
Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

z-measures and the non-linear Luttinger liquid
KITP, February 2016

Austen Lamacraft
(with Tom Price and Dima Kovrizhin)

University of Cambridge

Discussions: Steve Simon



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

The spectral function

We’d like to calculate

A(p, ω) =
∑

λ

| 〈λ|ψ̂p|0〉 |2δ(ω − Eλ)

• Remove a particle of momentum p from ground state

• Create excited state of N − 1 particle system |λ〉
• A(p, ω) is energy and momentum resolved rate (Golden Rule)

• Example: 1D Fermi gas

A(p, ω) = θ(−ω)δ(ω − ξ(p))
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The spectral function

A(p, ω) = θ(−ω)δ(ω − ξ(p))
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Spectral function of a FQHE edge

• Prediction of Chiral Luttinger Liquid (χLL) theory

A(p, ω) ∝ ων−1−1δ(ω − cp)θ(−ω)

Wen (1990)

• Spectral function still has δ-support
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Recent developments

• χLL theory has degeneracies that will be generically lifted
“fine structure”

• Corrections are universal Imambekov & Glazman, 2009

A(p, ω) ∝ D

(
ω − cp

p2

)

comes possible, and one cannot neglect inter-
actions between quasiparticles. This can be
already seen from perturbative calculations (23).

The spectral function A(p,w) gets modified
by the spectrum nonlinearity in a profound way
because the dynamics of the string operators
F̃
†
RðLÞðx,tÞ in Eq. 3 becomes nonlinear. Effective

mass m* defines the energy scale ~ p2/(2m*)
near w = v p where modifications from the TL
model take place. Because parameters dT
defining F̃

†
RðLÞðx,tÞ are universally related to K,

full form of the crossover written in terms of a
variable e is a universal function of K. Inves-
tigation of the properties of crossover function
A(e) is the main subject of the present article.

Before proceeding to discuss the form of the
universal crossover, let us consider the main new
features of A(p,w) that arise because of non-
linear spectrum. We find that in the vicinity of
each low-energy region k ≈ (2n + 1)kf spectral
function A(p,w) has a power-law behavior near
frequencies T[vp T p2/(2m*)], which is related to
orthogonality catastrophe phenomenon (22, 23):
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and notations for m are shown in Fig. 1. Such
power-law behavior results from multiple low-
energy particle-hole excitations near left and
right Fermi points, which are created when
“high energy” fermion tunnels into the system.

To be specific, let us focus on the vicinity of
+kf for p > 0 and w > 0. Because the fermion
that tunnels into the system has a momentum
near +kf and energy of the system increases for
w > 0, we need to consider only the correlator
〈YRðx,tÞY†

Rð0,0Þ〉.
Let us first discuss the exponent m0;þ at the

edge w − vpþ p2
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≪ p2

2m*
. To understand

its origin, one has to understand the states that
can be created by Y†

R, when the energy of the
tunneling fermion is in the vicinity of the edge.
From energy and momentum conservation, such
state is given by a single fermionic quasiparticle
with “large” momentum ≈ p and multiple low-
energy particle-hole excitations with momenta
much smaller then p, as indicated in Fig. 2.
Then one can neglect all other states (22, 23)
and project quasiparticle operators ỸRðxÞ and
ỸLðxÞ onto narrow (of the width much smaller
than p) subbands r, d, and l as ỸRðxÞ ≈ ỹrðxÞ þ
eipx d̃ðxÞ,ỸLðxÞ ≈ ỹ lðxÞ.

The effective Hamiltonian determining the
evolution of these states is obtained by project-
ing H̃1 þ H̃2 onto subbands r, l, and d and
linearizing the corresponding spectra:

H̃r,l ¼ iv∫dx½: ỹ†
l ðxÞ∇ỹ lðxÞ : − :ỹ†

r ðxÞ∇ỹrðxÞ: &

ð7Þ

H̃d ¼ ∫dx d̃†ðxÞ vpþ p2
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The Green's function factorizes asºeipx〈 d̃ðx,tÞ

d̃
†ð0,0Þ〉H̃d

〈F̃rðx,tÞF̃
†
r ð0,0Þ〉H̃r, l

. To obtain string

operators F̃r, F̃
†
r from Eq. 3, one should keep

only r and l components of the density there. The
free-particle correlator 〈d̃ðx,tÞd̃†ð0,0Þ〉H̃d

equals

ºe
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, and string cor-

relator can be bosonized and evaluated (3) in

a usual way as 〈F̃rðx,tÞF̃
†
r ð0,0Þ〉H̃r, t

jx¼ðvþ p
m'Þt

º

t−½d−=ð2pÞ&
2−½dþ=ð2pÞ&2 . Taking Fourier transform

of 〈YRðx,tÞY†
Rð0,0Þ〉, we obtain the universal

exponent

m0,þ ¼ 1−
d−
2p
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Analogously, exponent m0,þ for w −
!

vp − p2

2m'

"

≪

p2

2m' is determined by configurations with one
quasihole with the momentum ≈ −p, two quasi-
particles near right Fermi point, and low-energy
particle-hole excitations. One can again reduce
the problem to three-subband model and boson-
ize states near right and left Fermi points. This
way, one obtains the exponent

m0,þ ¼ 1−
d−
2p

$ %2

− 2−
dþ
2p

$ %2

< −3 ð10Þ

New exponents given by Eqs. 9 and 10 are
clearly different from the result for the TL model
in eq. S4, which corresponds to the exponent
1−[d−/(2p)]2.

Configurations responsible for the remain-
ing exponents m0,− , m0,− consist of “high energy”

particle-hole excitation on the left branch, particle
at the right Fermi point, and low-energy excitations
on left and right branches. Singularities near k ≈
(2n + 1)kf also include n low-energy particle-hole
pairs with momentum ≈2nkf. All exponents can
be obtained by using projections onto three-
subband models, and the results are summarized
in Table 1.

We now discuss the results for the universal
crossover function A(e) in the vicinity of +kf for
p, w > 0 [details of the derivations are available
in SOM (11)]. The answer is defined by a uni-
versal function D(y), determined only by d+ and

normalized as ∫1−1DðyÞdy ¼ 1. By using D(y),

Fig. 3. Universal crossover. (A) Universal crossover function D(y) for K = 4.54 and the corresponding
values d+/(2p) = −0.3 and d−/(2p) = −0.83; see Eq. 4. Exponents dT defining the asymptotic behavior at
y→ T1 are given by Eq. 12. (B) Universal function A(e) for K = 4.54. Exponents m0,þ and m0,þ defining the

asymptotic behavior at e → T1 are given by Eqs. 9 and 10. The ratio of prefactors determining the
asymmetry of the singularity at e = 1, see Eq. 13, equals 2.96 for K = 4.54.

