

Outline and Scope

- Finding traces of KPZ in disordered quantum systems
- Understand structure of quantum wavefunctions
- KPZ equation with complex potential; negative weights
- Amazing robustness of KPZ uiversality
- Effects of quantum statistics in insulators?
- Opposite magnetoresistance due to quantum statistics
- Bosons are harder to localize than fermions
- Experimental traces of KPZ behavior in disordered Cooper pair insulators

Anderson localization

Anderson localization (1958) [single particle]

$$
H=\sum_{i} \varepsilon_{i} n_{i}-t \sum_{\langle i, j\rangle}\left(c_{i}^{+} c_{j}+\text { h.c. }\right)
$$

Resonance $=\Delta \varepsilon<$ hopping t
Delocalization transition (insulator \rightarrow metal)
$=$ Percolation of resonances

Anderson insulator
Few isolated resonances

Anderson metal There are many resonances and they overlap

Anderson localization

Anderson localization (1958) [single particle]

$$
H=\sum_{i} \varepsilon_{i} n_{i}-t \sum_{\langle i, j\rangle}\left(c_{i}^{+} c_{j}+\text { h.c. }\right)
$$

Quantum wavefunctions in $\mathrm{d}=2(\mathrm{~d}>1)$

Strongly localized electrons

- Strong inhomogeneity: Optimal disorder paths dominate over diffusive spreading
- Dictionary: Growth, Directed polymer \leftrightarrow Q-wavefunction Direction of Growth \leftrightarrow Distance from origin Height function; free energy $\leftrightarrow \log \left(|\psi|^{2}\right)$

Localization: Not only single particles! X. Yu, MM, Ann. Phys. '13

Similar localization properties of excitations above ground states of disordered quantum systems!
e.g.:

- localized "spin waves" in disordered magnets
- excitations in Bose glasses (= "Dirty bosons")
$\rightarrow \quad$ Dirty bosons versus dirty fermions?

Examples of "dirty bosons"

- Superconductors with preformed pairs

Exp. systems: $\mathrm{InOx}, \mathrm{PbTe}$, and other negative U systems

- Granular superconductors /

Josephson junction arrays

- Cold bosonic atoms in disordered potentials
- Disordered quantum spin systems
(Ising, XY, Heisenberg)

Effects of quantum statistics in insulators?

How are hard core bosons different from free fermions?

(only difference: phase picked up upon exchange of two particles)

Disordered insulators Simplest model: Hopping+disorder

Model $\quad H=\sum_{i} \varepsilon_{i} n_{i}-\sum_{\langle i, j\rangle} t_{i j}\left(b_{j}^{\dagger} b_{i}+b_{i}^{\dagger} b_{j}\right), \quad n_{i}=b_{i}^{\dagger} b_{i}$.

Fermions

$$
\left\{b_{i}, b_{j}\right\}=0,, \quad\left\{b_{i}^{\dagger}, b_{j}\right\}=\delta_{i j} \quad \text { P. W. Anderson (1958) }
$$

Fock space: Fully antisymmetric wavefunctions with 0 or 1 particle on any given site

Disordered insulators
 Simplest model: Hopping+disorder

Model $\quad H=\sum_{i} \varepsilon_{i} n_{i}-\sum_{\langle i, j\rangle} t_{i j}\left(b_{j}^{\dagger} b_{i}+b_{i}^{\dagger} b_{j}\right), \quad n_{i}=b_{i}^{\dagger} b_{i}$.

Fermions

$$
\left\{b_{i}, b_{j}\right\}=0, \quad\left\{b_{i}^{\dagger}, b_{j}\right\}=\delta_{i j} \quad \text { P.W.Anderson (1958) }
$$

Hard core bosons

$$
\begin{aligned}
& (\leftrightarrow \operatorname{spin} 1 / 2) \\
& {\left[b_{i}, b_{j}\right]=0, \quad\left[b_{i}^{\dagger}, b_{j}\right]=\delta_{i j}\left(2 n_{i}-1\right)}
\end{aligned}
$$

Krauth, Trivedi, Randeria;
Feigelman, Ioffe, Kravtsov;
Ioffe, Mézard, Feigelman;
Syzranov, Moor, Efetov;
$Y u, M M$

Fock space: Fully symmetric wavefunctions with 0 or 1 particle on any given site

Disordered insulators
 Simplest model: Hopping+disorder

Model $\quad H=\sum_{i} \varepsilon_{i} n_{i}-\sum_{\langle i, j\rangle} t_{i j}\left(b_{j}^{\dagger} b_{i}+b_{i}^{\dagger} b_{j}\right), \quad n_{i}=b_{i}^{\dagger} b_{i}$.

