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Semiconductor
Doublet Dot Device
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Charge transport in a double dot
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High-bandwidth dilution refrigerator
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Pulses with 1ns rise time applied
using Tektronix AWG 520
arbitrary waveform generators



Measuring Spin Dephasing (T2"): Time-domain Interferometry
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(1, 1)s (0,2)s

E

(0,2) triplets are unavailable
~ 4K above (0,2)S.

J. R. Petta,A. C. Johnson, J. Taylor, A.Yacoby, M.D. Lukin,
M. Hanson, A. C. Gossard, CMM Science 309 2180 (2005)
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Measuring Spin Dephasing (T2"): Time-domain Interferometry




pattern of spin relaxation
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Probability for separated singlet to be in a found in a
singlet state after 200 ns.

S - T+ degeneracy occurs at

J(e) = gupB

o
”

T -

i I o
o

il

% (mV) "\

E(l A)s ™ E(l ,1)7T0 R. Petta, A. C. Johnson, |. Taylor, A.Yacoby, M.D. Lukin,
M. Hanson, A. C. Gossard, CMM Science 309 2180 (2005)
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Measuring Spin Dephasing (T2")
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See: K. Schulten and P. G.Wolynes, J. Chem. Phys. 68 3292 (1978); ). M. Taylor, et al. (in prep).
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Effective nuclear field from Hyperfine interaction

Large ensemble with random spin
orientations, slow mternal dynamics...

Quasistatic effective field

B, = bl}Ek‘w(Fk)‘zlk

rms B, =by1,(I, + 1)/ N

GaAs: b=3.47T, [,=3/2
Our device: N~100-107

B ~2-6mT,t ~3-10ns

M ? TRUHC




Proc. Natl. Acad. Sci. USA
Vol. 80, pp.-609-621, January 1983

Proc. Natl. Acad. Sci. USA Roview
Vol. 80, pp. 609-621, January 1983
Review Influence of nuclear spin on chemical reactions: Magnetic isotope
and magnetic field effects (A Review)
(spin dynamics /photochemistry /radical pairs /isotope enrichment)
NicHoLAS J. TURRO

~ Department ofi Chemistry, Columbia University, New York, New York 10027
Contributed by Nicholas ] . Turro, November 1, 1982
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(0,2)s (1,1)s

In the (I,1) S -To
subspace, the eigenstates
of the nuclear fields are

[ T1)and | |1).

Bloch sphere
in(I,1)S-To | |T)

subspace




Probability for separated singlet to
be found in a singlet after time Ts
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Exchange Control: Rabi oscillations between Tl and | T states
s
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Gate control of SWAP speed
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Hyperfine dephasing with
finite exchange interaction
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Hahn Echo in S - Tg basis
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Carr-Purcell Echo in S - Tg basis
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Carr-Purcell Pulse Sequences

| -pulse (Hahn)

-337.5 Py 3380
-338.0 -338.5
> 3385 :339.0
“© -.339.0 -339.5
-339.5 -340.0
-340.0 L1 -3405

0 10 20 30

2-pulse (Carr-Purcell)
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’>; -338.5 -339.0
© -339.0 -339.5
-339.5 -340.0
-340.5
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Magnetic Field Control of Exchange and Noise Immunity in Double Quantum Dots

M. Stopal* and C. M. Marcus?

ICenter for Nanoscale Systems, Harvard University, Cambridge, MA 02138
“Department of Physics, Harvard University, Cambridge, MA 02138

We employ density functional calculated eigenstates as a basis for exact diagonalization studies of
semiconductor double quantum dots, with two electrons, through the transition from the symmetric
bias regime to the regime where both electrons occupy the same dot. We calculate the singlet-triplet
splitting J(¢) as a function of bias detuning € and explain its functional shape with a simple, double
anti-crossing model. A voltage noise suppression “sweet spot,” where dJ(g)/de = 0 with nonzero
J(e), is predicted and shown to be tunable with a magnetic field B.

