order electrical noise
(∂J/∂ε = 0). The sweet spot is identified in configuration
interaction (CI) calculations [10] for the electronic struc-
ture of the double quantum dot with N = 2 in Ref. [2].
The CI calculation employs basis states computed with
density functional theory (DFT) [11] to obtain full geo-
metric fidelity to the experimental structure. We calcu-
late J(ε) from the symmetric limit at the center of the
(1,1) honeycomb in the stability diagram well into the
(0,2) regime with both electrons on a single dot. Analysis
within a Hartree-Fock (HF), double anti-crossing model
allows us to deduce simple expressions in the control pa-
rameters by which the noise-immune regime can be ac-
cessed [12].

DFT calculations for lateral heterostructures have
been described extensively in the literature [11] . We
correct the DFT single particle energies of the N=2 dou-
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An efficient and intuitive framework for universal quantum computation is presented that uses pairs
of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to
produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled
!-phase shift, compared to nineteen for exchange-only proposals employing three spins. Evolved from
well-studied decoherence-free subspaces, this architecture inherits immunity from collective decoher-
ence mechanisms. The simplicity and adaptability of this approach should make it attractive for spin-
based quantum computing architectures.
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Quantum computation involves the initialization, con-
trolled evolution, and measurement of a quantum system
consisting of n two-level quantum subsystems known
as qubits [1]. In the spirit of Feynman’s seminal work
in this area [2], one may regard a real quantum object
as a dedicated quantum computer, able to compute its
own behavior in real time using a single quantum gate —
the unitary operator that is generated from its own
Hamiltonian. To construct a universal quantum computer,
the approach taken is analogous to classical computers:
quantum algorithms are written in terms of an elemen-
tary set of logical qubits and qugates that are known to
generate all possible unitary operations [3]. The logical
qubits and qugates are then ‘‘simulated’’ by physical
qubits and qugates.

It is highly desirable from an experimentalist’s per-
spective to use the smallest possible set of physical qu-
gates, since each brings its own complexities and
difficulties. The Heisenberg exchange (ĤHij ! JŜSi " ŜSj)
and Zeeman magnetic (ĤH"

i ! gŜS"
i B

") interactions figure
prominently in proposals that employ electron [4–6] or
nuclear [7] spin physical qubits. (Spins are indexed by
subscripts, Cartesian coordinates are indexed by super-
scripts, ŜS"

i are spin-1/2 operators that satisfy #ŜS"
i ; ŜS

#
i $ !

i""#$ŜS$
i , and !h ! %B ! 1.) Using a terminology appro-

priate for electron spin, universal quantum computation
requires temporal control over a minimum of n% 1 two-
body exchange operators and two one-body magnetic
operators. Experimentally, these physical qugates are
modulated via coupling constants that are controlled
by classical (e.g., electric or magnetic) fields. For elec-
tron spins, the exchange strength J is controlled by the
electron charge, which is in turn controlled by applied
electric fields [4,7]; the Landé g factor can be controlled
by the choice of surrounding medium [4], and a variety
of magnetic inductions B" are available. The Heisen-
berg exchange and Zeeman rotation coupling constants
are modulated in time to produce corresponding uni-
tary operators êeij&&' ( exp#%i&ĤHij=J$ and r̂r"i &&' (

exp#%i&ĤH"
i =gB

"$. These physical qugates are combined
to create logical qugates that are known to be uni-
versal [3]. The choice of physical qugate sets is not
unique: controlled-NOT (cNOT) and negative-AND
(nANDjabi ( &%'&a^b'jabi), a controlled phase shift of
!, are related by a basis change for the second qubit
ûucNOT ! r̂ry2&%!=2'ûunANDr̂r

y
2&!=2'. The nAND logical qu-

gate can be expressed in terms of Heisenberg and Zeeman
physical qugates [4]:

ûunAND ! r̂rz2&%!=2'r̂rz1&!=2'êe12&!=2'r̂rz1&!'êe12&!=2': (1)

Recently, there has been a great deal of theoretical
activity involving decoherence-free subspaces [8] (DFS).
In this framework, qubits are identified with particular
subspaces of c physical qubits that commute with a par-
ticular symmetry of the time-independent full Hamil-
tonian (e.g., rotational symmetry) [9]. The consequences
of this requirement are striking: in forming qubits from a
two-dimensional subspace of c spin-1/2 physical qubits
with a definite total (z component of) angular momentum
m [known as DFSc&m'], exchange interactions are trans-
formed into magnetic interactions and the exchange in-
teraction becomes universal. One might think that all of
the exchange interactions would be consumed in the
process, but for c > 2 there are enough left over for
universal quantum computation. DiVincenzo et al. have
found 19 to be the minimum number of physical qubit
operations (not counting one-qubit rotations) required to
implement cNOT with c ! 3, and Heisenberg exchange
[10]. Logical qubit rotations generally require three or
four physical qugate operations, depending on the degree
of coupling within the qubit.

