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Last passage percolation (LPP); point-to-point

@ w(i,j) (i.i.d.) random variables
@ Directed polymer: path m composed by  and N
e Length of 7: {(7) = Z w(i,j)

(i,9)em

e Maximal length: L, ) = " 11r1)1a>(< )6(77)
m:(1,1)—=(m,n




TASEP with step initial conditions 2

@ TASEP: Totally Asymmetric Simple Exclusion Process

e Configurations o+ o7
— {0} ~_ | 1, if j is occupied,
= EE T o, if j is empty. 1001 7
@ Dynamics
Independently, particles jump on the right rate 1

site with rate 1, provided the right is empty. N
< Wiaiting time exp(1)-distributed

Particles are ordered: position of particle k is xy(t)
Initial condition: zx(0) = =k, k=1,2,....



LPP and the exclusion process 3

@ w(i,j) ~ exp(1) is the waiting time (once allowed) of the
particle j to do its ith jump (= from —j +i—1to —j + )

= L(;nn) is the time when particle n reaches site —n +m

IP)(L(m,n) <t)=P(a,(t) + n=m)

@ Similarly, one can define LPP between two sets of points as
well as TASEP with other initial conditions.
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Three geometries

e We will discuss the following three geometries (LPP) / initial
conditions (TASEP):

@ Point-to-point problem / step initial conditions
@ Point-to-line problem / flat initial conditions

@ Point-to-random walk line / stationary initial conditions

I

(iii)-(a) Stationary IC (iii)-(b) Equivalent to stationary IC




Different space-time cuts 5

o Cut at fixed vertical coordinate equal to ¢: TASEP
configuration at time ¢

o Cut at j = n with n fixed: trajectory of a tagged particle

o Cut at j = 4: integrated current at the origin

Figure by Michael Pr&hofer



A simulation 6

@ A simulation of tagged particle vs. integrated current for
TASEP with initial half-flat initial conditions




A simulation 6

@ A simulation of tagged particle vs. integrated current for
TASEP with initial half-flat initial conditions

Ml i T,




Space-time scaling and slow decorrelation 7

@ The space-time is non-trivially fibred: spatial correlation
length is O(t%/3), but in space-time, there are some directions
(characteristic lines) with scaling exponent 1: slow
decorrelations phenomenon

Ferrari’08;Corwin,Ferrari,Péché’10

@ More generally (flat IC case): process to be studied

L(ﬁ,o)—>(7't—wt2/377—t+wt2/3) — 47t
t1/3

(1, w) —

n m

Characteristic lines for the step IC (left) and for flat IC (right)
I 4@



Time-time correlations problem 8

e We consider flat and stationary with density 1/2 so that
{(0,t),t > 0} is a characteristic line

@ From now on, we study the integrated current through the
origin during time [0,¢], J(t)

@ Rescaled process

7 X(r) = lim —¢t /3 (J(rt) — Lrt).

t—o00

@ One-point distribution

PSP (1) < 274/35) = Faur(s),
P(xt(1) < 271s) = Foor(2s),
P(x594(1) < 274/35) = Fpgr(s).

Baik,Rains’99,’00;Johansson’00;Prdhofer,Spohn’02



Previous results 9

@ Experimental results by Kazumasa Takeuchi Takeuchi,Sano’12
See also his talk of last week: http://online.kitp.ucsb.
edu/online/randomkpz16/takeuchi/

e Formula for P (X(7) < s1, X (1) < s2) using replica approach

in a polymer model
Dotsenko’13

@ "Finite time” formula for the two-time distribution in a

semi-directed polymer model and rigorous limiting formula for
P(X(7) < s1,X(1) < s2)

Johansson’15



http://online.kitp.ucsb.edu/online/randomkpz16/takeuchi/
http://online.kitp.ucsb.edu/online/randomkpz16/takeuchi/

Results on the covariance

@ Covariance behavior as 7 — 0:
Cstep(T) _ (9(,7_2/3)7
Cﬂat(,]_) (/)(7_4/3)7
Cstat(T) O(T2/3).

@ Covariance behavior as 7 — 1:
CPr(7) = C¥P(1) - O((1 — 7))
CMt(r) = €M (1) — O((1 = 7)%),
Cstat(T) — Cstat(l) _ O((]. _ T)2/3).

e We are going to give a heuristic argument (no proofs) that
explains the above behaviors.



Point-to-point problem

o Set A, = (1t/4,7t/4) and I.(u) = A, + u(7t)?/3(1, —-1).