Fermions

$$
\left\{b_{i}, b_{j}\right\}=0, \quad\left\{b_{i}^{\dagger}, b_{j}\right\}=\delta_{i j} \quad \text { P. W. Anderson (1958) }
$$

Hard core bosons $(\leftrightarrow \operatorname{spin} 1 / 2)$

Example: Localized Anderson pseudospins = doubly occupied or empty orbitals

Localization length

Strong insulators: Hopping transport! - Localization length ξ ?

Localization length

Strong insulators: Hopping transport! - Localization length ξ ?

Localization length

Fermions $\quad G_{i, 0}^{R}\left(t-t^{\prime}\right)=-i \Theta\left(t-t^{\prime}\right)\left\langle\left\{b_{i}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right\}\right\rangle$

Bosons $\quad G_{i, 0}^{R}\left(t-t^{\prime}\right)=-i \Theta\left(t-t^{\prime}\right)\left\langle\left[b_{i}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right]\right\rangle$

Generalized localization length (also interacting)

$$
\xi(\omega)^{-1}=-\lim _{\vec{r}_{i} \rightarrow \infty} \overline{\ln \left[\left|G_{i, 0}^{R}(\omega) / G_{0,0}^{R}(\omega)\right|\right] /\left|\vec{r}_{i}-\vec{r}_{0}\right|} .
$$

Free fermions: no features near $E_{F}: \quad \xi(\omega) \sim$ const. What about bosons?

Locator expansion and forward scattering

Fermions

$$
\begin{aligned}
& \left(i \frac{d}{d t}-\varepsilon_{i}\right) G_{i, 0}^{R}(t) \\
& =\delta(t) \delta_{i, 0}+i \Theta\left(t-t^{\prime}\right)\left\langle\left\{\sum_{j \in \partial i} t_{i j} b_{j}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right\}\right\rangle \\
& =\delta(t) \delta_{i, 0}-\sum_{j \in \partial i} t_{i j} G_{j,}^{R}(t)
\end{aligned}
$$

J. Hubbard (1963):

Equation of motion for Green's function!

$$
\left\{b_{i}, b_{j}\right\}=0, \quad\left\{b_{i}^{\dagger}, b_{j}\right\}=\delta_{i j}
$$

Locator expansion and forward scattering

Fermions

$$
\begin{aligned}
& \left(i \frac{d}{d t}-\varepsilon_{i}\right) G_{i, 0}^{R}(t) \quad i \frac{a}{d t} b_{i}(t) \\
& =\delta(t) \delta_{i, 0}+i \Theta\left(t-t^{\prime}\right)\left\langle\left\{\sum_{j \in \partial i} t_{i j} b_{j}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right\}\right\rangle \\
& =\delta(t) \delta_{i, 0}-\sum_{j \in \partial i} t_{i j} G_{j, 0}^{R}(t)
\end{aligned}
$$

Fourier transform \rightarrow Anderson-Feynman sum over paths Anderson (1958)
Forward scattering approximation: Sum over shortest paths!

Spivak, Shklovskii, Nguyen (1983)

$$
\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(\omega)}=\sum_{\mathcal{P}=\left\{j_{0}=0, \ldots, j_{\ell}=i\right\}} \prod_{p=1}^{\ell} t_{j_{p-1}, j_{p}} \frac{1}{\varepsilon_{j_{p}}-\omega}
$$

Locator expansion and forward scattering

Fermions

Magnetoresistance: negative (Nguyen, Spivak, Shklovskii)
Path amplitudes: real with random signs!
B-field: $t_{i j} \rightarrow t e^{-i \phi_{i j}}$ makes destructive interference less likely $\rightarrow \xi$ increases, R decreases

Forward scattering approximation: Sum over shortest paths!
 Spivak, Shklovskii, Nguyen (1983)

$$
\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(\omega)}=\sum_{\mathcal{P}=\left\{j_{0}=0, \ldots, j_{\ell}=i\right\}} \prod_{p=1}^{\ell} t_{j_{p-1}, j_{p}} \frac{1}{\varepsilon_{j_{p}}-\omega}
$$