0.10r
d(meV)=
S 09— 012 g
£ 0001 00
0051 0.12.
010 0,24 |

dJ/de

22



VOLUME 89, NUMBER 14

30 SEPTEMBER 2002

Universal Quantum Computation with Spin-1/2 Pairs and Heisenberg Exchange

Jeremy Levy

Center for Oxide-Semiconductor Materials for Quantum Computation, and Department of Physics and Astronomy,
University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, Pennsylvania 15260
(Received 23 January 2001; published 17 September 2002)

An efficient and intuitive framework for universal quantum computation is presented that uses pairs
of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to
produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled
m-phase shift, compared to nineteen for exchange-only proposals employing three spins. Evolved from

well-studied decoherence-1ree subspaces, this architecture mherits immunity rrom collective decoher-

ence mechanisms. The simplicity and adaptability of this approach should make it attractive for spin-

based quantum computing architectures.
DOI: 10.1103/PhysRevLett.89.147902
Quantum computation involves the initialization, con-

trolled evolution, and measurement of a quantum system
consisting of n two-level quantum subsystems known

PACS numbers: 03.67.Lx, 75.10.Jm, 89.70.+c

exp[—i0H®/gB“]. These physical qugates are combined
to create logical qugates that are known to be uni-
versal [3]. The choice of physical qugate sets is not

An efficient and intuitive framework for universal quantum computation is presented that uses pairs
of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to
produce all gate operations.

generate all possible unitary operations [3]. The logical
qubits and qugates are then ‘“‘simulated” by physical
qubits and qugates.

It is highly desirable from an experimentalist’s per-
spective to use the smallest possible set of physical qu-
gates, since each brings its own complexities and
difficulties. The Heisenberg exchange (H i =J8:-8))
and Zeeman magnetic (H{ = gS¢¥B®) interactions figure
prominently in proposals that employ electron [4—6] or
nuclear [7] spin physical qubits. (Spins are indexed by
subscripts, Cartesian coordinates are indexed by super-
scripts, S¢ are spin-1/2 operators that satisfy [S¢, S',B] =
is“BVS’IV, and /i = pup = 1.) Using a terminology appro-
priate for electron spin, universal quantum computation
requires temporal control over a minimum of n — 1 two-
body exchange operators and two one-body magnetic
operators. Experimentally, these physical qugates are
modulated via coupling constants that are controlled
by classical (e.g., electric or magnetic) fields. For elec-
tron spins, the exchange strength J is controlled by the
electron charge, which is in turn controlled by applied
electric fields [4,7]; the Landé g factor can be controlled
by the choice of surrounding medium [4], and a variety
of magnetic inductions B* are available. The Heisen-
berg exchange and Zeeman rotation coupling constants
are modulated in time to produce corresponding uni-
tary operators &;(0) = exp[—i@ﬁ]ij/J] and 7#(0) =

147902-1 0031-9007/02/89(14)/147902(3)$20.00

In this framework, qubits are identified with particular
subspaces of ¢ physical qubits that commute with a par-
ticular symmetry of the time-independent full Hamil-
tonian (e.g., rotational symmetry) [9]. The consequences
of this requirement are striking: in forming qubits from a
two-dimensional subspace of ¢ sf
with a definite total (z component
m [known as DFS_(m)], exchange
formed into magnetic interactio;
teraction becomes universal. One
the exchange interactions woulc
process, but for ¢ > 2 there are
universal quantum computation.
found 19 to be the minimum n
operations (not counting one-qub.
implement cNOT with ¢ = 3, a
[10]. Logical qubit rotations ge
four physical qugate operations, d
of coupling within the qubit.

One might wonder why logii
spin-1/2 pairs are not used. The
qubit is DFS,(0), spanned b
[10)¢}. Heisenberg exchange bet
qubits produces rotations abou
axis [11]: Hy, = (101)}10]¢ + |1

[1)(0l)/2 =3

d

FIG. 1.

X. SA
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© 2002 The American Physical

(a) Logical qubit Q formed from the S, = 0 subspace
of two spin-1/2 physical qubits with different Landé g factors
g, (gray) and g, (white). Heisenberg coupling within the
logical qubit is represented by a solid black line. (b) Two
logical qubits coupled via Heisenberg exchange, represented
by a solid gray line.
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Fault-tolerant architecture for quantum
computation using electrically controlled
semiconductor spins
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Electrostatic Two-Qubit Gate
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Electrostatic Two-Qubit Gate
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Electrostatic Two-Qubit Gate
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Noisy Data: Nuclear Memory

T5+1s =10 ns




High Bandwidth Readout




High Bandwidth Readout
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The Nuclear-Free Zone:
Nanotube double dot with charge sensors

depletion carbon nanotube
gates

Pd contact
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Gate-Defined Quantum Dots on Carbon

Nanotubes

M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, and C. M. Marcus*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
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Nanotube-Based Single Electron Device with Fast Charge Sensor

depletion carbon nanotube
gates

M. ]. Biercuk, D.]. Reilly, et al. cond-mat/0510550 (PRB-RC, in press (2006)).




09% 13C Methane feedstock
50% 12C, 50% 13C mixture
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Summary
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fast, single electron control

Spin T2* ~ 10ns
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