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Thermalization in extended systems

Consider a hypercubic lattice Λ of dimension D and linear size L, and on each site a
finite-dimensional space CN .

Let |Ψ〉 be some normalized state vector, andΨ(A) := 〈Ψ|A|Ψ〉 for observables A.
LetH be some evolution Hamiltonian, and τt(A) := eiHtAe−iHt.

The thermal state at inverse temperature β is

ωth
β (A) :=

Tr(e−βHA)

Tr(e−βH)

Consider all of the above in an appropriate thermodynamic limit L → ∞.

If the large-time limit limt→∞ Ψ(τt(A)) exist (equilibration),
in what situations does it equal ωth

β (A) (thermalization)?

[Quench protocols: Iglói, Rieger 2000; Altman, Auerbach 2002; Sengupta, Powell, Sachdev 2004;

Calabrese, Cardy 2006] [Reviews on thermalization: Polkovnikov, Sengupta, Silva, Vengalattore 2011;

Yukalov 2011; Gogolin, Eisert 2015; Eisert, Friesdorf, Gogolin 2015].



Eigenstate thermalization hypothesis

“In Hamiltonian eigenstates |Ψ〉 of a thermodynamic system, withH|Ψ〉 = E|Ψ〉,
the average 〈Ψ|A|Ψ〉 is only a function of the local observable A and the energy E.

Further, it is a thermal average.”

[Jensen, Shankar 1985; Deutsch 1991; Srednicki 1994; Rigol, Dunjko, Olshanii 2008]

Denote |ΨL〉 : L = 1, 2, 3, . . . a sequence ofH-eigenstates in quantum lattices of linear
sizes L. Assume that limL→∞〈ΨL|h|ΨL〉 = e where h is density ofH . Then:

lim
L→∞

〈ΨL|A|ΨL〉 = f(A, e)

where f(A, e) depends smoothly on e. Further,

f(A, e) = ωth
β(e)(A).

“⇒ Stationary states must be thermal (thermalization).”



Generalized thermalization and generalized Gibbs ensembles

Clearly the above only works if theH-dynamics “does not possess local conserved charges
other thanH itself”. If there exists many conserved chargesH1(= H), H2, H3, . . .:

• With infinitely-manyHi one considers generalized Gibbs ensembles, formally [Jaynes
1957; Rigol, Muramatsu, Olshanii 2006; Rigol, Dunjko, Yurovsky, Olshanii 2007]

ωGGE(A) = lim
L→∞

Tr
(
e−

∑
i βiHiA

)

Tr
(
e−

∑
i βiHi

)

• A natural generalization of the ETH is [cf. Caux, Essler 2013]

lim
L→∞

〈ΨL|A|ΨL〉 = ωGGE(A)

where βi’s are smooth functions of the quantities limL→∞〈ΨL|hi|ΨL〉

• If stationary state is ωGGE, the process is generalized thermalization. [Cazalilla 2006;
Calabrese, Cardy 2007; Cramer, Dawson, Eisert, Osborne 2008; Barthel, Schollwöck 2008; ...]



In fact, it was found in some examples that quasi-local conserved charges [Ilievski,
Medenjak, Prosen, Zadnik 2013 – 2016; Pereira, Pasquier, Sirker, Affleck 2014], whose densities

have exponentially decaying tails, must be used in the GGE expression.

[...; Ilievski, De Nardis, Wouters, Caux, Essler, Prosen 2015]



Many questions remain...

• Meaning and definition of generalized Gibbs ensembles. What is the meaning of

lim
L→∞

Tr
(
e−

∑
i βiHiA

)

Tr
(
e−

∑
i βiHi

) ?

Convergence of
∑

i βiHi? Is
∑

i βiHi still quasi-local, or can it be any non-local
conserved charge? How to fundamentally characterize the GGE “density matrices”? Is
generalized thermalization meaningful?