9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org230

REPORTS



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

Recent developments

comes possible, and one cannot neglect inter-
actions between quasiparticles. This can be
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full form of the crossover written in terms of a
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tigation of the properties of crossover function
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Before proceeding to discuss the form of the
universal crossover, let us consider the main new
features of A(p,w) that arise because of non-
linear spectrum. We find that in the vicinity of
each low-energy region k ≈ (2n + 1)kf spectral
function A(p,w) has a power-law behavior near
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and notations for m are shown in Fig. 1. Such
power-law behavior results from multiple low-
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right Fermi points, which are created when
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with “large” momentum ≈ p and multiple low-
energy particle-hole excitations with momenta
much smaller then p, as indicated in Fig. 2.
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than p) subbands r, d, and l as ỸRðxÞ ≈ ỹrðxÞ þ
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be obtained by using projections onto three-
subband models, and the results are summarized
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crossover function A(e) in the vicinity of +kf for
p, w > 0 [details of the derivations are available
in SOM (11)]. The answer is defined by a uni-
versal function D(y), determined only by d+ and

normalized as ∫1−1DðyÞdy ¼ 1. By using D(y),
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• Depends on a single parameter δ+

d+ =

(
δ+
2π

)2

− 1, d− =

(
2− δ+

2π

)2

− 1

• Full function: only numerical evaluation available so far!
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Recent developments

Basic approach:

• Low energy spectrum of 1D quantum fluid is (free) fermionic
(phenomenology + exact solutions)

• Spectral function

A(p, ω) =
∑

λ

| 〈λ|ψ̂p|0〉 |2δ(ω − Eλ)

fixed by measure | 〈λ|ψ̂p|0〉 |2 on fermionic states
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Outline

Spectral function beyond LL theory

Form factors and measures on partitions

Application to spectral function
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Bosonized viewpoint: ψ̂ as vertex operator
Ground state of Fermi gas is Vandermonde determinant

|0〉 = ∆N ≡
N∏

j<k

(zj − zk)

zi = e iθi

(after appropriate boost)

Remove particle at Z

ψ̂(Z ) |0〉 =
N−1∏

i

(Z − zi )∆N−1

N−1∏

i

(Z−zi ) = ZN−1 exp

(∑

i

log [1− zi/Z ]

)
= exp

(
−
∑

n

pnZ
−n
)

pn ≡
∑

j z
n
j
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Bosonized viewpoint: ψ̂ as vertex operator

Define chiral boson field

φ(z) =
∑

k>0

[
p−kz

k − pkz
−k
]

= φ+(z) + φ−(z)

where p−k = p†k and

[pk , pl ] = kδk+l ,0

ψ(z) = exp [φ(z)] , ψ†(z) = exp [−φ(z)]

reproduce correct algebra and

ψ̂(Z ) |0〉 =
N−1∏

i

(Z − zi )∆N−1 = eφ(Z) |0〉 = eφ
−(Z) |0〉
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Interacting systems

To summarize 40+ years’ work...

• Low energy properties of 1D Quantum Fluid are described by

ψ(Z )→ exp [ηφ(z)]

• Giving density matrix

〈ψ†(z̄1)ψ(z2)〉 = (1− z̄1z2)−η
2

• η may be related to observables, or calculated in exactly
soluble models
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Dynamics: linear dispersion
Simplest Hamiltonian

H2 =
ω

2

∫ 2π

0
j(θ)2

dθ

2π

• Equation of motion

∂t j(θ, t) = i [H2, j(θ, t)] = −ω∂θj(θ, t)

• FQHE: any disturbance to the edge just rotates at ω
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Dynamics: linear dispersion

〈ψ†(z̄1)ψ(z2)〉 = (1− z̄1z2)−η
2

with dynamics given by

H2 =
ω

2

∫ 2π

0
j(θ)2

dθ

2π

recovers Wen’s result

A(p, ω) ∝ ων−1−1δ(ω − cp)θ(−ω)
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Quadratic dispersion: nonlinear Luttinger Liquid

Phenomenological Hamiltonian

H3 ∝
1

3

∫ 2π

0
j(θ)3

dθ

2π

Hamiltonian is of free fermion form

H3 ∝
∫

dθ

2π
∂θψ

†(θ)∂θψ(θ) · · ·

Note that these are not fundamental fermions!
Although spectrum is simple, spectral function is not!
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Slater determinants
• Eigenstates of free fermion Hamiltonian

Ψλ = det




zλ1+N−1
1 zλ1+N−1

2 · · · zλ1+N−1
N

zλ2+N−2
1 zλ2+N−2

2 · · · zλ2+N−2
N

· · · · · · · · · · · ·
zλN1 zλN2 · · · zλNN




λ1 ≥ λ2 ≥ . . . λN
• sλ = Ψλ/∆ are Schur polynomials
• Momentum and energy

P =
2π

L

∑

j

λj , E2 ∼
(

2π

L

)2∑

j

(λj − j + N)2
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Free fermions and partitions

• A partition λ is represented by a Young diagram

λ = (5, 4, 4, 2, 1, 1)

• Size of partition is denoted |λ| (17 here)

• Momentum P = 2π
L |λ|

• (i , j) denotes box in row i and column j
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Free fermions and partitions

Ψλ = det




zλ1+N−1
1 zλ1+N−1

2 · · · zλ1+N−1
N

zλ2+N−2
1 zλ2+N−2

2 · · · zλ2+N−2
N

· · · · · · · · · · · ·
zλN1 zλN2 · · · zλNN




• Read off the fermionic occupancies from the Young diagram

2.4 Correlation functions

Introduce the following coordinates on the set of partitions. To a partition
λ we associate a subset

S(λ) = {λi − i + 1/2} ⊂ Z + 1
2
.

For example,

S(∅) =

{
−1

2
, −3

2
, −5

2
, . . .

}

This set S(λ) has the following geometric interpretation. Take the diagram
of λ and rotate it 135◦ as in the following picture:

The positive direction of the axis points to the left in the above figure. The
boundary of λ forms a zigzag path and the elements of S(λ), which are
marked by •, correspond to moments when this zigzag goes up.

Subsets S ⊂ Z + 1
2

of the form S = S(λ) can be characterized by

|S+| = |S−| < ∞

where
S+ = S \

(
Z≤0 − 1

2

)
, S− =

(
Z≤0 − 1

2

)
\ S .

The number |S+(λ)| = |S−(λ)| is the number of squares in the diagonal of
the diagram of λ and the finite set S+(λ) ∪ S−(λ) ⊂ Z + 1

2
is known as the

modified Frobenius coordinates of λ.
Given a finite subset X ∈ Z + 1

2
, define the correlation function by

ρ(X) = M
(
{λ, X ⊂ S(λ)}

)
.

In [4], A. Borodin and G. Olshanski proved that

ρ(X) = det
[
K(xi, xj)

]
xi,xj∈X

5

• Diagonal coordinates {λj − j + N} give momenta of fermions
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Free fermions and partitions

Examples

Figure 2: Broken line with slopes ±1, local minimum where a box can be added, and
correspondence with particle configurations on Z.

Figure 3: Wedge and flat initial conditions: broken lines and corresponding particle
configurations.

Theorem 1.1 ([Johansson-00]). Suppose that at time 0 the interface h(x; t) is a wedge
(h(x, 0) = |x|) as shown at Figure 3 (left picture). Then for every x 2 (�1, 1)

lim
t!1

P
✓

h(t, tx)� c1(x)t

c2(x)t1/3
� �s

◆
= F2(s),

where c1(x), c2(x) are certain (explicit) functions of x.

Theorem 1.2 ([Sasamoto-05], [Borodin-Ferrari-Prähofer-Sasamoto-07]). Suppose that at
time 0 the interface h(x; t) is flat as shown at Figure 3 (right picture). Then for every
x 2 R

lim
t!1

P
✓

h(t, x)� c3t

c4t1/3
� �s

◆
= F1(s),

where c3, c4 are certain (explicit) positive constants.

