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Outline and Scope 

•  Finding traces of KPZ in disordered quantum 
systems 

 - Understand structure of quantum wavefunctions 
       - KPZ equation with complex potential; negative weights 

 - Amazing robustness of KPZ uiversality 
 
•  Effects of quantum statistics in insulators?  

 - Opposite magnetoresistance due to quantum statistics 
     - Bosons are harder to localize than fermions 
 
•  Experimental traces of KPZ behavior in disordered 

Cooper pair insulators 



Anderson localization 

Delocalization transition 
(insulator → metal) 
= Percolation of resonances 

Resonance = Δε < hopping t 

Anderson localization (1958) [single particle] 
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Anderson localization (1958) [single particle] 



Quantum wavefunctions in d=2 (d>1) 
Strongly localized electrons 

  
 
 
 
 

•  Strong inhomogeneity: Optimal disorder paths 
dominate over diffusive spreading 

•  Dictionary:    Growth, Directed polymer ↔ Q-wavefunction 
                              Direction of Growth ↔ Distance from origin 
                              Height function; free energy ↔ log(|ψ|2) 



Localization: Not only single particles! 

Similar localization properties of excitations above 
ground states of disordered quantum systems! 
 
e.g.: 
•  localized “spin waves” in disordered magnets 
•  excitations in Bose glasses (= “Dirty bosons”) 

→     Dirty bosons versus dirty fermions? 

X. Yu, MM, Ann. Phys. ‘13 



Examples of “dirty bosons” 
•  Superconductors with preformed pairs 
     Exp. systems: InOx, PbTe, and other negative U systems  

  
•  Granular superconductors /  
  Josephson junction arrays 

•  Cold bosonic atoms in disordered potentials 
 
•  Disordered quantum spin systems  

 (Ising, XY, Heisenberg) 



Effects of quantum statistics 
in insulators?  

 How are hard core bosons 
different from free fermions? 

 
(only difference: phase picked up  
upon exchange of two particles) 



Disordered insulators  
Simplest model: Hopping+disorder 
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We study the strong localization of disordered bosons, motivated by recent experiments that
suggest a bosonic superconductor-insulator transition in strongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively
interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations
shrinks as the constructive interference is suppressed by a magnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.
Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges
out of an insulator without the closing of a mobility gap.
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H =
∑

i
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∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

[bi, bj] = 0, [b†i , bj] = δij(2ni − 1) (2)

{bi, bj} = 0, , {b†i , bj} = δij (3)

tij → te−iφij (4)

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]B⟩. (5)

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (6)

−iΘ(t− t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (7)

(−1)ni(t) ≈ sign(εi) (8)

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt (9)

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0| (10)

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω

The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.

We believe that the opposite interference behavior of
bosons and fermions is key to understanding the giant
MR peak in disordered films with remnant superconduc-
tive pairing. As long as the magnetic field does not
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FIG. 1: In the configuration on the right, 2n (n = 4) paths
contribute to the Green’s function GR

ij between low energy
sites i, j. We compute the transmission amplitudes in n’th or-
der perturbation theory, summing over all paths. The sign of
fermion amplitudes depends on the number of occupied sites
on the path, whereas the paths for bosonic low energy excita-
tions always come with positive amplitudes. A magnetic field
suppresses their constructive interference, leading to positive
magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between
nearest neighbors,

H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

b†i , bi are creation and annihilation operators of fermions
or hard core bosons, resp. They satisfy the commutation
relations [bi, bj ]B = 0, [b†i , bj]B = δij [1 − 2B(1 − ni)],
where [., .]B is the commutator or the anticommutator
for bosons (B = 1) or fermions (B = 0), resp. In the
presence of a magnetic field, the hopping acquires a phase
tij = te−iφij , the sum of phases around a plaquette being
proportional to the flux threading it.

We focus on the strongly insulating regime t ≪ W ,
where hopping transport is expected at low tempera-
tures. A key element characterizing disordered insulators
is the localization length, ξ. For non-interacting fermions
it is well-defined as the (log-averaged) inverse spatial de-
cay rate of single particle wavefunction amplitudes. In
contrast, hard core bosons are inherently interacting, re-
quiring a generalization of this single particle concept.