Locator expansion and forward scattering

Bosons (hard core)

$$
\left(i \frac{d}{d t}-\varepsilon_{i}\right) G_{i, 0}^{R}(t)=\delta(t) \delta_{i, 0}\left(1-2\left\langle n_{0}\right\rangle\right)
$$

MM (EPL '13)
X. Yu, MM, Ann. Phys '13

Equation of motion for Green's function!

$$
\left.+i \Theta\left(t-t^{\prime}\right)\left\langle(-1)^{n_{i}(t)} \sum_{j \in \partial i} t_{i j} b_{j}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right]\right\rangle
$$

$$
\approx \delta(t) \delta_{i, 0}\left(1-2\left\langle n_{0}\right\rangle\right)-\operatorname{sgn}\left(\varepsilon_{i}\right) \sum_{j \in \partial i} t_{i j} G_{j, 0}^{R}(t)
$$

$$
\left[b_{i}, b_{j}\right]=0, \quad\left[b_{i}^{\dagger}, b_{j}\right]=\delta_{i j}\left(2 n_{i}-1\right)
$$

Locator expansion and forward scattering

Bosons (hard core)

$$
\left(i \frac{d}{d t}-\varepsilon_{i}\right) G_{i, 0}^{R}(t)=\delta(t) \delta_{i, 0}\left(1-2\left\langle n_{0}\right\rangle\right)
$$

MM (EPL '13)
X. Yu, MM, Ann. Phys '13

Equation of motion for Green's function!

$$
\left.+i \Theta\left(t-t^{\prime}\right)\left\langle(-1)^{n_{i}(t)} \sum_{j \in \partial i} t_{i j} b_{j}(t), b_{0}^{\dagger}\left(t^{\prime}\right)\right]\right\rangle
$$

$$
\approx \delta(t) \delta_{i, 0}\left(1-2\left\langle n_{0}\right\rangle\right)-\operatorname{sgn}\left(\varepsilon_{i}\right) \sum_{j \in \partial i} t_{i j} G_{j, 0}^{R}(t)
$$

Forward scattering: Sum over shortest paths, lowest order in t!

Locator expansion and forward scattering

Bosons (hard core)

Magnetoresistance: positive cf also Zhou, Spivak (1991) Syzranov et al (2012)

Path amplitudes: all positive at $(\omega \rightarrow 0)$!
B-field: $t_{i j} \rightarrow t e^{-i \phi_{i j}} \quad$ destroys constructive interference, ξ decreases, R increases.

Forward scattering: Sum over shortest paths, lowest order in t!

Sign difference Bosons/Fermions:
Loop of two paths:
Ring exchange of particles

$$
\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(\omega)}=\sum_{\mathcal{P}=\left\{j_{0}=0, \ldots, j_{\ell}=i\right\}} \prod_{p=1}^{\ell} t_{j_{p-1}, j_{p}} \frac{\operatorname{sgn}\left(\varepsilon_{j_{p}}\right)}{\varepsilon_{j_{p}}-\omega}
$$

Locator expansion and forward scattering

Magnetoresistance: positive cf also Zhou, Spivak (1991)
Syzranov et al (2012)
Path amplitudes: all positive at $(\omega \rightarrow 0)$!
B-field: $t_{i j} \rightarrow t e^{-i \phi_{i j}} \quad$ destroys constructive interference, ξ decreases, R increases.

J. Valles et al. (2007-11): Patterned Bi films -

Oscillations start with pos. MR: smoking gun for bosons!

Bosons vs fermions?

Bosons (hard core)

Strongly positive Shrinks

Mag. Resistance
Wavefunction
Weakly negative
Expands

Fermions

Bosons: Change in inv loc length is ~ 7 times bigger than fermions! Exponentially strong effect on resistance!

Magnetoresistance peak

A key ingredient to MR peak in superconducting films:

Gantmakher et al., Shahar et al, Baturina et al, W. Wu, Valles et al., Goldman et al.

Local pairs = bosons
\rightarrow exponentially positive MR

Unpaired fermions
\rightarrow exponentially negative MR

Sambandamurthy, Shahar et al. (2005) $-\operatorname{InO} X_{x}$

$\xi(\mathrm{B})$ more quantitatively?