(i) Step IC




Point-to-point problem

o Set A, = (1t/4,7t/4) and I.(u) = A, + u(rt)?/3(1, —-1).
Then as t — oo one has Johansson’03+Corwin,Ferrari,Péché’10

L — 7t
L0=A, TTE 713 45(0),

t1/3
L w) — Tt
St =T o 3 (M) o)
Pretwote 202D o (1A () — (wr¥9)?),

t1/3

where Ay and Aj are two independent Airys processes.

@ We have
steP(r) = 7173 45(0)

and, using Lo 4, = max, (LO_)IT(U) + LL-(u)—)Al)v also
AStP(1) = r1/3 max {Ag(u) —u?+ 7734, (u%z/g) — uQ%}
ue
with 7 =7/(1 — 7).



Point-to-point problem: 7 — 0 limit

e Using 7 1/3A2(u72/3) B(u) a Brownian motion
Hagg’07,Corwin,Hammond’ 11

@ For small 7,
C5*°P (1) = Cov (XStep(T) XStep(l))
~ 72/3 Cov <A2 , max {Az(u) — u? + B(u)} ),
e Conditioning on B

CS*P (1 )NTQ/S]E[COV <.A2 max {Ag —u? + B(u }!B)}

@ For typical realizations of B, the maximum is reached for u of
order 1, where the last covariance if of order 1, leading to

Cstep(T) _ O(T2/3)



Point-to-point problem: 7 — 1 limit

@ In this case the maximum is reached for v = O((1 — 7)/3).
Set u = v(1 — 7)%/3/7%/3. As 7 — 1, and conditioning on As,

Cstep( ) = Cov (Xstep( ),Xsmp(l))

[Cov (Ag , max { Az (v( —7)23) + (1 = 7)Y3( Ay (v) — A(0) — 0? }‘Az)}




Point-to-point problem: 7 — 1 limit

@ In this case the maximum is reached for v = O((1 — 7)/3).
Set u = v(1 — 7)%/3/7%/3. As 7 — 1, and conditioning on As,

C**°?(1) = Cov (Xs“’p(r), XS (1))
[cov (A2 ) max {Ao(v(1 = 7)2%) + (1= 7)1/ (A () = Aa(0) o2 }\AZ)}
e For typical realizations of the process A5, the maximum is

reached for v of order 1. Also, As is locally Brownian, in
particular

Cov (A2(0), Az (v(1 — 7)*3) = Var (A(0)) — [v](1 — 7)%/3

Pr&hofer,Spohn’02,Widom’03
e Using the independence of A, and Aj, we thus expects that

C**P (1) = Var (A(0)) — O((1 — 1)3).



Point-to-line problem

o Set A, = (1t/4,7t/4) and I.(u) = A, + u(7t)?/3(1, —-1).

A
JJ/' 1

(ii) Periodic IC




Point-to-line problem

o Set A, = (1t/4,7t/4) and I.(u) = A, + u(7t)?/3(1, —-1).
Then as t — oo one has

Borodin,Ferrari,Pradhofer,Sasamoto’07+Corwin,Ferrari,Péché’10

L -1t
ShoA T ~ 713 4,(0),

t1/3
LE I-(u -7t ~
- tl(/3) — ~ 7B A (eu),
Liwy—a, — (L—=T)t - 9/3\2
t11/3 ~ (1= 1) PP [ A (u®?) = (u???)7]),
where th(i Airy; process Aj is independent of the Airys
process As.
o We have
Xﬂat(T) _ T1/3A1(0)

and
Xﬂat(l) = max {71/3A1(u) +(1- 7')1/3.,212 (U%Q/g) - u27'1/37°}

u€eR



Point-to-line problem: 7 — 0 limit

@ For small 7, the maximum over u is typically taken for

u~ O(172/3)
@ Since the covariance of the Airy; process decays
superexponentially inu Bornemann,Ferrari,Prédhofer’08

their contribution to
C™(r) = Cov(X(r), X(1))
is negligible.

(ii) Periodic IC



Point-to-line problem: 7 — 0 limit

@ For small 7, the maximum over wu is typically taken for

u~ O(r72/3)
@ Since the covariance of the Airy; process decays
superexponentially inu Bornemann,Ferrari,Prdhofer’08

their contribution to
C(7) = Cov(X(7), X(1))

is negligible.

o With probability O(72/3), the maximum is take for u = O(1).
In this case the heuristic is the same as for the point-to-point
case. Thus,

Cﬂat(T) — O(T2/3CStep(7)) — 0(7_4/3)



Point-to-random walk line problem

o Set A, = (1t/4,7t/4) and I.(u) = A, + u(7t)?/3(1, —-1).




