Santa Barbara, February 17-20th 2016

Around the time-time correlations in KPZ growth models

Patrik L. Ferrari jointly with Herbert Spohn
arXiv:1602.00486

http://wt.iam.uni-bonn.de/~ferrari

- $\omega(i, j)$ (i.i.d.) random variables

- $\omega(i, j)$ (i.i.d.) random variables
- Directed polymer: path π composed by \nearrow and \nwarrow
- Length of $\pi: \ell(\pi)=\sum_{(i, j) \in \pi} \omega(i, j)$

- $\omega(i, j)$ (i.i.d.) random variables
- Directed polymer: path π composed by \nearrow and \nwarrow
- Length of $\pi: \ell(\pi)=\sum_{(i, j) \in \pi} \omega(i, j)$

- $\omega(i, j)$ (i.i.d.) random variables
- Directed polymer: path π composed by \nearrow and \nwarrow
- Length of $\pi: ~ \ell(\pi)=\sum_{(i, j) \in \pi} \omega(i, j)$
- Maximal length: $L_{(m, n)}=\max _{\pi:(1,1) \rightarrow(m, n)} \ell(\pi)$

- TASEP: Totally Asymmetric Simple Exclusion Process
- Configurations

$$
\eta=\left\{\eta_{j}\right\}_{j \in \mathbb{Z}}, \eta_{j}= \begin{cases}1, & \text { if } j \text { is occupied } \\ 0, & \text { if } j \text { is empty }\end{cases}
$$

- Dynamics

Independently, particles jump on the right site with rate 1 , provided the right is empty. \Leftrightarrow Waiting time $\exp (1)$-distributed

- Particles are ordered: position of particle k is $x_{k}(t)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
- $\omega(i, j) \sim \exp (1)$ is the waiting time (once allowed) of the particle j to do its i th jump ($=$ from $-j+i-1$ to $-j+i$)
$\Rightarrow L_{(m, n)}$ is the time when particle n reaches site $-n+m$

$$
\mathbb{P}\left(L_{(m, n)} \leq t\right)=\mathbb{P}\left(x_{n}(t)+n \geq m\right)
$$

- Similarly, one can define LPP between two sets of points as well as TASEP with other initial conditions.
- We will discuss the following three geometries (LPP) / initial conditions (TASEP):
- Point-to-point problem / step initial conditions

(i) Step IC
- We will discuss the following three geometries (LPP) / initial conditions (TASEP):
- Point-to-point problem / step initial conditions
- Point-to-line problem / flat initial conditions

- We will discuss the following three geometries (LPP) / initial conditions (TASEP):
- Point-to-point problem / step initial conditions
- Point-to-line problem / flat initial conditions
- Point-to-random walk line / stationary initial conditions

(iii)-(b) Equivalent to stationary IC
- Cut at fixed vertical coordinate equal to t : TASEP configuration at time t
- Cut at $j=n$ with n fixed: trajectory of a tagged particle
- Cut at $j=i$: integrated current at the origin

Figure by Michael Prähofer

- A simulation of tagged particle vs. integrated current for TASEP with initial half-flat initial conditions
- A simulation of tagged particle vs. integrated current for TASEP with initial half-flat initial conditions

- The space-time is non-trivially fibred: spatial correlation length is $\mathcal{O}\left(t^{2 / 3}\right)$, but in space-time, there are some directions (characteristic lines) with scaling exponent 1: slow decorrelations phenomenon

Ferrari'08; Corwin, Ferrari, Péché'10

- More generally (flat IC case): process to be studied

$$
(\tau, w) \mapsto \frac{L_{(\mathcal{L}, 0) \rightarrow\left(\tau t-w t^{2 / 3}, \tau t+w t^{2 / 3}\right)}-4 \tau t}{t^{1 / 3}}
$$

Characteristic lines for the step IC (left) and for flat IC (right)