Here F1(s) and F2(s) are distributions from random matrix theory, known un-
der the name of Tracy-Widom distributions. They are the limiting distributions for
the largest eigenvalues in Gaussian Orthogonal Ensemble and Gaussian Unitary En-
semble of random matrices (which are the probability measures with density propor-
tional to exp(�Trace(X2)) on real symmetric and Hermitian matrices, respectively), see
[Tracy-Widom-94], [Tracy-Widom-96].

These two theorems give the conjectural answer for the whole “universality class” of
2d random growth models, which is usually referred to as the KPZ (Kardar-Parisi-Zhang)
universality class. Comparing to the answer in the 1d case we see that the asymptotic
behavior becomes more delicate � while scaling by t1/3 is always the same, the resulting
distribution may also depend on the “subclass” of our model. Also, conjecturally, the only

4
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Fermion basis

Effect of annihilation is

exp(ζφ(Z )) |0〉 =
∏

j

(Z − zj)
ζ∆

Need to express
∏

j(Z − zj)
ζ in terms of Schurs

N−1∏

i=1

(Z − zi )
ζ =

∑

λ

aλ(Z , ζ)sλ(z)

Result is

aλ(Z , ζ) = Z (N−1)ζ−|λ|∏

�∈λ

c(�)− ζ
h(�)
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Anatomy of a partition

• h(i , j) denotes the hook length associated with box (i , j)

Figure 3: The hook length h(2, 3) = 7.

where the sum is over all Young diagrams including the empty one. Writing it in the
form ∑

λ

sλ(y)sλ(∂̃) = exp
(∑

k≥1

yk∂tk

)
,

where ∂̃ = {∂t1 ,
1
2
∂t2 ,

1
3
∂t3 , . . . } and applying to sµ(t), we get the relation

sλ(∂̃)sµ(t)

∣∣∣∣
t=0

= δλµ (A8)

which reflects the orthonormality of the Schur functions.

Skew Schur functions. Let µ ⊂ λ be two Young diagrams. The skew Schur functions
(or the Schur functions for the skew diagram λ \ µ) are defined as

sλ\µ(t) =
∑

ν

cλµνsν(t), (A9)

where the Littlewood-Richardson coefficients cλµν are determined by

sµ(t)sν(t) =
∑

λ

cλµνsλ(t).

One also has [9]

sλ(t + t′) =
∑

µ

sλ\µ(t)sµ(t
′) =

∑

µ,ν

cλµνsµ(t′)sν(t)

and, as an easy consequence,
sλ\µ(t) = sµ(∂̃)sλ(t).

There are generalized Jacobi-Trudi formulas for the skew Schur functions [9]:

sλ\µ(t) = det
1≤i,j≤ℓ(λ)

hλi−µj−i+j(t) = det
1≤i,j≤ℓ(λ′)

eλ′
i−µ′

j−i+j(t). (A10)

61



Spectral function beyond LL theory Form factors and measures on partitions Application to spectral function

Anatomy of a partition

c(�) = j − i denotes the content of box � = (i , j)

Contents

For u ∈ λ let c(u)= i − j, the content of
square u = (i, j).

0 1
0
0
1
2 3
2−1

−2
−3
−1

Hook Lengths and Contents – p. 11aλ(Z , η) = Z (N−1)η−|λ|∏

�∈λ

c(�)− η
h(�)
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Form factors from Cauchy identity
Fundamental identity in symmetric function theory

∑

λ

sλ(x)sλ(y) =
∏

i ,j

(1− xiyj)
−1

Now note

N−1∏

i=1

(Z − z̃i )
−m = Z−(N−1)m

∑

λ

sλ(

m times︷ ︸︸ ︷
Z−1,Z−1, . . ., 0, . . .)sλ(zi )

= Z−(N−1)m
∑

λ

Z−|λ|sλ(

m times︷ ︸︸ ︷
1, 1, . . ., 0, . . .)sλ(zi )

(From homogeneity of Schurs)

sλ(

m times︷ ︸︸ ︷
1, 1, . . ., 0, . . .) =

∏

�∈λ

m + c(�)

h(�)
.

‘Generalized binomial coefficient’ depends on shape of partition λ
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Form factors from Cauchy identity

Thus

N−1∏

i=1

(Z − zi )
ζ =

∑

λ

aλ(Z , ζ)sλ(z)

Where

aλ(Z , η) = Z (N−1)η−|λ|∏

�∈λ

c(�)− η
h(�)
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Frobenius coordinates

λ = (9, 7, 6, 3, 2, 1, 1) = (8, 5, 3|6, 3, 1)

α1 = 8

α2 = 5

α3 = 3

β1 = 6

β2 = 3

β3 = 1

Figure 1: The Frobenius notation. The Young diagram λ = (9, 7, 6, 3, 2, 1, 1) =
(8, 5, 3|6, 3, 1).

Appendix A: Young diagrams and Schur functions

We use the notation of [9].

Partitions and diagrams. A partition λ = (λ1, λ2, . . . , λℓ) is a sequence of positive
integer numbers λi such that λ1 ≥ λ2 ≥ . . . ≥ λℓ. The number ℓ = ℓ(λ) is called the
length of the partition. The partitions are naturally represented by Young diagrams.
The Young diagram of λ is a table whose j-th row (counting from the top) consists of λj

boxes. We will identify partitions with diagrams and will denote the diagram of λ by the

same symbol λ. The total number of boxes in the diagram λ is |λ| =
ℓ∑

i=1

λi. The empty

diagram is denoted by ∅.

By λ′ we denote the transposed Young diagram which is obtained from λ by reflection
in the main diagonal. Namely, λ′

j is the height of the j-th column of λ.

Given a Young diagram λ = (λ1, . . . , λℓ) with ℓ = ℓ(λ) nonzero rows, let (α⃗|β⃗) =
(α1, . . . , αd|β1, . . . , βd) be the Frobenius notation for the diagram λ. Here d = d(λ) is
the number of boxes in the main diagonal and αi = λi − i, βi = λ′

i − i. In other words,
αi is the lenght of the part of the i-th row to the right from the main diagonal and βi

is the length of the part of the i-th column under the main diagonal (not counting the

diagonal box). Clearly, α1 > α2 > . . . > αd ≥ 0, β1 > β2 > . . . > βd ≥ 0. If λ = (α⃗|β⃗),

then λ′ = (β⃗|α⃗). Note that
d∑

i=1

(αi + βi) + d = |λ|.

A box x ∈ λ has coordinates (i, j) if it is in the i-th line (from the top) and j-th
column (from the left). Let u ∈ C. One can define the generalized Pochhammer symbol
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Modified Frobenius coordinates

{xi} =

{
α1 +

1

2
, . . . , αd +

1

2
,−β1 −

1

2
, . . . ,−βd −

1

2

}
∈ Z′ = Z−1

2
,

Positions of particles above and holes below the Fermi surface

2.4 Correlation functions

Introduce the following coordinates on the set of partitions. To a partition
λ we associate a subset

S(λ) = {λi − i + 1/2} ⊂ Z + 1
2
.

For example,

S(∅) =

{
−1

2
, −3

2
, −5

2
, . . .

}

This set S(λ) has the following geometric interpretation. Take the diagram
of λ and rotate it 135◦ as in the following picture:

The positive direction of the axis points to the left in the above figure. The
boundary of λ forms a zigzag path and the elements of S(λ), which are
marked by •, correspond to moments when this zigzag goes up.