Magnetoresistance quantitaively

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Relevant paths form droplets:

Quantum Green's function

$$
\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(0)}=\sum_{\Gamma: 0 \rightarrow i} \prod_{p \in \Gamma} \frac{t \cdot\left[\operatorname{sgn}\left(\varepsilon_{p}\right)\right]^{B}}{\varepsilon_{p}-\omega}
$$

Essentially like directed polymers in random media! (Monthus, Garel; Ortuno, Prior, Somoza; 2009)

Forward propagation \leftrightarrow directed polymers

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Relevant paths form droplets:

Quantum Green's function $\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(0)}=\sum_{\Gamma: 0 \rightarrow i} \prod_{p \in \Gamma} \frac{t \cdot\left[\operatorname{sgn}\left(\varepsilon_{p}\right)\right]^{B}}{\varepsilon_{p}-\omega}$
Directed polymer partition function $\quad Z_{i, 0}=\sum_{\Gamma: 0 \rightarrow i} \prod_{p \in \Gamma} \exp \left[-\frac{V(p)}{T}\right]$

Weak fields: Complex KPZ

A. Gangopadhyay, V. Galitski, MM, PRL 111, 026801 (2013)

Sum over forward paths:

$$
\left.S_{j i}(B) \equiv \frac{1}{t^{\mathrm{dist}(i j)}} \frac{G_{j, i}^{R}(\omega)}{G_{i, i}^{R}(\omega)}\right|_{\omega \rightarrow \varepsilon_{i}}=\sum_{\Gamma} e^{i \Phi_{\Gamma}(B)} J_{\Gamma}\left(\omega=\varepsilon_{i}\right) \quad \text { amp } \quad J_{\Gamma}(\omega)=\prod_{k \in \Gamma \backslash\{i\}} \frac{\operatorname{sgn}\left(\varepsilon_{k}\right)}{\varepsilon_{k}-\omega}
$$

$$
\text { phase } \Phi_{\Gamma}(B)=\int_{\Gamma} d \mathbf{r} \cdot \mathbf{A}
$$

Recursion relation: ($\omega=0$)

$$
\begin{gathered}
S_{x+1, y}(B)=V_{x+1, y}\left[e^{i \phi_{-}} S_{x, y-1}(B)+e^{i \phi_{+}} S_{x, y+1}(B)\right], \\
\phi_{ \pm}=\int_{\Gamma_{ \pm}} \mathbf{A} \cdot d \mathbf{r} \quad \Gamma_{ \pm}:(x, y \pm 1) \rightarrow(x+1, y)
\end{gathered}
$$

Continuum limit for weak disorder and B-field: $\quad(B=\nabla \times A)$
$D_{x} S=D_{y}^{2} S+V(x, y) S \quad$ Covariant derivative: $D_{\alpha=(x, y)} \equiv \partial_{\alpha}-i A_{\alpha}(x, y)$
In Landau gauge: $\vec{A}(x, y)=(0, B x) \quad \partial_{x} S=\partial_{y}^{2} S+[V(x, y)+i B x] S$
Complex KPZ equation! - Field theoretic treatment?

Droplet arguments for magnetoresponse

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Disorder dominates entropy! (Larkin-Ovchinnikov)
\rightarrow interfering loops are NOT random walks!
Roughness of interfering regions ("magnetic length")

$$
B \ell_{B} \ell_{B}^{\zeta}=1 \rightarrow \ell_{B}=B^{-1 /(1+\zeta)} \quad \zeta=2 / 3
$$

Probability of significant interference at scale ℓ_{B}
Contrast: $I=G_{\text {subdom. branch }} / G_{\text {dominant branch }} \propto \exp \left[-\Delta F\left(\ell_{B}\right)\right]$
$\operatorname{Prob}(I=O(1)) \sim \operatorname{Prob}\left(\Delta F\left(\ell_{B}\right)=O(1)\right) \sim \ell_{B}^{-\theta} \quad \theta=1 / 3$

Droplet arguments for magnetoresponse

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Disorder dominates entropy! (Larkin-Ovchinnikov)
\rightarrow interfering loops are NOT random walks!
Roughness of interfering regions ("magnetic length")

$$
B \ell_{B} B_{B}^{\zeta}=1 \rightarrow \ell_{B}=B^{-1 /(1+\xi)} \quad \zeta=2 / 3
$$