- We consider flat and stationary with density $1 / 2$ so that $\{(0, t), t \geq 0\}$ is a characteristic line
- From now on, we study the integrated current through the origin during time $[0, t], J(t)$
- Rescaled process

$$
\tau \mapsto \mathcal{X}(\tau)=\lim _{t \rightarrow \infty}-t^{-1 / 3}\left(J(\tau t)-\frac{1}{4} \tau t\right)
$$

- One-point distribution

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{X}^{\text {step }}(1) \leq 2^{-4 / 3} s\right)=F_{\mathrm{GUE}}(s) \\
& \mathbb{P}\left(\mathcal{X}^{\text {flat }}(1) \leq 2^{-1} s\right)=F_{\mathrm{GOE}}(2 s) \\
& \mathbb{P}\left(\mathcal{X}^{\text {stat }}(1) \leq 2^{-4 / 3} s\right)=F_{\mathrm{BR}}(s)
\end{aligned}
$$

Baik, Rains'99, '00; Johansson'00; Prähofer, Spohn'02

- Experimental results by Kazumasa Takeuchi Takeuchi,Sano'12 See also his talk of last week: http://online.kitp.ucsb. edu/online/randomkpz16/takeuchi/
- Formula for $\mathbb{P}\left(\mathcal{X}(\tau) \leq s_{1}, \mathcal{X}(1) \leq s_{2}\right)$ using replica approach in a polymer model

Dotsenko'13

- "Finite time" formula for the two-time distribution in a semi-directed polymer model and rigorous limiting formula for $\mathbb{P}\left(\mathcal{X}(\tau) \leq s_{1}, \mathcal{X}(1) \leq s_{2}\right)$
- Covariance behavior as $\tau \rightarrow 0$:

$$
\begin{aligned}
C^{\text {step }}(\tau) & =\mathcal{O}\left(\tau^{2 / 3}\right) \\
C^{\text {flat }}(\tau) & =\mathcal{O}\left(\tau^{4 / 3}\right) \\
C^{\text {stat }}(\tau) & =\mathcal{O}\left(\tau^{2 / 3}\right)
\end{aligned}
$$

- Covariance behavior as $\tau \rightarrow 1$:

$$
\begin{aligned}
& C^{\text {step }}(\tau)=C^{\text {step }}(1)-\mathcal{O}\left((1-\tau)^{2 / 3}\right) \\
& C^{\text {flat }}(\tau)=C^{\text {flat }}(1)-\mathcal{O}\left((1-\tau)^{2 / 3}\right) \\
& C^{\text {stat }}(\tau)=C^{\text {stat }}(1)-\mathcal{O}\left((1-\tau)^{2 / 3}\right)
\end{aligned}
$$

- We are going to give a heuristic argument (no proofs) that explains the above behaviors.
- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$.

(i) Step IC
- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$.

Then as $t \rightarrow \infty$ one has Johansson'03+Corwin, Ferrari, Péché'10

$$
\begin{aligned}
\frac{L_{0 \rightarrow A_{\tau}}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3} \mathcal{A}_{2}(0) \\
\frac{L_{0 \rightarrow I_{\tau}(u)}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3}\left(\mathcal{A}_{2}(u)-u^{2}\right) \\
\frac{L_{I_{\tau}(u) \rightarrow A_{1}}-(1-\tau) t}{t^{1 / 3}} & \simeq(1-\tau)^{1 / 3}\left[\tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-\left(u \hat{\tau}^{2 / 3}\right)^{2}\right]
\end{aligned}
$$

where \mathcal{A}_{2} and $\tilde{\mathcal{A}}_{2}$ are two independent Airy 2 processes.

