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Last passage percolation (LPP); point-to-point 1
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Directed polymer: path π composed by ↗ and ↖
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π:(1,1)→(m,n)
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TASEP with step initial conditions 2

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations

η = {ηj}j∈Z, ηj =

{
1, if j is occupied,
0, if j is empty.

Dynamics
Independently, particles jump on the right
site with rate 1, provided the right is empty.
⇔ Waiting time exp(1)-distributed

Particles are ordered: position of particle k is xk(t)

Initial condition: xk(0) = −k, k = 1, 2, . . ..



LPP and the exclusion process 3

ω(i, j) ∼ exp(1) is the waiting time (once allowed) of the
particle j to do its ith jump (= from −j + i− 1 to −j + i)

⇒ L(m,n) is the time when particle n reaches site −n+m

P(L(m,n) ≤ t) = P(xn(t) + n ≥ m)

Similarly, one can define LPP between two sets of points as
well as TASEP with other initial conditions.



Three geometries 4

We will discuss the following three geometries (LPP) / initial
conditions (TASEP):

Point-to-point problem / step initial conditions

Point-to-line problem / flat initial conditions

Point-to-random walk line / stationary initial conditions
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Different space-time cuts 5

Cut at fixed vertical coordinate equal to t: TASEP
configuration at time t

Cut at j = n with n fixed: trajectory of a tagged particle

Cut at j = i: integrated current at the origin

Figure by Michael Prähofer



A simulation 6

A simulation of tagged particle vs. integrated current for
TASEP with initial half-flat initial conditions
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A simulation of tagged particle vs. integrated current for
TASEP with initial half-flat initial conditions



Space-time scaling and slow decorrelation 7

The space-time is non-trivially fibred: spatial correlation
length is O(t2/3), but in space-time, there are some directions
(characteristic lines) with scaling exponent 1: slow
decorrelations phenomenon

Ferrari’08;Corwin,Ferrari,Péché’10

More generally (flat IC case): process to be studied

(τ, w) 7→
L(L,0)→(τt−wt2/3,τt+wt2/3) − 4τt

t1/3

Characteristic lines for the step IC (left) and for flat IC (right)



Time-time correlations problem 8

We consider flat and stationary with density 1/2 so that
{(0, t), t ≥ 0} is a characteristic line

From now on, we study the integrated current through the
origin during time [0, t], J(t)

Rescaled process

τ 7→ X (τ) = lim
t→∞
−t−1/3

(
J(τt)− 1

4τt
)
.

One-point distribution

P
(
X step(1) ≤ 2−4/3s

)
= FGUE(s),

P
(
X flat(1) ≤ 2−1s

)
= FGOE(2s),

P
(
X stat(1) ≤ 2−4/3s

)
= FBR(s).

Baik,Rains’99,’00;Johansson’00;Prähofer,Spohn’02



Previous results 9

Experimental results by Kazumasa Takeuchi Takeuchi,Sano’12

See also his talk of last week: http://online.kitp.ucsb.

edu/online/randomkpz16/takeuchi/

Formula for P (X (τ) ≤ s1,X (1) ≤ s2) using replica approach
in a polymer model

Dotsenko’13

”Finite time” formula for the two-time distribution in a
semi-directed polymer model and rigorous limiting formula for
P (X (τ) ≤ s1,X (1) ≤ s2)

Johansson’15

http://online.kitp.ucsb.edu/online/randomkpz16/takeuchi/
http://online.kitp.ucsb.edu/online/randomkpz16/takeuchi/


Results on the covariance 10

Covariance behavior as τ → 0:

Cstep(τ) = O
(
τ2/3

)
,

Cflat(τ) = O
(
τ4/3

)
,

Cstat(τ) = O
(
τ2/3

)
.

Covariance behavior as τ → 1:

Cstep(τ) = Cstep(1)−O((1− τ)2/3),

Cflat(τ) = Cflat(1)−O((1− τ)2/3),

Cstat(τ) = Cstat(1)−O((1− τ)2/3).

We are going to give a heuristic argument (no proofs) that
explains the above behaviors.



Point-to-point problem 11

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).

We have
X step(τ) = τ1/3A2(0)

and, using L0→A1 = maxu
(
L0→Iτ (u) + LIτ (u)→A1

)
, also

X step(1) = τ1/3 max
u∈R

{
A2(u)− u2 + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

}
with τ̂ = τ/(1− τ).