Point-to-random walk line problem

o Set A, = (1t/4,7t/4) and I.(u) = A, +u(rt)?/3(1, —1).
Then as ¢t — oo one has

Imamura,Sasamoto’05;Baik,Ferrari,Péché’10

Loa — Tt
0_;177/3 ~ 7_1/3~Astat (O)a

Lo u)— Tt
% =~ 7_1/3~/4stat (’U,),
Liuy-n, —(1=7)t V37 7 (. ~2/3 L9/32
;1/3 2(1—7')/[A2(u7/)—(u7'/)],
where the processes At and Ay are independent.
o We have
XStat(T) _ 7—1/3Astat(0)
and
Xstat(l) _ I{}gﬂé{{Tl/?}Asta‘c(U) + (1 o 7’)1/3./&2(1”22/3) o u27_1/37A_—1}



Point-to-random walk line problem: 7 — 0 limit

@ For small 7, the maximum over u is typically taken for
u ~ O(772/3), the maximizers to A, and A; uses then
different noises (independent) except for the noise on the axis




Point-to-random walk line problem: 7 — 0 limit

@ For small 7, the maximum over wu is typically taken for
u ~ O(772/3), the maximizers to A, and A; uses then
different noises (independent) except for the noise on the axis

@ Thus we expect
Cstat(,]_) — COV(XStat(T), Xstat(l))
= O(tﬂ/g) Cov (L(*l,*l)*)c-,J L(fl,fl)HC'l) :

@ The sums of random variables in the LPP problem between
the origin and C; (and C;) are asympotically Brownian
motions. Thus implies that

Cstat(T) _ O(TQ/S)



Numerical results: step IC
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Figure: Plot of 7 — Cov(Xs%*P (1), X5*P(1))/ Var(X**P(1)). The
top-left (resp. right-bottom) inset is the log-log plot around 7 = 0 (resp.
T=1).



Numerical results: flat 1C
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Figure: Plot of 7 — Cov(Xfat(7), Xflat(1))/ Var(xf24(1)). The top-left
(resp. right-bottom) inset is the log-log plot around 7 =0 (resp. 7 = 1).




Numerical results: stationary IC
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Figure: Plot of 7 — Cov (X5 (), X'5%%(1))/ Var(X***(1)). The
top-left inset is the log-log plot around 7 = 0 and the right-bottom inset

is the log-log plot around 7 = 1. The fit is made with the function
T %(1 +72/3 — (1- 7')2/3).




Stationary case: current-current correlations

@ TASEP with stationary initial conditions
@ j(t) is the empirical current across the bond (0, 1) from which

t
a0 = [ dsits)
0
e Two-point function (stationary covariance)

S(j,t) = E(n;(t)no(0)) — p*.

@ A sum rule:

Var(J(t) = D 115 t) = Y 1315(,0)

JEZ JEZ



Stationary case: current-current correlations

@ j(p) = p(1 — p) is the expected current with respect to the
stationary initial condition with density p

@ A small perturbation of the steady state will propagate with
velocity v(p) = j'(p), v(1/2) = 0.
@ The current-current covariance is then given by

E(j(1)i(t)) = j(p)* = p(1 = p)8(t —t') + h(t — 1)
@ The smooth part h(t —t') is given by
h(t) = —((rg1 = 5(p)e""(ros = 5(p)),
where for TASEP 7,1(n) = no(1 —m), 761 (1) = —(1 —10)m1;

(-)p is the average with respect to the stationary measure with
density p; L is the backwards generator of TASEP.



Stationary case: current-current correlations

@ According to the KPZ scaling theory:
S(j, 1) = x(T8) 7 ez (P 7>/%))

where in the special case of TASEP case x = p(1 — p), and
I'= XQ. Krug,Meakin,Halpin-Healy’92

@ Using the sum rule

t o0
N /R der|| fepg () (T2 ~ —2 /O ds / duh(u),

which implies

h(t) =~ —cot ™3, co = éFQ/SX/ dz|z| fxpz(z).
R



Stationary case: current-current correlations

@ Covariance of integrate current

Cov(J(t) // dsds /duh(u)5(s—5')—h(s—s'))
:_/0 ds(/s ds'h(s') — /T::ds’h(s’)>

h(t) ~ —cot =43

o Using

one gets

Cov(J(t), J(1t)) =~ (1 + 723 — (1 — 7)?/3)(Tt)*/3x /0 - dz|z| fxpz(z)



Numerical results
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Figure: The smooth part of the current-current correlations for TASEP.
We plot —h(t) and the theoretical large time behavior 0.02013 - t~4/3.



Numerical results
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Figure: Log-log plot of the smooth part of the current-current correlation
for TASEP.