- We have

$$
\mathcal{X}^{\text {step }}(\tau)=\tau^{1 / 3} \mathcal{A}_{2}(0)
$$

and, using $L_{0 \rightarrow A_{1}}=\max _{u}\left(L_{0 \rightarrow I_{\tau}(u)}+L_{I_{\tau}(u) \rightarrow A_{1}}\right)$, also

$$
\mathcal{X}^{\text {step }}(1)=\tau^{1 / 3} \max _{u \in \mathbb{R}}\left\{\mathcal{A}_{2}(u)-u^{2}+\hat{\tau}^{-1 / 3} \tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-u^{2} \hat{\tau}\right\}
$$

with $\hat{\tau}=\tau /(1-\tau)$.

- Using $\hat{\tau}^{-1 / 3} \tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right) \simeq B(u)$ a Brownian motion

Hägg' 07 , Corwin, Hammond'11

- For small τ,

$$
\begin{aligned}
C^{\text {step }}(\tau) & =\operatorname{Cov}\left(\mathcal{X}^{\text {step }}(\tau), \mathcal{X}^{\text {step }}(1)\right) \\
& \simeq \tau^{2 / 3} \operatorname{Cov}\left(\mathcal{A}_{2}(0), \max _{u \in \mathbb{R}}\left\{\mathcal{A}_{2}(u)-u^{2}+B(u)\right\}\right),
\end{aligned}
$$

- Conditioning on B
$C^{\text {step }}(\tau) \simeq \tau^{2 / 3} \mathbb{E}\left[\operatorname{Cov}\left(\mathcal{A}_{2}(0), \max _{u \in \mathbb{R}}\left\{\mathcal{A}_{2}(u)-u^{2}+B(u)\right\} \mid B\right)\right]$.
- For typical realizations of B, the maximum is reached for u of order 1 , where the last covariance if of order 1 , leading to

$$
C^{\text {step }}(\tau)=\mathcal{O}\left(\tau^{2 / 3}\right)
$$

Point-to-point problem: $\tau \rightarrow 1$ limit

- In this case the maximum is reached for $u=\mathcal{O}\left((1-\tau)^{2 / 3}\right)$. Set $u=v(1-\tau)^{2 / 3} / \tau^{2 / 3}$. As $\tau \rightarrow 1$, and conditioning on $\tilde{\mathcal{A}}_{2}$,

$$
C^{\text {step }}(\tau)=\operatorname{Cov}\left(\mathcal{X}^{\text {step }}(\tau), \mathcal{X}^{\text {step }}(1)\right)
$$

$\simeq \mathbb{E}\left[\operatorname{Cov}\left(\mathcal{A}_{2}(0), \max _{v \in \mathbb{R}}\left\{\mathcal{A}_{2}\left(v(1-\tau)^{2 / 3}\right)+(1-\tau)^{1 / 3}\left(\tilde{\mathcal{A}}_{2}(v)-\tilde{\mathcal{A}}_{2}(0)-v^{2}\right)\right\} \mid \tilde{\mathcal{A}}_{2}\right)\right]$

- In this case the maximum is reached for $u=\mathcal{O}\left((1-\tau)^{2 / 3}\right)$. Set $u=v(1-\tau)^{2 / 3} / \tau^{2 / 3}$. As $\tau \rightarrow 1$, and conditioning on $\tilde{\mathcal{A}}_{2}$,

$$
C^{\text {step }}(\tau)=\operatorname{Cov}\left(\mathcal{X}^{\text {step }}(\tau), \mathcal{X}^{\text {step }}(1)\right)
$$

$\simeq \mathbb{E}\left[\operatorname{Cov}\left(\mathcal{A}_{2}(0), \max _{v \in \mathbb{R}}\left\{\mathcal{A}_{2}\left(v(1-\tau)^{2 / 3}\right)+(1-\tau)^{1 / 3}\left(\tilde{\mathcal{A}}_{2}(v)-\tilde{\mathcal{A}}_{2}(0)-v^{2}\right)\right\} \mid \tilde{\mathcal{A}}_{2}\right)\right]$