One might wonder why logical qubits formed from
spin-1/2 pairs are not used. The only possible logical
qubit is DFS2&0', spanned by fj0iQ ( j01iC; j1iQ (
j10iCg. Heisenberg exchange between the two physical
qubits produces rotations about the logical qubit X
axis [11]: ĤH12 ! &j01ih10jC ) j10ih01jC'=2 ! &j0ih1jQ)
j1ih0jQ'=2 ( "̂"X

1 ; "̂"A
Q generates unitary rotations on qubit
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produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled
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Quantum computation involves the initialization, con-
trolled evolution, and measurement of a quantum system
consisting of n two-level quantum subsystems known
as qubits [1]. In the spirit of Feynman’s seminal work
in this area [2], one may regard a real quantum object
as a dedicated quantum computer, able to compute its
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qubits and qugates are then ‘‘simulated’’ by physical
qubits and qugates.

It is highly desirable from an experimentalist’s per-
spective to use the smallest possible set of physical qu-
gates, since each brings its own complexities and
difficulties. The Heisenberg exchange (ĤHij ! JŜSi " ŜSj)
and Zeeman magnetic (ĤH"

i ! gŜS"
i B

") interactions figure
prominently in proposals that employ electron [4–6] or
nuclear [7] spin physical qubits. (Spins are indexed by
subscripts, Cartesian coordinates are indexed by super-
scripts, ŜS"

i are spin-1/2 operators that satisfy #ŜS"
i ; ŜS

#
i $ !

i""#$ŜS$
i , and !h ! %B ! 1.) Using a terminology appro-

priate for electron spin, universal quantum computation
requires temporal control over a minimum of n% 1 two-
body exchange operators and two one-body magnetic
operators. Experimentally, these physical qugates are
modulated via coupling constants that are controlled
by classical (e.g., electric or magnetic) fields. For elec-
tron spins, the exchange strength J is controlled by the
electron charge, which is in turn controlled by applied
electric fields [4,7]; the Landé g factor can be controlled
by the choice of surrounding medium [4], and a variety
of magnetic inductions B" are available. The Heisen-
berg exchange and Zeeman rotation coupling constants
are modulated in time to produce corresponding uni-
tary operators êeij&&' ( exp#%i&ĤHij=J$ and r̂r"i &&' (

exp#%i&ĤH"
i =gB

"$. These physical qugates are combined
to create logical qugates that are known to be uni-
versal [3]. The choice of physical qugate sets is not
unique: controlled-NOT (cNOT) and negative-AND
(nANDjabi ( &%'&a^b'jabi), a controlled phase shift of
!, are related by a basis change for the second qubit
ûucNOT ! r̂ry2&%!=2'ûunANDr̂r

y
2&!=2'. The nAND logical qu-

gate can be expressed in terms of Heisenberg and Zeeman
physical qugates [4]:

ûunAND ! r̂rz2&%!=2'r̂rz1&!=2'êe12&!=2'r̂rz1&!'êe12&!=2': (1)

Recently, there has been a great deal of theoretical
activity involving decoherence-free subspaces [8] (DFS).
In this framework, qubits are identified with particular
subspaces of c physical qubits that commute with a par-
ticular symmetry of the time-independent full Hamil-
tonian (e.g., rotational symmetry) [9]. The consequences
of this requirement are striking: in forming qubits from a
two-dimensional subspace of c spin-1/2 physical qubits
with a definite total (z component of) angular momentum
m [known as DFSc&m'], exchange interactions are trans-
formed into magnetic interactions and the exchange in-
teraction becomes universal. One might think that all of
the exchange interactions would be consumed in the
process, but for c > 2 there are enough left over for
universal quantum computation. DiVincenzo et al. have
found 19 to be the minimum number of physical qubit
operations (not counting one-qubit rotations) required to
implement cNOT with c ! 3, and Heisenberg exchange
[10]. Logical qubit rotations generally require three or
four physical qugate operations, depending on the degree
of coupling within the qubit.

One might wonder why logical qubits formed from
spin-1/2 pairs are not used. The only possible logical
qubit is DFS2&0', spanned by fj0iQ ( j01iC; j1iQ (
j10iCg. Heisenberg exchange between the two physical
qubits produces rotations about the logical qubit X
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Q. This mapping transforms a physical two-qubit inter-
action into a logical one-qubit rotation. However, since
exchange produces rotations about a single axis only, the
gate set is not universal.