Point-to-point problem 11

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).
Then as t→∞ one has Johansson’03+Corwin,Ferrari,Péché’10

L0→Aτ − τt
t1/3

' τ1/3A2(0),

L0→Iτ (u) − τt
t1/3

' τ1/3
(
A2(u)− u2

)
,

LIτ (u)→A1
− (1− τ)t

t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where A2 and Ã2 are two independent Airy2 processes.

We have
X step(τ) = τ1/3A2(0)

and, using L0→A1 = maxu
(
L0→Iτ (u) + LIτ (u)→A1

)
, also

X step(1) = τ1/3 max
u∈R

{
A2(u)− u2 + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

}
with τ̂ = τ/(1− τ).



Point-to-point problem: τ → 0 limit 12

Using τ̂−1/3Ã2

(
uτ̂2/3

)
' B(u) a Brownian motion

Hägg’07,Corwin,Hammond’11

For small τ ,

Cstep(τ) = Cov
(
X step(τ),X step(1)

)
' τ2/3 Cov

(
A2(0),max

u∈R

{
A2(u)− u2 +B(u)

})
,

Conditioning on B

Cstep(τ) ' τ2/3E
[

Cov
(
A2(0),max

u∈R

{
A2(u)− u2 +B(u)

}∣∣B)].
For typical realizations of B, the maximum is reached for u of
order 1, where the last covariance if of order 1, leading to

Cstep(τ) = O(τ2/3)



Point-to-point problem: τ → 1 limit 13

In this case the maximum is reached for u = O((1− τ)2/3).

Set u = v(1− τ)2/3/τ2/3. As τ → 1, and conditioning on Ã2,

Cstep(τ) = Cov
(
X step(τ),X step(1)

)
' E

[
Cov

(
A2(0),max

v∈R

{
A2(v(1− τ)2/3) + (1− τ)1/3(Ã2(v)− Ã2(0)− v2)

}∣∣Ã2

)]
,

For typical realizations of the process Ã2, the maximum is
reached for v of order 1. Also, A2 is locally Brownian, in
particular

Cov
(
A2(0),A2(v(1− τ)2/3

)
' Var

(
A2(0)

)
− |v|(1− τ)2/3

Prähofer,Spohn’02,Widom’03

Using the independence of Ã2 and A2, we thus expects that

Cstep(τ) = Var
(
A2(0)

)
−O((1− τ)2/3).
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Point-to-line problem 14

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).

We have
X flat(τ) = τ1/3A1(0)

and

X flat(1) = max
u∈R

{
τ1/3A1(u) + (1− τ)1/3Ã2

(
uτ̂2/3

)
− u2τ1/3τ̂

}



Point-to-line problem 14

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).
Then as t→∞ one has
Borodin,Ferrari,Prähofer,Sasamoto’07+Corwin,Ferrari,Péché’10

LL→Aτ − τt
t1/3

' τ1/3A1(0),

LL→Iτ (u) − τt
t1/3

' τ1/3A1(c̃u),

LIτ (u)→A1
− (1− τ)t

t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where the Airy1 process A1 is independent of the Airy2

process Ã2.
We have

X flat(τ) = τ1/3A1(0)

and

X flat(1) = max
u∈R

{
τ1/3A1(u) + (1− τ)1/3Ã2

(
uτ̂2/3

)
− u2τ1/3τ̂

}



Point-to-line problem: τ → 0 limit 15

For small τ , the maximum over u is typically taken for
u ∼ O(τ−2/3)
Since the covariance of the Airy1 process decays
superexponentially in u Bornemann,Ferrari,Prähofer’08

their contribution to

Cflat(τ) = Cov(X (τ),X (1))

is negligible.

With probability O(τ2/3), the maximum is take for u = O(1).
In this case the heuristic is the same as for the point-to-point
case. Thus,

Cflat(τ) = O(τ2/3Cstep(τ)) = O(τ4/3)
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Point-to-random walk line problem 16

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).

We have
X stat(τ) = τ1/3Astat(0)

and

X stat(1) = max
u∈R

{
τ1/3Astat(u) + (1− τ)1/3Ã2

(
uτ̂2/3

)
− u2τ1/3τ̂−1

}



Point-to-random walk line problem 16

Set Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt)2/3(1,−1).
Then as t→∞ one has
Imamura,Sasamoto’05;Baik,Ferrari,Péché’10

L0→Aτ − τt
t1/3

' τ1/3Astat(0),

L0→Iτ (u) − τt
t1/3

' τ1/3Astat(u),

LIτ (u)−A1
− (1− τ)t

t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where the processes Astat and Ã2 are independent.