Subsets S ⊂ Z + 1
2

of the form S = S(λ) can be characterized by

|S+| = |S−| < ∞

where
S+ = S \

(
Z≤0 − 1

2

)
, S− =

(
Z≤0 − 1

2

)
\ S .

The number |S+(λ)| = |S−(λ)| is the number of squares in the diagonal of
the diagram of λ and the finite set S+(λ) ∪ S−(λ) ⊂ Z + 1

2
is known as the

modified Frobenius coordinates of λ.
Given a finite subset X ∈ Z + 1

2
, define the correlation function by

ρ(X) = M
(
{λ, X ⊂ S(λ)}

)
.

In [4], A. Borodin and G. Olshanski proved that

ρ(X) = det
[
K(xi, xj)

]
xi,xj∈X

5
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Form factors in terms of Frobenius coordinates

〈λ| exp [ηφ(Z )] |0〉 = Z (N−1)η−|λ|∏

�∈λ

c(�)− η
h(�)
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z-measures are determinantal point processes

• The probability of a configuration {xi} of N points is

P({xi}) =
det [L(xi , xj)]Ni ,j=1

det [1 + L]

for known L, depending on z , z ′

• n-point correlation function at points {yi} is likewise

det [K (yi , yj)]ni ,j=1

where
K = L(1 + L)−1

is resolvent of L
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Continuum limit (large partitions)

• L(x , y)→ L(x , y), x , y ∈ R

L(x , y) =





0 xy > 0
| sinπz|
π

(x/|y |)Re ze(y−x)/2

x−y x > 0, y < 0
| sinπz|
π

(y/|x |)Re ze(x−y)/2

x−y x < 0, y > 0

• Corresponding resolvent K known explicitly: Whittaker kernel
Borodin (1998)
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“Orthogonality Catastrophe”

VOLUME 18,NUMBER 24 PHYSICAL REVIEW LETTERS 12 JUNE 1967

INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERING POTENTIALS

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received 27 March 1967)

We prove that the ground state of a system of N fermions is orthogonal to the ground
state in the presence of a finite range scattering potential, as N . This implies that
the response to application of such a potential involves only emission of excitations into
the continuum, and that certain processes in Fermi gases may be blocked by orthogonali-
ty in a low-1', low-energy limit.

Kohn and Majumdar' have recently pointed
out that there is no singular point for finite
A. of some properties —notably the electron den-
sity and energy —of a many-body system consist-
ing of a free noninteracting Fermi gas plus
a single local scattering potential of strength
&V(r) and finite range a. This is true even
at the point where V becomes strong enough
to begin discontinuously to form a bound state.
We describe here another rather different

and somewhat unexpected aspect of this type
of continuity. When A, is big enough to form
a bound state, the overlap integral between
the ground state with the potential, and thus
with an electron in the bound state, and any
state described entirely in terms of free plane
waves, including the ground state of the unper-
turbed system, is at best of order N i'2 (since
it necessarily contains the free-bound overlap
which contains the volume to the —~ power).
We show that for any X this overlap is of orderN, e) 0, and thus in principle still 0: The
ground states are orthogonal.
While wave functions and overlap integrals

are often of little consequence in many-body
systems, this one is at least related to the re-
sponse to a sudden application of the potential
U, and indicates that that response involves
only the emission of low-energy excitations
into the continuum, as well as that the truly
adiabatic application of such a potential to such
a system is impossible. Of course, orthogo-
nality as the full interaction is turned on is
expected, and can be dealt with; here the prob-
lem is pinpointed by the fact that the perturba-
tion is infinitesimal in a real sense. Other
physical implications of the result will be dis-
cussed later.
The proof is rather straightforward. For

simplicity, but without changing the result,
we place our system in a spherical box of ra-
dius R and consider only the l = 0 scattering
states. The unperturbed state is a determinant

of spherical waves of which the l =0 represen-
tatives are

In the presence of a potential V causing a finite
phase shift 5(E) for /=0 waves, the new wave
functions are, asymptotically,

(r)-N '
0 n

sin(K r —5(E )[1—(r/R)])
K
n

The overlap integral between typical members
of the two sets near the Fermi surface is

n=4p I r dr p (r)g (r)nn' 0

2m@ N, sin6,
n n' n'

K K, K —K, +5/Rn n' n n'

neglecting central-cell corrections, which,
it will be obvious in what follows, are not im-
portant and only serve to increase the nonor-
thogonality in any case. Setting

N =K /(2~x)"2
n n

we obtain sin5,n'
nn' m(n —n')+ 5'

Summing the squares of Ann over n checks
the normalization of (2), using a well-known
sum for csc'6. The overlap integral between
determinants made up of states cp(1) and g(2)
is easily seen to be

S = det lA nn' (4)

n
I (E

n F

sinK x m
n n

y (r) =N =—;E = K (e . (1)0 n K x ' n R' n 2m n F'
n

1049

Distribution of particles (αi ) and holes ({βi}) obeys

lim
k→∞

α
1/k
k = lim

k→∞
β
1/k
k = exp

(
− π2

sin2 πζ

)

Borodin & Olshanski, 1998
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that is, by lhn, when travelling from the left contact to the QPC. From
ref. 31, Ne~

X
l§{n

(lzn)Pl and Nh~
X

lv{n
lznj jPl, where

Pl~

ðT

0
dt=T e{iQ(t)ei(lzn)nt

""""

""""
2

. The total noise is SI~S0
I (NhzNe)§S0

I n.

Its minimization at constant current I~en(Ne{ Nh)~enn gives Nh~0
for positive n (and Ne~0 for negative n). The absence of holes implies
that Plv{n~0, extending to the periodic case the condition P(De)~0
for Dev0 for a single pulse. This is satisfied only by Lorentzian pulses
creating n-particle levitons. By contrast, sinusoidal pulses always
carry particle–hole excitations because Pl~J2

l (l)=0 for all l, where
Jl is a Bessel function. These two different cases create the qualita-

tively different energy distributions ~f (e)~
Xz?

l~{?

Pl f (e{lhn), where

f (e)~1z exp ((e{EF)=kBTe) is the equilibrium energy distribution.
Our measurements are presented in terms of the excess noise, DSI ,

obtained by subtracting the noise with Va:c: ‘off’ from the noise with
Va:c: ‘on’. At zero temperature,DSI measures the excess particle number,
DNeh~DSI=S0

I ~NezNh{n~2Nh, which can be written24,31

DNeh~
X

l

lznj jPl{ nj j

and vanishes for levitons. In the case of non-integer charge pulses (with
q replacing n), as a consequence of the orthogonality catastrophe30 both
electron and hole excitations are required, makingDNeh finite even for
Lorentzian pulses. Remarkably, all pulse shapes give a local minimum
at integer charge24,31 (Supplementary Fig. 3). At finite temperature, the
excess noise normalized to S0

I becomes31

DNeh~
Xz?

l~{?

(lzq) coth
lzq
2he

# $
Pl { q coth (q=2he) ð2Þ

This slightly overestimates the actual particle number even when
he~kBTe=hn=1. Indeed, an extra contribution (typically ,2heP{n
for q 5 n; see Supplementary Information) comes from the partition
noise of the thermal excitations emitted by the right-hand reservoir.

Their partition noise is promoted by the reduced occupation of the left-
hand states when Va.c. is ‘on’ (~f (e<EF)v1) and is inhibited by anti-
bunching for Va.c. ‘off’ because then ~f (e<EF)~1.