- For typical realizations of the process $\tilde{\mathcal{A}}_{2}$, the maximum is reached for v of order 1 . Also, \mathcal{A}_{2} is locally Brownian, in particular

$$
\operatorname{Cov}\left(\mathcal{A}_{2}(0), \mathcal{A}_{2}\left(v(1-\tau)^{2 / 3}\right) \simeq \operatorname{Var}\left(\mathcal{A}_{2}(0)\right)-|v|(1-\tau)^{2 / 3}\right.
$$

Prähofer, Spohn'02, Widom'03

- Using the independence of $\tilde{\mathcal{A}}_{2}$ and \mathcal{A}_{2}, we thus expects that

$$
C^{\text {step }}(\tau)=\operatorname{Var}\left(\mathcal{A}_{2}(0)\right)-\mathcal{O}\left((1-\tau)^{2 / 3}\right)
$$

- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$.

- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$.

Then as $t \rightarrow \infty$ one has
Borodin,Ferrari, Prähofer,Sasamoto'07+Corwin,Ferrari, Péché'10

$$
\begin{aligned}
\frac{L_{\mathcal{L} \rightarrow A_{\tau}}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3} \mathcal{A}_{1}(0) \\
\frac{L_{\mathcal{L} \rightarrow I_{\tau}(u)}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3} \mathcal{A}_{1}(\tilde{c} u) \\
\frac{L_{I_{\tau}(u) \rightarrow A_{1}}-(1-\tau) t}{t^{1 / 3}} & \simeq(1-\tau)^{1 / 3}\left[\tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-\left(u \hat{\tau}^{2 / 3}\right)^{2}\right]
\end{aligned}
$$

where the Airy ${ }_{1}$ process \mathcal{A}_{1} is independent of the Airy ${ }_{2}$ process $\tilde{\mathcal{A}}_{2}$.

- We have

$$
\mathcal{X}^{\text {flat }}(\tau)=\tau^{1 / 3} \mathcal{A}_{1}(0)
$$

and

$$
\mathcal{X}^{\text {flat }}(1)=\max _{u \in \mathbb{R}}\left\{\tau^{1 / 3} \mathcal{A}_{1}(u)+(1-\tau)^{1 / 3} \tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-u^{2} \tau^{1 / 3} \hat{\tau}\right\}
$$

- For small τ, the maximum over u is typically taken for $u \sim \mathcal{O}\left(\tau^{-2 / 3}\right)$
- Since the covariance of the Airy ${ }_{1}$ process decays superexponentially in $u \quad$ Bornemann,Ferrari, Prähofer'08 their contribution to

$$
C^{\text {flat }}(\tau)=\operatorname{Cov}(\mathcal{X}(\tau), \mathcal{X}(1))
$$

is negligible.

- For small τ, the maximum over u is typically taken for $u \sim \mathcal{O}\left(\tau^{-2 / 3}\right)$
- Since the covariance of the Airy ${ }_{1}$ process decays superexponentially in $u \quad$ Bornemann,Ferrari, Prähofer'08 their contribution to

$$
C^{\text {flat }}(\tau)=\operatorname{Cov}(\mathcal{X}(\tau), \mathcal{X}(1))
$$

is negligible.

- With probability $\mathcal{O}\left(\tau^{2 / 3}\right)$, the maximum is take for $u=\mathcal{O}(1)$. In this case the heuristic is the same as for the point-to-point case. Thus,

$$
C^{\text {flat }}(\tau)=\mathcal{O}\left(\tau^{2 / 3} C^{\text {step }}(\tau)\right)=\mathcal{O}\left(\tau^{4 / 3}\right)
$$

- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$.