Probability of significant interference
Contrast: $I=G_{\text {subdom. branch }} / G_{\text {dominant branch }} \propto \exp \left[-\Delta F\left(\ell_{B}\right)\right]$
$\operatorname{Prob}(I=O(1)) \sim \operatorname{Prob}\left(\Delta F\left(\ell_{B}\right)=O(1)\right) \sim \ell_{B}^{-\theta} \quad \theta=1 / 3$

$$
\begin{aligned}
& \Delta\left(\frac{L}{\xi}\right) \sim \frac{L}{\ell_{B}}\left[\operatorname{Prob}(I=O(1))+c s t \operatorname{Prob}(I=O(1))^{2}+\ldots\right] \\
& \Delta\left(\frac{1}{\xi}\right) \sim \frac{1}{\ell_{B}^{1+\theta}}\left(1+\frac{\text { const }}{\ell_{B}^{\theta}}+\ldots\right) \sim B^{\chi}\left(1+O\left(B^{\alpha}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \chi=\frac{1+\theta}{1+\zeta}=\frac{4}{5} \\
& \alpha=\frac{\theta}{1+\zeta}=\frac{1}{5}
\end{aligned}
$$

Simplified hierarchical model

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Sum over all directed paths

Simplified hierarchical loop model

$$
S_{\mathcal{L}}^{k}=S_{\mathcal{L}_{1}^{\prime}}^{k+1} S_{\mathcal{L}_{2}^{\prime}}^{k+1}+e^{-f_{\mathcal{L}} L_{k}^{\theta}} e^{i a_{\mathcal{L}} B L_{k}^{1+\zeta}} S_{\mathcal{L}_{1}^{\prime \prime}}^{k+1} S_{\mathcal{L}_{2}^{\prime \prime}}^{k+1}
$$

(cf. Hwa, Fisher+Huse's droplet theory for directed polymers, 1994)

Interference sum
S recursively defined Use virial expansion!

So far

KPZ-traces in $\xi(\mathrm{B})$

Other hall marks of KPZ scaling in 2 d ?
 Phononless conductance!

Anderson localization and directed

 polymers
Phononless conductance

A.M.Somoza, J. Prior, M. Ortuno PRB 73, 184201 (2006).
C. Monthus and T. Garel, PRB 80, 024203 (2009).

Typical set-up: g measures transmission from left to right lead:

Distribution of conductance: like partition function of directed polymer!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{\theta_{D P}} \chi_{D P} ; \quad \theta_{D P}=2 \zeta-1 \begin{cases}=1 / 3 & d=1+1 \\ \approx 0.244 & d=1+2\end{cases}
$$

Tracy-Widom distribution in conductance

J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009).
A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{1 / 3} \chi_{T W}
$$

Amazing robustness of Tracy-Widom law: holds also

- with negative weights (finite energies, fermions)
- with complex weights (B-field)
- with loops (full Anderson problem instead of forward scattering)

Those only determine ξ and possibly the number α (varies very little numerically!) - despite the fact that the average conductance follows different RG flow with size:

$$
\beta(g)=\frac{d \log (g)}{d \log (L)} ; \quad \beta_{B=0}(g) \neq \beta_{B \neq 0}(g)
$$

$$
\beta(g)=\log (g)+\frac{\alpha \overline{\chi_{T W}}}{3}\left[-\frac{1}{2} \log (g)\right]^{1 / 3}
$$

Tracy-Widom distribution in conductance

> J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009).
> A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015).

2 d bulk systems: Distribution of conductance g is Tracy-Widom!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{1 / 3} \chi_{T W}
$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!): 1) Full plane, point contacts:

$$
\mathrm{P}\left(\chi_{\mathrm{TW}}\right)=\mathrm{F}_{2}^{\prime}\left(\chi_{\mathrm{TW}}\right)
$$

Tracy-Widom distribution in conductance

> J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009).
> A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{1 / 3} \chi_{T W}
$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):
2) Full plane, wide contacts:

$$
\mathrm{P}\left(\chi_{\mathrm{TW}}\right)=\mathrm{F}_{0}{ }^{\prime}\left(\chi_{\mathrm{TW}}\right)
$$

Tracy-Widom distribution in conductance

> J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009).
> A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{1 / 3} \chi_{T W}
$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):
3) Half plane, point contacts:

$$
\mathrm{P}\left(\chi_{\mathrm{TW}}\right)=\mathrm{F}_{4}{ }^{\prime}\left(\chi_{\mathrm{TW}}\right)
$$

Tracy-Widom distribution in conductance

> J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009).
> A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$
\log (g)=-\frac{2 L}{\xi}+\alpha\left(\frac{L}{\xi}\right)^{1 / 3} \chi_{T W}
$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):

Open challenge: why is Tracy-Widom so robust?