We have
X stat(τ) = τ1/3Astat(0)

and

X stat(1) = max
u∈R

{
τ1/3Astat(u) + (1− τ)1/3Ã2

(
uτ̂2/3

)
− u2τ1/3τ̂−1

}



Point-to-random walk line problem: τ → 0 limit 17

For small τ , the maximum over u is typically taken for
u ∼ O(τ−2/3), the maximizers to Aτ and A1 uses then
different noises (independent) except for the noise on the axis

Thus we expect

Cstat(τ) = Cov(X stat(τ),X stat(1))

' O(t−2/3) Cov
(
L(−1,−1)→Cτ , L(−1,−1)→C1

)
.

The sums of random variables in the LPP problem between
the origin and C1 (and Cτ ) are asympotically Brownian
motions. Thus implies that

Cstat(τ) = O
(
τ2/3

)
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Numerical results: step IC 18

Figure: Plot of τ 7→ Cov(X step(τ),X step(1))/Var(X step(1)). The
top-left (resp. right-bottom) inset is the log-log plot around τ = 0 (resp.
τ = 1).



Numerical results: flat IC 19

Figure: Plot of τ 7→ Cov(X flat(τ),X flat(1))/Var(X flat(1)). The top-left
(resp. right-bottom) inset is the log-log plot around τ = 0 (resp. τ = 1).



Numerical results: stationary IC 20

Figure: Plot of τ 7→ Cov(X stat(τ),X stat(1))/Var(X stat(1)). The
top-left inset is the log-log plot around τ = 0 and the right-bottom inset
is the log-log plot around τ = 1. The fit is made with the function
τ 7→ 1

2 (1 + τ2/3 − (1− τ)2/3).



Stationary case: current-current correlations 21

TASEP with stationary initial conditions

j(t) is the empirical current across the bond (0, 1) from which

J(t) =

∫ t

0
ds j(s)

Two-point function (stationary covariance)

S(j, t) = E
(
ηj(t)η0(0)

)
− ρ2.

A sum rule:

Var(J(t)) =
∑
j∈Z
|j|S(j, t)−

∑
j∈Z
|j|S(j, 0)



Stationary case: current-current correlations 22

j(ρ) = ρ(1− ρ) is the expected current with respect to the
stationary initial condition with density ρ

A small perturbation of the steady state will propagate with
velocity v(ρ) = j′(ρ), v(1/2) = 0.

The current-current covariance is then given by

E
(
j(t) j(t′)

)
− j(ρ)2 = ρ(1− ρ)δ(t− t′) + h(t− t′)

The smooth part h(t− t′) is given by

h(t) = −〈(rR
0,1 − j(ρ))eL|t|(r0,1 − j(ρ))〉ρ,

where for TASEP r0,1(η) = η0(1− η1), rR
0,1(η) = −(1− η0)η1;

〈·〉ρ is the average with respect to the stationary measure with
density ρ; L is the backwards generator of TASEP.



Stationary case: current-current correlations 23

According to the KPZ scaling theory:

S(j, t) ' χ(Γt)−2/3fKPZ((Γt)−2/3j)

where in the special case of TASEP case χ = ρ(1− ρ), and
Γ = χ2. Krug,Meakin,Halpin-Healy’92

Using the sum rule

χ

∫
R
dx|x|fKPZ(x)(Γt)2/3 ' −2

∫ t

0
ds

∫ ∞
s

duh(u),

which implies

h(t) ' −c0t
−4/3 , c0 = 1

9Γ2/3χ

∫
R
dx|x|fKPZ(x).



Stationary case: current-current correlations 24

Covariance of integrate current

Cov
(
J(t), J(τt)

)
= −

∫ t

0

∫ τt

0
dsds′

(∫
R
duh(u)δ(s− s′)− h(s− s′)

)
= −

∫ τt

0
ds
(

2

∫ ∞
s

ds′h(s′)−
∫ t−s

τt−s
ds′h(s′)

)
Using

h(t) ' −c0t
−4/3

one gets

Cov
(
J(t), J(τt)

)
'
(
1 + τ2/3 − (1− τ)2/3

)
(Γt)2/3χ

∫ ∞
0

dx|x|fKPZ(x)



Numerical results 25

Figure: The smooth part of the current-current correlations for TASEP.
We plot −h(t) and the theoretical large time behavior 0.02013 · t−4/3.



Numerical results 26

Figure: Log-log plot of the smooth part of the current-current correlation
for TASEP.