In the limit t = 0 single particle excitations correspond
to the addition or removal of a particle on given sites. For
small hopping t/W ≪ 1, these excitations adiabatically
deform into dressed quasiparticle excitations, which are
still well localized in space. In fact, one may expect that
all low energy excitations remain discrete and localized
in this limit [13, 23, 24]. The spatial properties of such
a quasiparticle-excitations are best captured by the re-
tarded Green’s function,

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]B⟩. (2)

It describes the amplitude, at site i and after time t,
of the excitation created by adding a particle at site 0.
Here, A(t) = eiHtA(0)e−iHt, as usual.

As in early studies of the Hubbard model [31, 32], we
consider the equation of motion of the Green’s function

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (3)

−iΘ(t − t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

This is the starting point for a locator expansion in pow-
ers of the hopping t/W [2]. It is easy to show that

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-
terested in the decay of the correlation function at large
distance. In analogy to the fermionic (single particle)
study by Nguyen et al. [3], we may restrict ourselves to
forward scattering paths to leading order in t/W . Hence,
we retain only the neighbors j, which are closest to 0,
cf. Fig. 1. Furthermore, to the same order, we may
neglect the time dependence of ni(t) and approximate
(−1)ni(t) ≈ sign(εi) + O((t/W )2).

To characterize the spatial decay of an excitation of
given energy, it is preferable to work in frequency space,

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt, (5)

and to define the boson localization length as the (log-
averaged) inverse decay rate of GR(ω) with distance,

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0|. (6)

As we will see below, for bosons this decay rate has a
strong frequency dependence, unlike fermions . Note that
the transition to the superfluid is signalled by the diver-
gence of ξ(ω = 0), where the bosons condense into a
delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a
simple recursion relation for the Green’s functions at in-
creasing distance. Upon iteration, the forward scattering
approximation yields the final result as a sum over all
shortest paths P (of length ℓ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω
. (7)

Setting ω = ε0 we find the ”wavefunction” of the quasi-
particle excitation, which is adiabatically connected to
the boson insertion/removal at site 0 in the non-hopping
limit (by extracting the residue of the corresponding pole
in GR). The forward scattering approximation, the many
body events on a path and their interference are illus-
trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single
particle locator expansion [2, 3]. Hard core bosons differ

Fermions P. W. Anderson (1958) 
….. 

Model  

Fock space: Fully antisymmetric wavefunctions  
                      with 0 or 1 particle on any given site  



Disordered insulators  
Simplest model: Hopping+disorder 
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ticle at 0, all the nP ≡
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particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.

We believe that the opposite interference behavior of
bosons and fermions is key to understanding the giant
MR peak in disordered films with remnant superconduc-
tive pairing. As long as the magnetic field does not
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sulators, but also on the approach to delocalization.
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FIG. 1: In the configuration on the right, 2n (n = 4) paths
contribute to the Green’s function GR

ij between low energy
sites i, j. We compute the transmission amplitudes in n’th or-
der perturbation theory, summing over all paths. The sign of
fermion amplitudes depends on the number of occupied sites
on the path, whereas the paths for bosonic low energy excita-
tions always come with positive amplitudes. A magnetic field
suppresses their constructive interference, leading to positive
magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between
nearest neighbors,

H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

b†i , bi are creation and annihilation operators of fermions
or hard core bosons, resp. They satisfy the commutation
relations [bi, bj ]B = 0, [b†i , bj]B = δij [1 − 2B(1 − ni)],
where [., .]B is the commutator or the anticommutator
for bosons (B = 1) or fermions (B = 0), resp. In the
presence of a magnetic field, the hopping acquires a phase
tij = te−iφij , the sum of phases around a plaquette being
proportional to the flux threading it.

We focus on the strongly insulating regime t ≪ W ,
where hopping transport is expected at low tempera-
tures. A key element characterizing disordered insulators
is the localization length, ξ. For non-interacting fermions
it is well-defined as the (log-averaged) inverse spatial de-
cay rate of single particle wavefunction amplitudes. In
contrast, hard core bosons are inherently interacting, re-
quiring a generalization of this single particle concept.

In the limit t = 0 single particle excitations correspond
to the addition or removal of a particle on given sites. For
small hopping t/W ≪ 1, these excitations adiabatically
deform into dressed quasiparticle excitations, which are
still well localized in space. In fact, one may expect that
all low energy excitations remain discrete and localized
in this limit [13, 23, 24]. The spatial properties of such
a quasiparticle-excitations are best captured by the re-
tarded Green’s function,

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]B⟩. (2)

It describes the amplitude, at site i and after time t,
of the excitation created by adding a particle at site 0.
Here, A(t) = eiHtA(0)e−iHt, as usual.