- Set $A_{\tau}=(\tau t / 4, \tau t / 4)$ and $I_{\tau}(u)=A_{\tau}+u(\tau t)^{2 / 3}(1,-1)$. Then as $t \rightarrow \infty$ one has
Imamura, Sasamoto'05; Baik, Ferrari, Péché'10

$$
\begin{aligned}
\frac{L_{0 \rightarrow A_{\tau}}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3} \mathcal{A}_{\text {stat }}(0) \\
\frac{L_{0 \rightarrow I_{\tau}(u)}-\tau t}{t^{1 / 3}} & \simeq \tau^{1 / 3} \mathcal{A}_{\text {stat }}(u), \\
\frac{L_{I_{\tau}(u)-A_{1}}-(1-\tau) t}{t^{1 / 3}} & \simeq(1-\tau)^{1 / 3}\left[\tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-\left(u \hat{\tau}^{2 / 3}\right)^{2}\right],
\end{aligned}
$$

where the processes $\mathcal{A}_{\text {stat }}$ and $\tilde{\mathcal{A}}_{2}$ are independent.

- We have

$$
\mathcal{X}^{\text {stat }}(\tau)=\tau^{1 / 3} \mathcal{A}_{\text {stat }}(0)
$$

and
$\mathcal{X}^{\text {stat }}(1)=\max _{u \in \mathbb{R}}\left\{\tau^{1 / 3} \mathcal{A}_{\text {stat }}(u)+(1-\tau)^{1 / 3} \tilde{\mathcal{A}}_{2}\left(u \hat{\tau}^{2 / 3}\right)-u^{2} \tau^{1 / 3} \hat{\tau}^{-1}\right\}$

- For small τ, the maximum over u is typically taken for $u \sim \mathcal{O}\left(\tau^{-2 / 3}\right)$, the maximizers to A_{τ} and A_{1} uses then different noises (independent) except for the noise on the axis

- For small τ, the maximum over u is typically taken for $u \sim \mathcal{O}\left(\tau^{-2 / 3}\right)$, the maximizers to A_{τ} and A_{1} uses then different noises (independent) except for the noise on the axis
- Thus we expect

$$
\begin{aligned}
C^{\text {stat }}(\tau) & =\operatorname{Cov}\left(\mathcal{X}^{\text {stat }}(\tau), \mathcal{X}^{\text {stat }}(1)\right) \\
& \simeq \mathcal{O}\left(t^{-2 / 3}\right) \operatorname{Cov}\left(L_{(-1,-1) \rightarrow C_{\tau}}, L_{(-1,-1) \rightarrow C_{1}}\right)
\end{aligned}
$$

- The sums of random variables in the LPP problem between the origin and C_{1} (and C_{τ}) are asympotically Brownian motions. Thus implies that

$$
C^{\mathrm{stat}}(\tau)=\mathcal{O}\left(\tau^{2 / 3}\right)
$$

Figure: Plot of $\tau \mapsto \operatorname{Cov}\left(\mathcal{X}^{\text {step }}(\tau), \mathcal{X}^{\text {step }}(1)\right) / \operatorname{Var}\left(\mathcal{X}^{\text {step }}(1)\right)$. The top-left (resp. right-bottom) inset is the log-log plot around $\tau=0$ (resp.
$\tau=1$).

Figure: Plot of $\tau \mapsto \operatorname{Cov}\left(\mathcal{X}^{\text {flat }}(\tau), \mathcal{X}^{\text {flat }}(1)\right) / \operatorname{Var}\left(\mathcal{X}^{\text {flat }}(1)\right)$. The top-left (resp. right-bottom) inset is the log-log plot around $\tau=0$ (resp. $\tau=1$).

Figure: Plot of $\tau \mapsto \operatorname{Cov}\left(\mathcal{X}^{\text {stat }}(\tau), \mathcal{X}^{\text {stat }}(1)\right) / \operatorname{Var}\left(\mathcal{X}^{\text {stat }}(1)\right)$. The top-left inset is the $\log -\log$ plot around $\tau=0$ and the right-bottom inset is the $\log -\log$ plot around $\tau=1$. The fit is made with the function $\tau \mapsto \frac{1}{2}\left(1+\tau^{2 / 3}-(1-\tau)^{2 / 3}\right)$.

