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Spectral function beyond LL theory

The spectral function

We'd like to calculate

A(p.w) = Y [ (Athp|0) [28(w — E»)

A

e Remove a particle of momentum p from ground state

Create excited state of N — 1 particle system |\)

A(p,w) is energy and momentum resolved rate (Golden Rule)

Example: 1D Fermi gas

A(p,w) = 0(-w)d(w — &(p))
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The spectral function

A(p,w) = 0(—w)d(w — &(p))

Remove hole
b ¢ ¢ e o o o e o
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Spectral function of a FQHE edge

VANVANANN

e Prediction of Chiral Luttinger Liquid (xLL) theory

A(p, w) x w”71*15(w —cp)f(—w)
Wen (1990)

e Spectral function still has §-support



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

Recent developments

e YLL theory has degeneracies that will be generically lifted
“fine structure”
e Corrections are universal Imambekov & Glazman, 2009

A(p,w) x D <w — Cp)

P2

D(y)

N

w

(y+1)d-

N
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Recent developments

s; D(y)
5 /
! (1-»)*
v+ 2
1 / -0.5 0.5 1 y

e Depends on a single parameter

o (B) n a ()

e Full function: only numerical evaluation available so far!



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

Recent developments

Basic approach:

e Low energy spectrum of 1D quantum fluid is (free) fermionic
(phenomenology + exact solutions)

e Spectral function
Alp,w) =D [ (Althp|0) [*6(w — Ey)
A

fixed by measure | (\|1h,|0) |? on fermionic states
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Outline

Spectral function beyond LL theory

Form factors and measures on partitions

Application to spectral function

Application to spectral function
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Bosonized viewpoint: ) as vertex operator
Ground state of Fermi gas is Vandermonde determinant

N
0) = an = ][z -2)
j<k
zZi = elti
(after appropriate boost)
Remove particle at Z

N—1
H (Z—z)=Z""texp (Z log[1 — z,-/Z]) = exp <— anZ">

i i

Pn = Zj Zjn
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Bosonized viewpoint: ) as vertex operator

Define chiral boson field
6o(2) =Y [pre* — ez = 0" (2) + 07 (2)
k>0

where p_x = p,T( and
[Pks 1) = kdkt10
P(2) =exp[p(2)],  UI(2) = exp[—0(2)]
reproduce correct algebra and

N—-1
= [[(Z - z)an—1 = /P |0) = e (D) |0)

i
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Interacting systems

To summarize 40+ years' work...

e Low energy properties of 1D Quantum Fluid are described by

Y(Z) — exp [né(2)]

e Giving density matrix

WE@W(2) = (1 - 22)™"

e 1) may be related to observables, or calculated in exactly
soluble models
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Dynamics: linear dispersion
Simplest Hamiltonian

21
w do
Hy = = (0)* =
2 2/0 i(0) o
e Equation of motion

ai.“.j(ev t) = ’[H2a./(97 t)] = _waej(97 t)
e FQHE: any disturbance to the edge just rotates at w
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Dynamics: linear dispersion

Wi@)(2) = (1 - 2122) ™"

with dynamics given by

w [T do
Hy = = i(0)—
2 2/0 J()27r

recovers Wen's result

A(p,w) x w”_lflé(w — cp)f(—w)
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Quadratic dispersion: nonlinear Luttinger Liquid

Phenomenological Hamiltonian

1 [ do
Hz o = i(0)3 —
353 /0 i) 5,
Hamiltonian is of free fermion form
do
Hz / %891,“(9)3(91#(9) e

Note that these are not fundamental fermions!
Although spectrum is simple, spectral function is not!
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Outline

Form factors and measures on partitions
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Slater determinants

e Eigenstates of free fermion Hamiltonian

] [ ] [ N ) [ N J [ N [ ] [ ]
)\1+N 1 )\1+N 1 A+N-1
... ZN
Z)\z-‘rN 2 )\2+N 2 . z/\2+N—2
YV, = det 1 N
AN An AN
4 % ZN
AL > A >

e sy = W, /A are Schur polynomials
e Momentum and energy

2T 21\ 2 .
:TZAJ-, 52~<L> > (A —j+ Ny
j j
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Free fermions and partitions

e A partition X is represented by a Young diagram

A=(5,4,4,2,1,1)
e Size of partition is denoted |\| (17 here)
e Momentum P = 2T’T|)\\

e (i,j) denotes box in row i and column j
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Free fermions and partitions

Z)\1+N—1 Z/\1+N—1 L. ZI>\\/1+N_1
Ao+N—-2 z>\2+N—2 Ao+N—-2
A e

Z y4
VU, = det 1 N
AN AN An
Zl 22 o .. ZN

e Read off the fermionic occupancies from the Young diagram

v

e Diagonal coordinates {\; — j + N} give momenta of fermions
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Free fermions and partitions