The situation changes if the two spins (labeled 1 and 2)
are allowed to reside in inequivalent local environments,
with different (static and isotropic) g factors, g1 and g2,
coupled by a controllable exchange gate [Fig. 1(a)]. The
exchange interaction is unaffected, and a static, uniform
magnetic field B ! Bẑz splits the two-qubit states: ĤHZ

1 !
ĤHz

1 " ĤHz
2 ! !gB"̂"Z

1 , where !g # g2 $ g1. Now, all one-
qubit operations are possible. The subspace is no longer
decoherence-free; however, the DFS structure gives im-
munity against evolution outside the computational space
due to magnetic interactions. Because the magnetic field
is time independent, it is convenient to work in the rotat-
ing frame of the qubit (interaction representation); in
doing so, spin resonance techniques are mapped directly
onto qubit resonance techniques. For example, periodic
modulation of the exchange coupling at the qubit Rabi
frequency # ! !gB can be used to produce ! and !=2
pulses.

Interactions between qubits (Q1 and Q2) are accom-
modated by coupling one spin from each qubit end to end,
as depicted in Fig. 1(b). The (four-dimensional) product
space formed by two qubits Q1 %Q2 is a subspace of the
larger (six-dimensional) space of four physical qubits for
which

P
4
i!1 ŜS

z
i ! 0 [DFS4&0']. In the absence of Heisen-

berg coupling, states evolve due to Zeeman interactions:
ÛU0&t' ! exp($i&ĤHZ

1 " ĤHZ
2 't) # "̂"Z&B!gt'. Heisenberg

coupling between spins on different qubits (ĤH23, ĤH13, or
ĤH24) necessarily couple to the other two dimensions
[10,12], as can be seen simply from the following ex-
ample: ĤH23j1010iC ! j1100iC =2Q1 %Q2. However, it is
still possible to coherently couple back into Q1 %Q2 in
such a way as to produce nAND:

ÛUnAND # ÛU0&!=2'êe23&!=2'ÛU0&!'êe23&!=2': (2)

The construction in Eq. (2) is closely analogous to
Eq. (1). The main difference concerns the nature of the
entanglement. In Eq. (1), entanglement arises through
direct Heisenberg exchange; in Eq. (2) it comes about
via an auxiliary two-dimensional space.

The time bottleneck in ÛUnAND is the Z rotations ÛU0,
which take a time tZ * 1=B!g to execute. By contrast,
the X rotations take tX * 1=J. Rotating the qubits in the
hope of turning Z-phase shifts (governed by slow Zeeman
interactions) into X-phase shifts (governed by fast
Heisenberg interactions) cannot be achieved using ex-
change operations alone because the transformation in-
volves rotations along the Y axis; those rotations involve
ÛU0, which is not generated by any exchange gate. Hence,
universal quantum computation for c ! 2 becomes im-
possible in the limit !g ! 0.

The proposed quantum computing architecture pos-
sesses many attractive features for spin-based physical
implementations. As with the c ! 3 qubits, universal
quantum computation is achieved with a single gate that
can be made to operate in principle very rapidly [6]. In
contrast to DFS-derived qubits, the energy gap between
j0iQ and j1iQ helps to suppress unwanted entanglement
with environmental degrees of freedom. At sufficiently
low temperature, these decoherence mechanisms can be
suppressed exponentially.

The small number of spins required to form a qubit
makes it possible to form scalable networks in higher
dimensions (see Fig. 2). It is the most efficient and com-
pact scheme utilizing a single type of gate. No additional
gate operations are required to form important gates like
cNOT (or nAND), and an intuitive analogy exists be-
tween spin and qubit operations. What may be most
significant for physical implementations is the wide tol-
erance for variability in the exact values of the g factors
for different spins. It is straightforward to generalize the
above results to allow (in principle) for different g factors
for every physical qubit in the n-qubit quantum computer.
Qubit-echo techniques (! pulses applied simultaneously
to all the qubits) can be used to control phase error
accumulation over time. In fact, only one different g
factor will produce a universal quantum computer. One
way of regarding the effect of a localized physical qubit
g-factor modulation is that it mixes with the uniform

FIG. 1. (a) Logical qubit Q formed from the Sz ! 0 subspace
of two spin-1/2 physical qubits with different Landé g factors
g1 (gray) and g2 (white). Heisenberg coupling within the
logical qubit is represented by a solid black line. (b) Two
logical qubits coupled via Heisenberg exchange, represented
by a solid gray line.