- TASEP with stationary initial conditions
- $\mathrm{j}(t)$ is the empirical current across the bond $(0,1)$ from which

$$
J(t)=\int_{0}^{t} d s \mathrm{j}(s)
$$

- Two-point function (stationary covariance)

$$
S(j, t)=\mathbb{E}\left(\eta_{j}(t) \eta_{0}(0)\right)-\rho^{2} .
$$

- A sum rule:

$$
\operatorname{Var}(J(t))=\sum_{j \in \mathbb{Z}}|j| S(j, t)-\sum_{j \in \mathbb{Z}}|j| S(j, 0)
$$

- $j(\rho)=\rho(1-\rho)$ is the expected current with respect to the stationary initial condition with density ρ
- A small perturbation of the steady state will propagate with velocity $v(\rho)=j^{\prime}(\rho), v(1 / 2)=0$.
- The current-current covariance is then given by

$$
\mathbb{E}\left(\mathrm{j}(t) \mathrm{j}\left(t^{\prime}\right)\right)-j(\rho)^{2}=\rho(1-\rho) \delta\left(t-t^{\prime}\right)+h\left(t-t^{\prime}\right)
$$

- The smooth part $h\left(t-t^{\prime}\right)$ is given by

$$
h(t)=-\left\langle\left(r_{0,1}^{\mathrm{R}}-j(\rho)\right) \mathrm{e}^{L|t|}\left(r_{0,1}-j(\rho)\right)\right\rangle_{\rho}
$$

where for TASEP $r_{0,1}(\eta)=\eta_{0}\left(1-\eta_{1}\right), r_{0,1}^{\mathrm{R}}(\eta)=-\left(1-\eta_{0}\right) \eta_{1}$; $\langle\cdot\rangle_{\rho}$ is the average with respect to the stationary measure with density $\rho ; L$ is the backwards generator of TASEP.

- According to the KPZ scaling theory:

$$
S(j, t) \simeq \chi(\Gamma t)^{-2 / 3} f_{\mathrm{KPZ}}\left((\Gamma t)^{-2 / 3} j\right)
$$

where in the special case of TASEP case $\chi=\rho(1-\rho)$, and $\Gamma=\chi^{2}$. Krug, Meakin, Halpin-Healy' 92

- Using the sum rule

$$
\chi \int_{\mathbb{R}} d x|x| f_{\mathrm{KPZ}}(x)(\Gamma t)^{2 / 3} \simeq-2 \int_{0}^{t} d s \int_{s}^{\infty} d u h(u)
$$

which implies

$$
h(t) \simeq-c_{0} t^{-4 / 3}, \quad c_{0}=\frac{1}{9} \Gamma^{2 / 3} \chi \int_{\mathbb{R}} d x|x| f_{\mathrm{KPZ}}(x)
$$

- Covariance of integrate current

$$
\begin{aligned}
\operatorname{Cov}(J(t), J(\tau t)) & =-\int_{0}^{t} \int_{0}^{\tau t} d s d s^{\prime}\left(\int_{\mathbb{R}} d u h(u) \delta\left(s-s^{\prime}\right)-h\left(s-s^{\prime}\right)\right) \\
& =-\int_{0}^{\tau t} d s\left(2 \int_{s}^{\infty} d s^{\prime} h\left(s^{\prime}\right)-\int_{\tau t-s}^{t-s} d s^{\prime} h\left(s^{\prime}\right)\right)
\end{aligned}
$$

- Using

$$
h(t) \simeq-c_{0} t^{-4 / 3}
$$

one gets
$\operatorname{Cov}(J(t), J(\tau t)) \simeq\left(1+\tau^{2 / 3}-(1-\tau)^{2 / 3}\right)(\Gamma t)^{2 / 3} \chi \int_{0}^{\infty} d x|x| f_{\mathrm{KPZ}}(x)$

Figure: The smooth part of the current-current correlations for TASEP. We plot $-h(t)$ and the theoretical large time behavior $0.02013 \cdot t^{-4 / 3}$.

Figure: Log-log plot of the smooth part of the current-current correlation for TASEP.