Examples

00000000 YR XoX XeX X
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Fermion basis

Effect of annihilation is
exp(Cp(Z H(Z - z)°

Need to express [[,(Z — z;)* in terms of Schurs

N-1

H —Z, Za/\ZCSA

i=1

Result is

(2, = 20D T D=6

OeX
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Anatomy of a partition

e h(i,j) denotes the hook length associated with box (i, )
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Anatomy of a partition

c(O) =j — i denotes the content of box [ = (i, )

-
[a—

213
-1 0|12

ax(Z,m) = Z(N-Dn=I H ;

OeA
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Form factors from Cauchy identity
Fundamental identity in symmetric function theory

Yo =T@ —xy)™
A

i
Now note
N1 m times
[[(z-2)"=z "Ny "5\ (271, Z7%,...,0,.. )sx(2)
i=1 A
m times
—
=27 INDm N 775\ (1,1,..0,0,. . )sa (i)
A
(From homogeneity of Schurs)
m times .
—
s 1,500 =]] m+<(0)

oo MO

‘Generalized binomial coefficient” depends on shape of partition A
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Form factors from Cauchy identity

Thus
N-1
H(Z—Z,)C Za/\(z? C)S)\(Z)
i=1 A

Where

ar(Z.n) = 200w T €02

OeX )



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

Frobenius coordinates

>\ = (9’ 7’ 6’ 37 27 17 1) = (8? 573’67 37 1)
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Modified Frobenius coordinates

1 1 1 1 1
= = S —Bi—=..,—Bg—Z €L =7—=
{Xl} {O[1+2, 7ad+27 Bl 25 ) ﬁd 2} € 27

Positions of particles above and holes below the Fermi surface

\<A
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Form factors in terms of Frobenius coordinates

N1 c«(8) —n
(Al exp [n¢(2)]|0) = ZN-1n= 1 DHA (@)
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z-measures are determinantal point processes

e The probability of a configuration {x;} of N points is

 det [L(x, )1

F(lah) = detU.+—dJ:1

for known L, depending on z, Z/

e n-point correlation function at points {y;} is likewise

det [K(Yivyj)]zl'zl

where
K=L1+0)"

is resolvent of L
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Continuum limit (large partitions)

o L(x,y) = L(x,y), x,y €R

0 xy >0
L(x,y) = \sir;r7r2| (X/|}’|))R:_Z;(yix)/2 x>0,y<0
[sinnz] (/ORI 0,y >0

e Corresponding resolvent C known explicitly: Whittaker kernel
Borodin (1998)



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

“Orthogonality Catastrophe”

VoLuME 18, NUMBER 24 PHYSICAL REVIEW LETTERS 12 JuNE 1967

INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERING POTENTIALS

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 27 March 1967)

We prove that the ground state of a system of N fermions is orthogonal to the ground
state in the presence of a finite range scattering potential, as N—=. This implies that
the response to application of such a potential involves only emission of excitations into
the continuum, and that certain processes in Fermi gases may be blocked by orthogonali-
ty in a low-T', low-energy limit.

Distribution of particles («;) and holes ({3;}) obeys

2
. 1/k . 1/k T
lim ak/ = lim ,Bk/ =exp|——>—
—00 k—00 sin 7rC

Borodin & Olshanski, 1998

k

L] o0 © o0 00 D a» e®» @ [ ]
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Voltage pulses and counting statistics
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Voltage pulses and counting statistics

k endi:
PRL 97, 116403 (2006) PHYSICAL REVIEW LETTERS 15 SEPTEMBER 2006

Minimal Excitation States of Electrons in One-Dimensional Wires

J. Keeling,l I. Klich, and L. S. Levitov'

'Department of Physics, M I Institute of Technology, 77 M h Avenue, Cambridge, Massachusetts 02139, USA
Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
(Received 1 April 2006; published 14 September 2006)

A strategy is proposed to excite particles from a Fermi sea in a noise-free fashion by electromagnetic
pulses with realistic parameters. We show that by using quantized pulses of simple form one can suppress
the particle-hole pairs which are created by a generic excitation. The resulting many-body states are
characterized by one or several particles excited above the Fermi surface accompanied by no disturbance
below it. These excitations carry charge which is integer for noninteracting electron gas and fractional for
Luttinger liquid. The operator algebra describing these excitations is derived, and a method of their
detection which relies on noise measurement is proposed.

Minimal excitation pulse = Leviton
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Voltage pulses and counting statistics
P Energy
Ple) e~ Welh

WP Leviton
e

Fermi sea

Dubois et al., 2013
Voltage pulse corresponds to vertex operator

oo | [a00000)] . o0 =¢ [ Vit

Thus usual exp [¢p(Z)] for |Z| < 1 is Lorentzian
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Outline

Application to spectral function
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Result for spectral function

Ap) = 3 o - )| (1)

[A=p
With

and energy & = Y_;(\; — Jj)?