• Conditions for thermalization / generalized thermalization. What conditions guarantee
thermalization or generalized thermalization?
[For recent rigorous results: Reimann, Kastner 2012; Riera, Gogolin, Eisert 2012; Müller, Adlam,

Masanes, Wiebe 2015; Gluza, Krumnow, Friesdorf, Gogolin, Eisert 2016]



The C"-algebra structure
[Araki 1969; ...; Kliesch, Gogolin, Kastoryano, Riera, Eisert 2014. Textbooks: Bratteli, Robinson 1997]

• Space of local observablesO may be completed under operator norm || · || to a
C"-algebraA. There is a natural translation $-isomorphism A &→ A(x), x ∈ Λ.

• A state ω is a continuous linear functional onA normalized to ω(1) = 1. We assume
translation invariance.

• With h ∈ O a local observable, a local Hamiltonian has the formal expression
H =

∑
x∈Λ h(x). Denoting B(n) the “ball” of radius n centered at the origin, we may

defineH(n) =
∑

x∈B(n) h(x), the partial sums of the formal expression.

• One can show that limn→∞ eiH
(n)tAe−iH(n)t and limn→∞

Tr(e−βH(n)
A)

Tr(e−βH(n)
)
exist for

any local A ∈ O, and define, respectively, a strongly continuous one-parameter unitary
group, and a translation-invariant state, onA.



A re-thermalization theorem

Clustering and susceptibilities

Clustering condition: at large distances, correlations between local observables decay fast
enough, faster than distance−D (recall D = dimension of space).

Definition. Let ω be a state. We say that ω is sizably clustering if there exist ν, a > 0 and
p > D such that for every & > 0 and every A,B ∈ O of sizes |A|, |B| < &, we have

∣∣ω(AB)− ω(A)ω(B)
∣∣ ≤ ν&a ||A|| ||B|| dist(A,B)−p.

(With some more general function ν(") in place of ν"a the state is simply clustering.)

This guarantees finiteness of susceptibilities (clustering is sufficient):

〈〈A,B〉〉ω :=
∑

x∈Λ

[
1

2
ω
(
A(x)B +BA(x)

)
− ω(A)ω(B)

]



Gibbs states

Time-evolved Gibbs states are analytic and uniformly sizably clustering.

Let ωth
β and τt be associated to possibly different local Hamiltonians.

Theorem. [BD 2015] Let

β∗ :=






1
2||h|| log

[ 1+
√

1+2/(De)

2

]
(D > 1)

∞ D = 1.

[Kliesch, Gogolin, Kastoryano, Riera, Eisert 2014, Araki 1969]

(i) The sizably clustering property holds uniformly for ωth
β ◦ τt in every compact subset of

{|β| < β∗, t ∈ R}.

(ii) For every t ∈ R and A ∈ A, the function ωth
β (τt(A)) is analytic on |β| < β∗.

[using: Araki 1969; Lieb, Robinson 1972; Bravyi, Hastings, Verstraete 2006; Kliesch, Gogolin,

Kastoryano, Riera, Eisert 2014]



Re-thermalization theorem

Let ωth
β and τt be associated to possibly different local Hamiltonians.

Under conditions of uniform clustering, existence of large-time dynamical susceptibilities, and
the time evolution being completely mixing, the large-time limit of a time-evolved Gibbs

state exists and is a Gibbs state.

Theorem. [BD 2015] Suppose there exists a neighborhoodK of [0,β] such that:

(a) {ωth
s ◦ τt : (s, t) ∈ K × [0,∞)} is uniformly sizably clustering,

(b) for every A,B ∈ O and almost all s ∈ K , the limit limt→∞ 〈〈τt(A), B〉〉ωth
s
exists in

C, and

(c) the τt dynamics is completely mixing.

Then ωsta
β is a thermal Gibbs state with respect toH .

How do we define “completely mixing”? We need pseudolocality.



Pseudolocality
[Prosen 1998, 1999, 2011; Ilievski, Prosen 2013; BD 2015]

A pseudolocal charge (conserved or not) is the limit of a sequence of observablesQn,
supported on balls B(n) centered at the origin and of growing radius n, with in particular the

condition that their second cumulants diverge at most like the volume.