Energy dependence of ξ ?

(without magnetic field)

Bosons vs fermions

X. Yu, MM, Ann. Phys. '13 Interference in finite dimensions: leading terms
(F)
$\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(\omega)}=\sum_{\mathcal{P}=\left\{j_{0}=0, \ldots, j_{\ell}=i\right\}} \prod_{p=1}^{\ell} t_{j_{p-1}, j_{p}} \frac{1}{\varepsilon_{j_{p}}-\omega}{ }_{1 / \xi(\omega)-1 / \xi(0)}$
(B-XY)
$\frac{G_{i, 0}^{R}(\omega)}{G_{0,0}^{R}(\omega)}=\sum_{\mathcal{P}=\left\{j_{0}=0, \ldots, j_{\ell}=i\right\}} \prod_{p=1}^{\ell} t_{j_{p-1}, j_{p}} \frac{\operatorname{sgn}\left(\varepsilon_{j_{p}}\right)}{\varepsilon_{j_{p}}-\omega}$

Delocalization strongest at lowest energies: $\xi(0)>\xi(\omega)$!
\rightarrow Bosons delocalize best at low energy!

Bosons vs fermions

X. Yu, MM, Ann. Phys. '13

Interference in finite dimensions: leading terms

$(\mathrm{B}-\mathrm{I}$ sing $) \quad+$ singular non-perturbative corrections $($ at $\omega \neq 0)$

Effect is even much stronger in quantum Ising models
[Due to symmetry protection of small denominators] (X. Yu, MM '13) \rightarrow "Activated" scaling $\xi \sim \log (1 / \omega)$.

Real, interacting insulators in $\mathrm{d}=2$?

Add: long range Coulomb interactions
 + magnetic field

Obtain qualitative results from approximate treatment

Magneto-oscillations of mobility edge

T. Nguyen and MM (2014)

$$
H=-t \sum_{\langle i, j\rangle}\left(b_{i}^{+} b_{j}+\text { h.c. }\right)+\sum_{i} \varepsilon_{i} n_{i}+\frac{1}{2} \sum_{\langle i, j\rangle} \frac{e^{2}}{r_{i j}} n_{i} n_{j}
$$

Efros-Shklovskii Coulomb gap for effective potentials:

Magneto-oscillations of mobility edge

T. Nguyen and MM (2014)

$$
H=-t \sum_{\langle i, j\rangle}\left(b_{i}^{+} b_{j}+\text { h.c. }\right)+\sum_{i} \varepsilon_{i} n_{i}+\frac{1}{2} \sum_{\langle i, j\rangle} r_{i j}^{2} n_{i} n_{j}
$$

Magneto-oscillations of mobility edge

T. Nguyen and MM (2014)

$$
H=-t \sum_{\langle i, j\rangle}\left(b_{i}^{+} b_{j}+\text { h.c. }\right)+\sum_{i} \varepsilon_{i} n_{i}+\frac{1}{2} \sum_{\langle i, j\rangle} \frac{e^{2}}{r_{i j}} n_{i} n_{j}
$$

Apply magnetic flux: oscillation of mobility edge!

Magneto-oscillations of boson mobility edge
 T. Nguyen and MM (2014)

Substantial oscillations with cusps
J. Valles group,

If no phonons: expect transport by activation to mobility edge!

Magneto-oscillations of boson mobility edge

T. Nguyen and MM (2014)

Substantial oscillations with cusps
Comparison with fermions:

- opposite, downward lobes

- smaller amplitude
- two maxima per period

If no phonons: expect transport by activation to mobility edge!

Conclusions

- Wavefunction tails in 2d realize KPZ physics
- despite negative or complex weights. Scaling exponents of MR and Tracy-Widom distribution of amplitudes: like for positive weights!
- ξ of bosons shrinks in B-field (destroys positive interference)
\rightarrow Positive magnetoresistance in insulators, unlike fermions.
- Hard core bosons localize less than [hard core] fermions in all $\mathrm{d}>1$!
- Effect of Coulomb gap: \rightarrow Mobility edge
\rightarrow Magneto-oscillations of mobility edge:
Cuspy features in exp: non-trivial KPZ scaling at small B field!