FIG. 2. Scalable qubit geometries in d ! 1; 2 dimensions.
(a) Longitudinal d ! 1 layout. (b) Vertical d ! 1 layout.
(c) Horizontal d ! 2 layout. (d) Vertical d ! 2 layout.
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ABSTRACT

We report the realization of nanotube-based multiple quantum dots that are fully defined and controlled with electrostatic gates. Metallic

top-gates are used to produce localized depletion regions in the underlying tubes; a pair of such depletion regions in a nanotube with ohmic

contact electrodes defines the quantum dot. Top-gate voltages tune the transparencies of tunnel barriers as well as the electrostatic energies

within single and multiple dots. This approach allows precise control over multiple devices on a single tube, and serves as a design paradigm

for nanotube-based electronics and quantum systems.

A number of proposed solid-state devices1 take as their

fundamental element the quantum dotsa classically isolated
island of electrons with a discrete energy spectrum.1,2 As a

substrate for realizing multiple quantum-dot devices, carbon

nanotubes3 offer a variety of appealing physical properties.

However, nanotube-based electronics in general have been

limited by the difficulty of fabricating complex devices on

a single tube. In previous studies, isolated quantum dots

formed in carbon nanotubes were defined either by tunnel

barriers at the metal-nanotube interface4,5 or by intrinsic6,7
or induced8,9 defects along the tube. These devices demon-

strated the potential of nanotube-based quantum devices but

did not allow independent control over device parameters

(e.g., charge number and tunnel barrier transparency), and

also placed stringent geometric constraints on device design.

In the present study, we address some of these challenges

by forming the quantum dots on the nanotube using only

patterned gates, while the contacts to the nanotube remain

highly transparent. This design allows multiple quantum dots

to be arbitrarily positioned along a tube (quantum dots

connected to 1D nanotube leads), with independent control

over tunnel barriers and dot charges. A backgate is used to

set overall carrier density. Here, we show that quantum dots

fabricated in this manner exhibit familiar characteristics yet

provide significant advances in device control. In particular,

full control over tunnel barrier locations and transparencies

should allow improvements in the study and control of spin

and charge dynamics in carbon nanotubes.

Nanotubes were grown via chemical vapor deposition from

lithographically defined Fe catalyst islands on a degenerately

doped Si wafer with 1 µm of thermally grown oxide (See

Figure 1a). Atomic force microscopy was used to locate

nanotubes relative to alignment markers, and single-walled

tubes with diameters less than ∼3 nm were contacted with

15 nm of Pd, patterned by electron beam lithography.10

Device lengths were in the range 5-25 µm. After contacting,
the entire sample was coated with 25-35 nm of either SiO2
deposited by plasma-enhanced chemical vapor deposition

(PECVD) or Al2O3 deposited by atomic layer deposition

Figure 1. (a) Schematic of a gate-defined carbon nanotube
quantum dot showing vertically integrated geometry and ohmic
contacts. Pd provides high-conductance contacts at the metal-
nanotube interface that do not form tunnel barriers at low temper-
atures. (b) Gate response of a ∼25 µm long nanotube contacted
with Pd, top-gated using PECVD SiO2 at T ∼ 300 mK with ∼10
µV ac excitation. For this device, all gates strongly suppress
conductance at voltages above ∼+1 V. Inset: SEM of a litho-
graphically similar gate pattern. The middle two gates are connected
together and serve as a single plunger gate. Scale bar ) 2 µm.
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In the present study, we address some of these challenges

by forming the quantum dots on the nanotube using only

patterned gates, while the contacts to the nanotube remain

highly transparent. This design allows multiple quantum dots

to be arbitrarily positioned along a tube (quantum dots

connected to 1D nanotube leads), with independent control

over tunnel barriers and dot charges. A backgate is used to

set overall carrier density. Here, we show that quantum dots

fabricated in this manner exhibit familiar characteristics yet

provide significant advances in device control. In particular,

full control over tunnel barrier locations and transparencies
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doped Si wafer with 1 µm of thermally grown oxide (See

Figure 1a). Atomic force microscopy was used to locate

nanotubes relative to alignment markers, and single-walled

tubes with diameters less than ∼3 nm were contacted with

15 nm of Pd, patterned by electron beam lithography.10

Device lengths were in the range 5-25 µm. After contacting,
the entire sample was coated with 25-35 nm of either SiO2
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(PECVD) or Al2O3 deposited by atomic layer deposition
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quantum dot showing vertically integrated geometry and ohmic
contacts. Pd provides high-conductance contacts at the metal-
nanotube interface that do not form tunnel barriers at low temper-
atures. (b) Gate response of a ∼25 µm long nanotube contacted
with Pd, top-gated using PECVD SiO2 at T ∼ 300 mK with ∼10
µV ac excitation. For this device, all gates strongly suppress
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