Three conditions (assume WLOG ω(Qn) = 0 for all n):

I. Volume growth. There exists γ > 0 such that ω({Q"
n, Qn}) ≤ γnD for all n > 0.

II. Limit action. For every A ∈ O, Q̂ω(A) := limn→∞
1
2ω({Q

"
n, A}) exists in C.

III. Bulk homogeneity. There exists 0 < k < 1 such that for every A ∈ O,

lim
n→∞

max
x,y∈B(kn)

|ω({Q"
n, A(x)})− ω({Q"

n, A(y)})| = 0.

The limit action Q̂ω is referred to as a pseudolocal charge with respect to ω. We denote the
linear space of pseudolocal charges with respect to ω as Q̂ω .



• A subset of pseudolocal charges is that of local charges, obtained from sequences of
partial sums,

n &→ Qn =
∑

x∈B(n)

A(x)

for any A ∈ O. The associated limit action is the susceptibility,

Q̂ω(B) =
∑

x∈Λ

(
1

2
ω({A(x), B})− ω(A)ω(B)

)
= 〈〈A,B〉〉ω

• Quasilocal charges [Ilievski, Prosen 2013], whose densities have exponentially decaying
tails, are also pseudolocal charges.

• A clustering property holds (similar to an asymptotic derivation property) [BD 2015]:

lim
dist(B,C)→∞

Q̂ω(BC) = Q̂ω(B)ω(C) + ω(B)Q̂ω(C)



Consider a local HamiltonianH . It is completely mixing if it does not possess conserved
pseudolocal charges other than scalar multiples of itself.

• The generator LH of time evolution of local observables A ∈ O is (the sum is finite)

LH(A) =
∑

x∈Λ

[h(x), A]

• A clustering state ω is stationary if ω(LH(A)) = 0 for all A ∈ O.

• In a stationary state, the condition that a pseudolocal charge Q̂ω be conserved is simply
Q̂ω(LH(A)) = 0 for all A ∈ O.

Q̂ω(LH(A)) = lim
n

ω
(
{Qn, [H,A]}

)
= − lim

n

ω
(
{[H,Qn], A}

)
= 0

Definition. [BD 2015] A local hamiltonianH is completely mixing if for every stationary
clustering state ω, the condition that Q̂ω be conserved implies Q̂ω = λĤω for some λ ∈ C.



A larger family of states: pseudolocal states
[BD 2015]

In order to get stronger results, we extend the family of Gibbs states using pseudolocal
charges. Since de−βH/dβ = −He−βH , we have

− d

dβ
ωth
β (A) = 〈〈h,A〉〉ωth

β
= Ĥωth

β
(A)

We interpret Ĥωth
β
as a tangent vector at the “point” ωth

β , and this is a “flow equation”

along a curve that connects ωth
β to the infinite-temperature state TrA at β = 0.



Generalize:

d

ds
ωs(A) = Q̂s(A), ω0 = TrA

A pseudolocal state is a state at the end-point of a curve connecting it to the
infinite-temperature state, and whose tangent is determined by pseudolocal charges.

Formally, the “density matrix” would be a product of path-ordered exponentials:

←−−−P exp

∫ 1

0
dsQs ·

−−−→P exp

∫ 1

0
dsQs



The integrated version is more useful in practice:

Definition. [BD 2015] Let {ωs : s ∈ [0, 1]} be a one-parameter family of uniformly bounded,
uniformly sizably clustering states, with ω1 = ω and ω0 = TrA. If there exists a
one-parameter family {Q̂s ∈ Q̂ωs

: s ∈ [0, 1]} of uniformly bounded pseudolocal charges
such that, for every A ∈ O, the function s &→ Q̂s(A) is Lebesgue integrable on [0, 1] and

ωs(A) = TrA(A) +

∫ s

0
ds′ Q̂s′(A),

then we say that ω is a pseudolocal state.

Theorem. Thermal Gibbs states are pseudolocal states.

Theorem. If ω is a pseudolocal state and τt is a time evolution associated to a local
Hamiltonian, then ω ◦ τt is a pseudolocal state for any t ∈ R.