We first report excess-noise measurements for different pulse shapes.
Two similar samples and two different noise detection set-ups were
used. Results for sample A using a 100–300-kHz frequency range and
room-temperature amplifiers are presented in Supplementary Infor-
mation. Results for sample B using cryogenic amplifiers and noise
detection in a 450-kHz bandwidth around 2.5 MHz are presented
here. The amplitude of Va:c:(t) for sinusoidal and square pulses is
Va:c: 5 Vd:c:~qhn=e. With Va:c: defined in the same way, the voltage
for periodic Lorentzian pulses is V(t)~Va:c: sinh (2pg)=2( sinh (2pg)2z
sin (2pt=T)2), where g~W=T .

Figure 2a showsDNeh versus q for three pulse shapes. A clear hierarchy
is visible. The square wave generates the largest noise, the Lorentzian
generates the lowest and the sine wave is in between. For q 5 1, the
3.7 6 1.2% finite noise observed for the 4.8-GHz Lorentzian pulses is
probably due to the thermal excitations of the right-hand reservoir,
which are estimated to be ~2he{4pg 5 3.6% (W/T 5 0.18 and he 5 0.17).
By contrast, the expected 2heJ2

1 (1) 5 3.7% thermal contribution for the
7.5-GHz sine wave cannot account for the 8.3% noise observed for q 5 1:
the sine wave shows clear hole excitation content that is not detectable
for the Lorentzian. Figure 2b shows data for a sharper W/T 5 0.09
Lorentzian pulse and higher-frequency sinusoidal pulses (the square-
wave trace is repeated for scale comparison). The higher pulse energy
makes thermal effects weaker, revealing the dynamical orthogonality
catastrophe (DOC) suppression for integer charge by a noise minimum.
For the Lorentzian pulse, the zero-temperature variations ofDNeh being
asymmetrical around q 5 1, thermal rounding shifts the minimum to
q < 1.4 as expected (Supplementary Fig. 4). For sine waves, the almost
symmetrical variations keep it centred near q < 1. However, at finite
temperature a noise minimum is only an indirect signature of DOC
suppression and in general cannot be used to find the exact charge for
which an excitation minimum occurs. Indeed, we observe that for q 5 1

Energy

Leviton

Fermi sea

EF

|ψ(t)|2

ψ(t) ~
1

t + iW

t

ψ(ε) ~ e–Wε/h

|ψ(ε)|2

V(t)

V(t) = 
h

eπ t2 + W2

W

a

D 

1D 

bb
300 K 

4 K 

13 mK 

–70 dB –70 dB 

QPC 

Cross-correlation detection

Cryo. amp

Bias-T

Cryo. amp

AWG

c

V(t)

VG

VG

V(t)

Bias-T

Figure 1 | Levitons and the principle of their
experimental detection. a, Single-particle leviton:
schematic picture of the wavefunction, y, in the
time and energy domains. b, Principle of
experiment: voltage pulses, V(t), on the contact of a
2DEG generate charge pulses that are partitioned
by a QPC. The lateral-gate voltage, VG, controls the
transmission, D, of the one-dimensional (1D)
electronic mode formed at the QPC. c, Voltage
pulses are sent from an arbitrary wave generator
(AWG) to the ohmic contacts of the sample via
40-GHz transmission lines. Bias-Ts separate the
high-frequency components from the d.c. voltage
bias and the detected low-frequency current noise.
The latter is converted into voltage fluctuations.
A computer performs fast-Fourier-transformation
cross-correlations after cryogenic amplification
and fast acquisition.
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Minimal Excitation States of Electrons in One-Dimensional Wires

J. Keeling,1 I. Klich,2 and L. S. Levitov1

1Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 1 April 2006; published 14 September 2006)

A strategy is proposed to excite particles from a Fermi sea in a noise-free fashion by electromagnetic
pulses with realistic parameters. We show that by using quantized pulses of simple form one can suppress
the particle-hole pairs which are created by a generic excitation. The resulting many-body states are
characterized by one or several particles excited above the Fermi surface accompanied by no disturbance
below it. These excitations carry charge which is integer for noninteracting electron gas and fractional for
Luttinger liquid. The operator algebra describing these excitations is derived, and a method of their
detection which relies on noise measurement is proposed.

DOI: 10.1103/PhysRevLett.97.116403 PACS numbers: 71.10.Pm, 03.65.Ud, 03.67.Hk, 73.50.Td

Controlling single electrons is one of the main avenues
of research in nanoelectronics. Once advanced far enough,
it will bring about a range of quantum-coherent single-
particle sources with full control over the orbital and spin
degrees of freedom. Currently efforts are mostly focused
on employing localized electron states, trapped on metal
islands [1] or quantum dots [2] and shuttled between the
dots or islands by electric pulses [1,2] or acoustic fields [3].
It is of interest, however, to extend the concept of single-
particle sources to the situation when electrons propagate
freely as part of a degenerate Fermi system. If proved
feasible, it would allow one to harness particle dynamics,
characterized by high Fermi velocity, vF ! 108 cm=s, to
transmit quantum states in a solid and, at low temperature,
to use Fermi-Dirac statistics for generating many-particle
entangled states [4].

In this Letter we propose a scheme which allows the
creation of ‘‘clean’’ electric current pulses, free of particle-
hole excitations. We consider a 1d electron gas, serving as
a prototype for carbon nanotube, quantum wire, and point
contact systems, in which current is driven by voltage
pulses with a typical frequency small compared to the
Fermi energy. In this quasistationary regime the electric
response is described as I"t# $ g0V"t# with g0 $ e2=h the
Landauer conductance. A current pulse, which carries total
charge !q $ g0

R
V"t#dt, is a collective many-body state

involving a number of fermions excited to a higher energy
[5]. Microscopically, such a current pulse is described by a
number of particle-hole excitations, with energies of the
order @=!, where ! is the duration of the pulse. As dis-
cussed in Refs. [5–7] and below, these excitations can be
probed by noise measurement [8].

Here we show that, quite strikingly, by engineering the
pulse profile one can inhibit the particle-hole excitations.
We analyze the particle-hole content of current pulses in a
single-channel conductor, and pose and solve the problem
of minimizing the number of such excitations. The condi-
tion required for the excitation number to be small is area
quantization,

R
Vdt $ nh=e, where n is an integer. We

show that such pulses, carrying integer charge q $ ne,

are accompanied by fewer excitations than noninteger
pulses. Also, we show how to optimize the V"t# profile,
by designing pulses which are totally free of particle-hole
excitations. Such pulses excite n electrons above the Fermi
level, with other electrons conspiring to fill the void and
produce a complete Fermi sea, with no holes.

The properties of such ‘‘ideal’’ pulses may be inferred
by asking for V"t# that creates the minimum number of
right- or left-moving excitations N"

ex $ N"
e % N"

h ,

 N"
e $

X
#>#F

hay#a#i; N"
h $

X
#<#F

ha#ay# i; (1)

where " $ r, l for right and left movers, and N"
e , N"

h are
the numbers of excited electrons and holes (Fig. 1). The
sum is restricted to right- or left-moving particles, k &
kF;'kF. The operators ay# create particles in the single-
particle energy eigenstates. Since !q $ e"Ne ' Nh#, one
may naı̈vely expect that Nex is minimized for a given !q
when Nh or Ne vanish.