\<A
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Result for spectral function

Ap) = 3 o - )| (1)

[A=p

With

NP




Application to spectral function

Example 1: The Linear yLL

Consider density matrix

W (2)1(22)) =D (O[T (21)|A) (Al¥(22)[0)
A
_ _ UAYE
(1)

Recall
m times

a(l,l,...‘,o,...);ﬂLC(D)

and apply Cauchy to give
@'(2)P(22)) = (1 — 2122) ™"

With linear dispersion

Ex=> (A —Jj) = |\ + const.,
J

2

this coincides with Wen's result by Lorentz invariance
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Example 2: v =1/4

()= 10 %

(id)er

Recall np = v~1/2

e For v =1/4, j <2. Only two columns
e Analytic calculation is possible

A(w; k)

Application to spectral function
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Example 2: v =1/4

(-1

ij)EX

Recall np = v~1/2

e For v =1/4, j <2. Only two columns
e Analytic calculation is possible

A(w; k)

e(k) (k)

What about the general case?

Application to spectral function
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Example 3: Close to threshold

\<A

°
@D N
[

3

Py
®

Have to satisfy energy and momentum conservation
27 . 21\ 2 W2
P=TS -0 6= () S
J J

o To get P ~ O(1) requires \;, j ~ O(L/?)
e But then £ ~ O(L71/?)
Partition gets a long (O(L)) leg or arm (quantum impurity)
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Example 3: Close to threshold

e Amputation of leg or arm shifts ( — (+1

st D)
5 /
! (1-y)%
(v+1)4- 2
1 / -0.5 0.5 1 y

e Depends on a single parameter §

A 2 B 5y 2
(o) 1 em(m)

5
C=1+-



Application to spectral function

Z-measures on partitions

Fourier transform of spectral function

Alp,t) =S \(Z)(Ze"‘w

[A=p

View this as generating function of £, for some measure

Alp,t) = E [e7&]

Example of z-measure

G—i+2)j—i+2)
h2(i, j) ’

M.2(A) =N\ []

(id)er

e ... many nice properties

'Borodin, Kerov, Olshanski, Vershik,. . .
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z-measures are determinantal point processes

e The probability of a configuration {x;} of N points is

 det [L(x, )1

F(lah) = detU.+—dJ:1

for known L, depending on z, Z/

e n-point correlation function at points {y;} is likewise

det [K(Yivyj)]zl'zl

where
K=L1+0)"

is resolvent of L
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Continuum limit (large partitions)

o L(x,y) = L(x,y), x,y €R

0 xy >0
L(x,y) = \sir;r7r2| (X/|}’|))R:_Z;(yix)/2 x>0,y<0
[sinnz] (/ORI 0,y >0

e Corresponding resolvent C known explicitly: Whittaker kernel
Borodin (1998)
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Continuum limit (large partitions)

e Spectral function takes form of Fredholm determinant?

det(1 + e /&t L)
det(1+ L)

Alp,t) =E [e®] =

Ex = x%sgn(x)

e Expressed as solution to matrix Riemann—Hilbert problem

2Bettelheim, Abanov and Wiegmann (2006)
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Conclusions

e Spectral function of FQHE edge in harmonic + quartic trap
coincides with Imambekov—Glazman universal D(y) function3.

3Subject to assumption on absence of BO term
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coincides with Imambekov—Glazman universal D(y) function3.
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3Subject to assumption on absence of BO term
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Conclusions

e Spectral function of FQHE edge in harmonic + quartic trap
coincides with Imambekov—Glazman universal D(y) function3.
What is this function?

e D(y) can be expressed in terms of Fredholm determinant with
integrable kernel.

3Subject to assumption on absence of BO term
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Conclusions

e Spectral function of FQHE edge in harmonic + quartic trap
coincides with Imambekov—Glazman universal D(y) function3.
What is this function?

e D(y) can be expressed in terms of Fredholm determinant with
integrable kernel.

e Connection to asymptotic form factor calculations in exactly
soluble models by Kitanine, Kozlowski, Maillet, N. Slavnov,
and V. Terras: see recent work of Kozlowski and Maillet,
arXiv:1501.07711

3Subject to assumption on absence of BO term
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Conclusions

e Spectral function of FQHE edge in harmonic + quartic trap
coincides with Imambekov—Glazman universal D(y) function3.
What is this function?

e D(y) can be expressed in terms of Fredholm determinant with
integrable kernel.

e Connection to asymptotic form factor calculations in exactly
soluble models by Kitanine, Kozlowski, Maillet, N. Slavnov,
and V. Terras: see recent work of Kozlowski and Maillet,
arXiv:1501.07711

e New Numerical techniques: up-down Markov chains...

3Subject to assumption on absence of BO term
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