A stationary-state thermalization theorem
(in the spirit of ETH)

Any analytic pseudolocal state whose entire flow is stationary with respect to a completely
mixing local Hamiltonian must be a thermal Gibbs state with respect to this Hamiltonian.

Here analytic means that, for any A ∈ O, the function ωs(A) is an analytic function of s in
some neighborhood of [0, 1].

Theorem. LetH be a completely mixing local Hamiltonian, and let ω be an analytic
pseudolocal state with the property that ωs(LH(A)) = 0 for all s ∈ [0, 1] and all A ∈ O.
Then ω is a thermal Gibbs state with respect toH . The inverse temperature is

β = −
∫ 1

0
dsλ(s)

where λ(s) is the proportionality constant in Q̂s = λ(s)Ĥωs
.



Generalized Gibbs ensembles

More generally, we then have a natural definition of generalized Gibbs ensembles:

A generalized Gibbs ensemble with respect toH is a pseudolocal state whose entire flow is
stationary with respect toH .

Definition. [BD 2015] A GGE with respect toH is a pseudolocal state ω with the property that
for almost all s ∈ [0, 1], we have ωs(LH(A)) = 0 and Q̂s(LH(A)) = 0 for all A ∈ O.

• Formally, the GGE “density matrix” would be a product of path-ordered exponentials of
pseudolocal conserved charges:

ρGGE =
←−−−P exp

∫ 1

0
dsQs ·

−−−→P exp

∫ 1

0
dsQs instead of ρGGE = e−

∑
βiQi

• This definition is mathematically accurate, and also accounts for cases where conserved
charges generate non-commuting flows [cf. Fagotti 2014, Cardy 2015].



Generalized thermalization

Under conditions of uniform clustering and existence of large-time dynamical susceptibilities,
the large-time limit of a time-evolved pseudolocal state exists and is a GGE.

Theorem. [BD 2015] Let τt be an evolution dynamics, and let ω be a pseudolocal state with
flow {ωs : s ∈ [0, 1]}. Suppose

(a) {ωs ◦ τt : (s, t) ∈ [0, 1]× [0,∞)} is uniformly sizably clustering, and

(b) for every A,B ∈ O and almost all s ∈ [0, 1], the limit limt→∞ 〈〈τt(A), B〉〉ωs
exists

in C.

Then the limit ωsta := limt→∞ ω ◦ τt exists (weakly) and is a GGE with respect to the
evolution Hamiltonian.



Main structure for the proofs: Hilbert space
[BD 2015; cf Prosen 1998, 1999]

• Susceptibilities give rise to a Hilbert space structure.

Consider the positive semidefinite sesquilinear form 〈〈A,B〉〉ω and its null space N̂ , and
Cauchy-complete the quotient spaceO/N̂ (similar to GNS construction). Hilbert space Ĥω .

• There is a bijection between this Hilbert space and the space of pseudolocal charges.
Elements of the Hilbert space are the densities of pseudolocal charges.

Given Q̂ω ∈ Q̂ω there exists A ∈ Ĥω such that

Q̂ω(B) = 〈〈A,B〉〉ω ∀ B ∈ O.

The opposite also holds. Recall for local charges: Q =
∑

x∈Λ A(x) for A ∈ O.

• Any pseudolocal charge can be extended to a continuous linear functional on Ĥω .
Any continuous linear functional on Ĥω is a pseudolocal charge.



Conclusions

• Framework, directly in infinite systems, for non-equilibrium quantum dynamics and for
generalized Gibbs ensembles, based on pseudolocal charges.

• A geometric re-interpretation of quantum dynamics? Hilbert space structure→
infinite-dimensional Riemannian manifold of quantum states? Relation between
geometry and (non-equilibrium) thermodynamics?

• “If all Rényi entropies satisfy a volume law, then the state is a pseudolocal state”⇒ ETH?

• Connection with GGE results? E.g. do quasi-local conserved charges found in [Ilievski, De
Nardis, Wouters, Caux, Essler, Prosen 2015] form a basis of conserved pseudolocal charges?

• Use similar framework in other non-equilibrium situations? E.g. non-homogeneous initial
states, non-equilibrium steady states? Connection with a quantum large-deviation
theory?