This naı̈ve expectation is correct, and it is possible to
find a time-dependent field that excites exactly n electrons
above the Fermi level leaving no other disturbance in the
system. The excitation number Nex, introduced in Eq. (1),
can be linked to noise (see below), thus Nex can be mea-
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FIG. 1 (color online). Real space picture of counterpropagat-
ing electron and hole pulses, for a general time-dependent field.
In the special case of Eq. (6), Nr

h $ Nl
e $ 0, qr $ Nr

e, ql $
'Nl

h.
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that is, by lhn, when travelling from the left contact to the QPC. From
ref. 31, Ne~

X
l§{n

(lzn)Pl and Nh~
X

lv{n
lznj jPl, where

Pl~

ðT

0
dt=T e{iQ(t)ei(lzn)nt

""""

""""
2

. The total noise is SI~S0
I (NhzNe)§S0

I n.

Its minimization at constant current I~en(Ne{ Nh)~enn gives Nh~0
for positive n (and Ne~0 for negative n). The absence of holes implies
that Plv{n~0, extending to the periodic case the condition P(De)~0
for Dev0 for a single pulse. This is satisfied only by Lorentzian pulses
creating n-particle levitons. By contrast, sinusoidal pulses always
carry particle–hole excitations because Pl~J2

l (l)=0 for all l, where
Jl is a Bessel function. These two different cases create the qualita-

tively different energy distributions ~f (e)~
Xz?

l~{?

Pl f (e{lhn), where

f (e)~1z exp ((e{EF)=kBTe) is the equilibrium energy distribution.
Our measurements are presented in terms of the excess noise, DSI ,

obtained by subtracting the noise with Va:c: ‘off’ from the noise with
Va:c: ‘on’. At zero temperature,DSI measures the excess particle number,
DNeh~DSI=S0

I ~NezNh{n~2Nh, which can be written24,31

DNeh~
X

l

lznj jPl{ nj j

and vanishes for levitons. In the case of non-integer charge pulses (with
q replacing n), as a consequence of the orthogonality catastrophe30 both
electron and hole excitations are required, makingDNeh finite even for
Lorentzian pulses. Remarkably, all pulse shapes give a local minimum
at integer charge24,31 (Supplementary Fig. 3). At finite temperature, the
excess noise normalized to S0

I becomes31

DNeh~
Xz?

l~{?

(lzq) coth
lzq
2he

# $
Pl { q coth (q=2he) ð2Þ

This slightly overestimates the actual particle number even when
he~kBTe=hn=1. Indeed, an extra contribution (typically ,2heP{n
for q 5 n; see Supplementary Information) comes from the partition
noise of the thermal excitations emitted by the right-hand reservoir.

Their partition noise is promoted by the reduced occupation of the left-
hand states when Va.c. is ‘on’ (~f (e<EF)v1) and is inhibited by anti-
bunching for Va.c. ‘off’ because then ~f (e<EF)~1.

We first report excess-noise measurements for different pulse shapes.
Two similar samples and two different noise detection set-ups were
used. Results for sample A using a 100–300-kHz frequency range and
room-temperature amplifiers are presented in Supplementary Infor-
mation. Results for sample B using cryogenic amplifiers and noise
detection in a 450-kHz bandwidth around 2.5 MHz are presented
here. The amplitude of Va:c:(t) for sinusoidal and square pulses is
Va:c: 5 Vd:c:~qhn=e. With Va:c: defined in the same way, the voltage
for periodic Lorentzian pulses is V(t)~Va:c: sinh (2pg)=2( sinh (2pg)2z
sin (2pt=T)2), where g~W=T .

Figure 2a showsDNeh versus q for three pulse shapes. A clear hierarchy
is visible. The square wave generates the largest noise, the Lorentzian
generates the lowest and the sine wave is in between. For q 5 1, the
3.7 6 1.2% finite noise observed for the 4.8-GHz Lorentzian pulses is
probably due to the thermal excitations of the right-hand reservoir,
which are estimated to be ~2he{4pg 5 3.6% (W/T 5 0.18 and he 5 0.17).
By contrast, the expected 2heJ2

1 (1) 5 3.7% thermal contribution for the
7.5-GHz sine wave cannot account for the 8.3% noise observed for q 5 1:
the sine wave shows clear hole excitation content that is not detectable
for the Lorentzian. Figure 2b shows data for a sharper W/T 5 0.09
Lorentzian pulse and higher-frequency sinusoidal pulses (the square-
wave trace is repeated for scale comparison). The higher pulse energy
makes thermal effects weaker, revealing the dynamical orthogonality
catastrophe (DOC) suppression for integer charge by a noise minimum.
For the Lorentzian pulse, the zero-temperature variations ofDNeh being
asymmetrical around q 5 1, thermal rounding shifts the minimum to
q < 1.4 as expected (Supplementary Fig. 4). For sine waves, the almost
symmetrical variations keep it centred near q < 1. However, at finite
temperature a noise minimum is only an indirect signature of DOC
suppression and in general cannot be used to find the exact charge for
which an excitation minimum occurs. Indeed, we observe that for q 5 1
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Figure 1 | Levitons and the principle of their
experimental detection. a, Single-particle leviton:
schematic picture of the wavefunction, y, in the
time and energy domains. b, Principle of
experiment: voltage pulses, V(t), on the contact of a
2DEG generate charge pulses that are partitioned
by a QPC. The lateral-gate voltage, VG, controls the
transmission, D, of the one-dimensional (1D)
electronic mode formed at the QPC. c, Voltage
pulses are sent from an arbitrary wave generator
(AWG) to the ohmic contacts of the sample via
40-GHz transmission lines. Bias-Ts separate the
high-frequency components from the d.c. voltage
bias and the detected low-frequency current noise.
The latter is converted into voltage fluctuations.
A computer performs fast-Fourier-transformation
cross-correlations after cryogenic amplification
and fast acquisition.
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Voltage pulse corresponds to vertex operator

exp

[∫
dθϕ(θ)φ(θ)

]
, ϕ(t) = e

∫ t

V (t ′)dt ′

Thus usual exp [φ(Z )] for |Z | < 1 is Lorentzian
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Result for spectral function

A(p, ω) =
∑

|λ|=p

δ(ω − Eλ)
∣∣∣
(
η

λ

)∣∣∣
2

With (
η

λ

)
=
∏

(i ,j)∈λ

η + j − i

h(i , j)

and energy Eλ =
∑

j(λj − j)2

2.4 Correlation functions

Introduce the following coordinates on the set of partitions. To a partition
λ we associate a subset

S(λ) = {λi − i + 1/2} ⊂ Z + 1
2
.

For example,

S(∅) =

{
−1

2
, −3

2
, −5

2
, . . .

}

This set S(λ) has the following geometric interpretation. Take the diagram
of λ and rotate it 135◦ as in the following picture:

The positive direction of the axis points to the left in the above figure. The
boundary of λ forms a zigzag path and the elements of S(λ), which are
marked by •, correspond to moments when this zigzag goes up.

Subsets S ⊂ Z + 1
2

of the form S = S(λ) can be characterized by

|S+| = |S−| < ∞

where
S+ = S \

(
Z≤0 − 1

2

)
, S− =

(
Z≤0 − 1

2

)
\ S .

The number |S+(λ)| = |S−(λ)| is the number of squares in the diagonal of
the diagram of λ and the finite set S+(λ) ∪ S−(λ) ⊂ Z + 1

2
is known as the

modified Frobenius coordinates of λ.
Given a finite subset X ∈ Z + 1

2
, define the correlation function by

ρ(X) = M
(
{λ, X ⊂ S(λ)}

)
.

In [4], A. Borodin and G. Olshanski proved that

ρ(X) = det
[
K(xi, xj)

]
xi,xj∈X

5

What use is this?
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Example 1: The Linear χLL
Consider density matrix

〈ψ†(z̄1)ψ(z2)〉 =
∑

λ

〈0|ψ†(z1)|λ〉 〈λ|ψ(z2)|0〉

=
∑

λ

(z̄1z2)|λ|
∣∣∣
(
η

λ

)∣∣∣
2

Recall

sλ(

m times︷ ︸︸ ︷
1, 1, . . ., 0, . . .) =

∏

�∈λ

m + c(�)

h(�)
,

and apply Cauchy to give

〈ψ†(z̄1)ψ(z2)〉 = (1− z̄1z2)−η
2

With linear dispersion

Eλ =
∑

j

(λj − j) = |λ|+ const.,

this coincides with Wen’s result by Lorentz invariance
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Example 2: ν = 1/4
Recall η = ν−1/2

(
η

λ

)
=
∏

(i ,j)∈λ

η + j − i

h(i , j)

• For ν = 1/4, j ≤ 2. Only two columns

• Analytic calculation is possible

2

Y

i

(z � ⇣i)
2 =

X

n,m

�1n�1m| {z }P
� c�

1n1m��

z2N�n�m. (10)

General coe�cients c�µ⌫ are notoriously tricky to find.
Fortunately, we only need to know the rule for multiply-
ing a general Schur by a Schur consisting of a single col-
umn (⌘ a hole), in which case the Littlewood–Richardson
rule reduces to Pieri’s formula ([1], Eqn. 5.17),

�1n�µ =
X

�

��, (11)

where the multiplicities are all one. For example, the
product of two holes of momentum 2, 3 is

⇥ = + + . (12)

We write the product of two one–column tableau
length n, m, n � m, as a sum of Schurs labeled by q2,
the length of their second column

�1n�1m =

mX

q2=0

�(n+m�q2,q2)0 . (13)

Using the orthogonality of the Schurs, we find

G(z, z0, t) = 4
X

n>m

X

n̄>m̄

mX

q2=0

m̄X

q̄2=0

�n+m,n̄+m̄�q2,q̄2| {z }
��,�̄

⇥ (z̄z0)2N�|�|e�iE�t

(14)

To carry out the summation we have to find how many
times a given diagram {1p1q} appears, which we see from
diagrams below is (p � q)/2:

2 ⇥ , ⇥ , ⇥ . (15)

X

k

X

q

(k/2 � q)2(z̄z0)2N�|�|e�iE�t. (16)

We can verify that this reproduces the equal–time cor-
relation function z4N (z � z0)�4 found using the commu-
tation relations. At t = 0 the summand is unity, and the

sum over, so G(z, z0, 0) / (z̄z0)4N
P

k k3(z̄z0)�k, which
gives the expected correlator.

To find the spectral function A(k, !), we take a Fourier
transform, which gives

A(k, !) =
X

�,
|�|=k

(k/2 � q)2�(E� � !). (17)

✏+(k)✏�(k)
!

A(!; k)

FIG. 1. Spectral function for the ⌫ = 1/4 QH state in an
anharmonic trap, Eqn. (19).

The energy of a partition � depends on its shape: for
a partition {1p, 1q}, drawing the corresponding fermionic
occupation reveals an energy (relative to the linear dis-
persion, which we may remove by going to the rotating
frame)

E{1p,1q} = � 1

2m
(p2 + q2) = � 1

2m
[(k � q)2 + q2]. (18)

This ranges ✏�(k) = �k2/2m for a single hole to its
maximum of ✏+(k) = �k2/4m. Then the spectral func-
tion is

A(k, !) =
X

�,
|�|=k

(�mE� � k2/4)�(E� � !)

=
L

2⇡

Z �k2/4m

�k2/2m

d✏
(�m✏� k2/4)p
�✏� k2/4m

�(✏� !)

=
L
p

m

2⇡

p
�! � k2/4m

⇥⇥(k2/2m + !)⇥(k2/4m � !).

(19)

The square root vanishing in the spectral function, as
seen in Fig. 1 arises from a combination of a square–
root singularity in the density of states and the linear
vanishing in the matrix element.

What about the general case?
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Example 3: Close to threshold

2.4 Correlation functions

Introduce the following coordinates on the set of partitions. To a partition
λ we associate a subset

S(λ) = {λi − i + 1/2} ⊂ Z + 1
2
.

For example,

S(∅) =

{
−1

2
, −3

2
, −5

2
, . . .

}

This set S(λ) has the following geometric interpretation. Take the diagram
of λ and rotate it 135◦ as in the following picture:

The positive direction of the axis points to the left in the above figure. The
boundary of λ forms a zigzag path and the elements of S(λ), which are
marked by •, correspond to moments when this zigzag goes up.

Subsets S ⊂ Z + 1
2

of the form S = S(λ) can be characterized by

|S+| = |S−| < ∞

where
S+ = S \

(
Z≤0 − 1

2

)
, S− =

(
Z≤0 − 1

2

)
\ S .

The number |S+(λ)| = |S−(λ)| is the number of squares in the diagonal of
the diagram of λ and the finite set S+(λ) ∪ S−(λ) ⊂ Z + 1

2
is known as the

modified Frobenius coordinates of λ.
Given a finite subset X ∈ Z + 1

2
, define the correlation function by

ρ(X) = M
(
{λ, X ⊂ S(λ)}

)
.

In [4], A. Borodin and G. Olshanski proved that

ρ(X) = det
[
K(xi, xj)

]
xi,xj∈X

5

Have to satisfy energy and momentum conservation

P =
2π

L

∑

j

(λj − j) , E =

(
2π

L

)2∑

j

(λj − j)2

• To get P ∼ O(1) requires λj , j ∼ O(L1/2)

• But then E ∼ O(L−1/2)

Partition gets a long (O(L)) leg or arm (quantum impurity)
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Example 3: Close to threshold

• Amputation of leg or arm shifts ζ → ζ ± 1

comes possible, and one cannot neglect inter-
actions between quasiparticles. This can be
already seen from perturbative calculations (23).

The spectral function A(p,w) gets modified
by the spectrum nonlinearity in a profound way
because the dynamics of the string operators
F̃
†
RðLÞðx,tÞ in Eq. 3 becomes nonlinear. Effective

mass m* defines the energy scale ~ p2/(2m*)
near w = v p where modifications from the TL
model take place. Because parameters dT
defining F̃

†
RðLÞðx,tÞ are universally related to K,

full form of the crossover written in terms of a
variable e is a universal function of K. Inves-
tigation of the properties of crossover function
A(e) is the main subject of the present article.

Before proceeding to discuss the form of the
universal crossover, let us consider the main new
features of A(p,w) that arise because of non-
linear spectrum. We find that in the vicinity of
each low-energy region k ≈ (2n + 1)kf spectral
function A(p,w) has a power-law behavior near
frequencies T[vp T p2/(2m*)], which is related to
orthogonality catastrophe phenomenon (22, 23):

Að p,wÞº const þ 1

w T vp T
p2

2m∗

! "

#

#

#

#

#

#

#

#

#

#

#

#

#

#

m

ð6Þ

and notations for m are shown in Fig. 1. Such
power-law behavior results from multiple low-
energy particle-hole excitations near left and
right Fermi points, which are created when
“high energy” fermion tunnels into the system.

To be specific, let us focus on the vicinity of
+kf for p > 0 and w > 0. Because the fermion
that tunnels into the system has a momentum
near +kf and energy of the system increases for
w > 0, we need to consider only the correlator
〈YRðx,tÞY†

Rð0,0Þ〉.
Let us first discuss the exponent m0;þ at the

edge w − vpþ p2

2m*

$ %
#

#

#

#

#

#

#

#

≪ p2

2m*
. To understand

its origin, one has to understand the states that
can be created by Y†

R, when the energy of the
tunneling fermion is in the vicinity of the edge.
From energy and momentum conservation, such
state is given by a single fermionic quasiparticle
with “large” momentum ≈ p and multiple low-
energy particle-hole excitations with momenta
much smaller then p, as indicated in Fig. 2.
Then one can neglect all other states (22, 23)
and project quasiparticle operators ỸRðxÞ and
ỸLðxÞ onto narrow (of the width much smaller
than p) subbands r, d, and l as ỸRðxÞ ≈ ỹrðxÞ þ
eipx d̃ðxÞ,ỸLðxÞ ≈ ỹ lðxÞ.

The effective Hamiltonian determining the
evolution of these states is obtained by project-
ing H̃1 þ H̃2 onto subbands r, l, and d and
linearizing the corresponding spectra:

H̃r,l ¼ iv∫dx½: ỹ†
l ðxÞ∇ỹ lðxÞ : − :ỹ†

r ðxÞ∇ỹrðxÞ: &

ð7Þ

H̃d ¼ ∫dx d̃†ðxÞ vpþ p2

2m∗
−i vþ p

m∗

$ %

∇
& '

d̃ðxÞ

ð8Þ

The Green's function factorizes asºeipx〈 d̃ðx,tÞ

d̃
†ð0,0Þ〉H̃d

〈F̃rðx,tÞF̃
†
r ð0,0Þ〉H̃r, l

. To obtain string

operators F̃r, F̃
†
r from Eq. 3, one should keep

only r and l components of the density there. The
free-particle correlator 〈d̃ðx,tÞd̃†ð0,0Þ〉H̃d

equals

ºe
−i
!

vpþ p2

2m'

"

t
d x − vþ p

m'

! "

t
h i

, and string cor-

relator can be bosonized and evaluated (3) in

a usual way as 〈F̃rðx,tÞF̃
†
r ð0,0Þ〉H̃r, t

jx¼ðvþ p
m'Þt

º

t−½d−=ð2pÞ&
2−½dþ=ð2pÞ&2 . Taking Fourier transform

of 〈YRðx,tÞY†
Rð0,0Þ〉, we obtain the universal

exponent

m0,þ ¼ 1−
d−
2p

$ %2

−
dþ
2p

$ %2

ð9Þ

Analogously, exponent m0,þ for w −
!

vp − p2

2m'

"

≪

p2

2m' is determined by configurations with one
quasihole with the momentum ≈ −p, two quasi-
particles near right Fermi point, and low-energy
particle-hole excitations. One can again reduce
the problem to three-subband model and boson-
ize states near right and left Fermi points. This
way, one obtains the exponent

m0,þ ¼ 1−
d−
2p

$ %2

− 2−
dþ
2p

$ %2

< −3 ð10Þ

New exponents given by Eqs. 9 and 10 are
clearly different from the result for the TL model
in eq. S4, which corresponds to the exponent
1−[d−/(2p)]2.

Configurations responsible for the remain-
ing exponents m0,− , m0,− consist of “high energy”

particle-hole excitation on the left branch, particle
at the right Fermi point, and low-energy excitations
on left and right branches. Singularities near k ≈
(2n + 1)kf also include n low-energy particle-hole
pairs with momentum ≈2nkf. All exponents can
be obtained by using projections onto three-
subband models, and the results are summarized
in Table 1.

We now discuss the results for the universal
crossover function A(e) in the vicinity of +kf for
p, w > 0 [details of the derivations are available
in SOM (11)]. The answer is defined by a uni-
versal function D(y), determined only by d+ and

normalized as ∫1−1DðyÞdy ¼ 1. By using D(y),

Fig. 3. Universal crossover. (A) Universal crossover function D(y) for K = 4.54 and the corresponding
values d+/(2p) = −0.3 and d−/(2p) = −0.83; see Eq. 4. Exponents dT defining the asymptotic behavior at
y→ T1 are given by Eq. 12. (B) Universal function A(e) for K = 4.54. Exponents m0,þ and m0,þ defining the

asymptotic behavior at e → T1 are given by Eqs. 9 and 10. The ratio of prefactors determining the
asymmetry of the singularity at e = 1, see Eq. 13, equals 2.96 for K = 4.54.

9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org230

REPORTS

• Depends on a single parameter δ+

d+ =

(
δ+
2π

)2

− 1, d− =

(
2− δ+

2π

)2

− 1

ζ = 1 +
δ

2π
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z-measures on partitions

• Fourier transform of spectral function

A(p, t) =
∑

|λ|=p

∣∣∣
(
η

λ

)∣∣∣
2
e−iEλt

• View this as generating function of Eλ for some measure

A(p, t) = E
[
e−iEλt

]

• Example of z-measure1

Mz,z ′(λ) = Nz,z ′(λ)
∏

(i ,j)∈λ

(j − i + z)(j − i + z ′)
h2(i , j)

,

z = z ′ = η

• ... many nice properties

1Borodin, Kerov, Olshanski, Vershik,. . .
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z-measures are determinantal point processes

• The probability of a configuration {xi} of N points is

P({xi}) =
det [L(xi , xj)]Ni ,j=1

det [1 + L]

for known L, depending on z , z ′

• n-point correlation function at points {yi} is likewise

det [K (yi , yj)]ni ,j=1

where
K = L(1 + L)−1

is resolvent of L
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Continuum limit (large partitions)

• L(x , y)→ L(x , y), x , y ∈ R

L(x , y) =





0 xy > 0
| sinπz|
π

(x/|y |)Re ze(y−x)/2

x−y x > 0, y < 0
| sinπz|
π

(y/|x |)Re ze(x−y)/2

x−y x < 0, y > 0

• Corresponding resolvent K known explicitly: Whittaker kernel
Borodin (1998)
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Continuum limit (large partitions)

• Spectral function takes form of Fredholm determinant2

A(p, t) = E
[
e−iEλt

]
=

det(1 + e−iEx tL)

det(1 + L)

Ex = x2 sgn(x)

• Expressed as solution to matrix Riemann–Hilbert problem

2Bettelheim, Abanov and Wiegmann (2006)
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Conclusions

• Spectral function of FQHE edge in harmonic + quartic trap
coincides with Imambekov–Glazman universal D(y) function3.

What is this function?

• D(y) can be expressed in terms of Fredholm determinant with
integrable kernel.

• Connection to asymptotic form factor calculations in exactly
soluble models by Kitanine, Kozlowski, Maillet, N. Slavnov,
and V. Terras: see recent work of Kozlowski and Maillet,
arXiv:1501.07711

• New Numerical techniques: up-down Markov chains...

3Subject to assumption on absence of BO term
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