As in early studies of the Hubbard model [31, 32], we
consider the equation of motion of the Green’s function

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (3)

−iΘ(t − t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

This is the starting point for a locator expansion in pow-
ers of the hopping t/W [2]. It is easy to show that

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-
terested in the decay of the correlation function at large
distance. In analogy to the fermionic (single particle)
study by Nguyen et al. [3], we may restrict ourselves to
forward scattering paths to leading order in t/W . Hence,
we retain only the neighbors j, which are closest to 0,
cf. Fig. 1. Furthermore, to the same order, we may
neglect the time dependence of ni(t) and approximate
(−1)ni(t) ≈ sign(εi) + O((t/W )2).

To characterize the spatial decay of an excitation of
given energy, it is preferable to work in frequency space,

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt, (5)

and to define the boson localization length as the (log-
averaged) inverse decay rate of GR(ω) with distance,

ξ(ω)−1 = − lim
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ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0|. (6)

As we will see below, for bosons this decay rate has a
strong frequency dependence, unlike fermions . Note that
the transition to the superfluid is signalled by the diver-
gence of ξ(ω = 0), where the bosons condense into a
delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a
simple recursion relation for the Green’s functions at in-
creasing distance. Upon iteration, the forward scattering
approximation yields the final result as a sum over all
shortest paths P (of length ℓ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω
. (7)

Setting ω = ε0 we find the ”wavefunction” of the quasi-
particle excitation, which is adiabatically connected to
the boson insertion/removal at site 0 in the non-hopping
limit (by extracting the residue of the corresponding pole
in GR). The forward scattering approximation, the many
body events on a path and their interference are illus-
trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single
particle locator expansion [2, 3]. Hard core bosons differ

Fermions 

Hard core bosons 

P. W. Anderson (1958) 
….. 

Krauth, Trivedi, Randeria; 
Feigelman, Ioffe, Kravtsov;  
Ioffe, Mézard, Feigelman; 
Syzranov, Moor, Efetov; 
Yu, MM 

Model  

(↔ spin ½) 

Fock space: Fully symmetric wavefunctions  
                      with 0 or 1 particle on any given site  
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′)]B⟩.

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (7)

(−1)ni(t) ≈ sign(εi) (8)

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt (9)

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0| (10)

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω

The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.

We believe that the opposite interference behavior of
bosons and fermions is key to understanding the giant
MR peak in disordered films with remnant superconduc-
tive pairing. As long as the magnetic field does not

2

FIG. 1: In the configuration on the right, 2n (n = 4) paths
contribute to the Green’s function GR

ij between low energy
sites i, j. We compute the transmission amplitudes in n’th or-
der perturbation theory, summing over all paths. The sign of
fermion amplitudes depends on the number of occupied sites
on the path, whereas the paths for bosonic low energy excita-
tions always come with positive amplitudes. A magnetic field
suppresses their constructive interference, leading to positive
magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between
nearest neighbors,

H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

b†i , bi are creation and annihilation operators of fermions
or hard core bosons, resp. They satisfy the commutation
relations [bi, bj ]B = 0, [b†i , bj]B = δij [1 − 2B(1 − ni)],
where [., .]B is the commutator or the anticommutator
for bosons (B = 1) or fermions (B = 0), resp. In the
presence of a magnetic field, the hopping acquires a phase
tij = te−iφij , the sum of phases around a plaquette being
proportional to the flux threading it.

We focus on the strongly insulating regime t ≪ W ,
where hopping transport is expected at low tempera-
tures. A key element characterizing disordered insulators
is the localization length, ξ. For non-interacting fermions
it is well-defined as the (log-averaged) inverse spatial de-
cay rate of single particle wavefunction amplitudes. In
contrast, hard core bosons are inherently interacting, re-
quiring a generalization of this single particle concept.

In the limit t = 0 single particle excitations correspond
to the addition or removal of a particle on given sites. For
small hopping t/W ≪ 1, these excitations adiabatically
deform into dressed quasiparticle excitations, which are
still well localized in space. In fact, one may expect that
all low energy excitations remain discrete and localized
in this limit [13, 23, 24]. The spatial properties of such
a quasiparticle-excitations are best captured by the re-
tarded Green’s function,

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]B⟩. (2)

It describes the amplitude, at site i and after time t,
of the excitation created by adding a particle at site 0.
Here, A(t) = eiHtA(0)e−iHt, as usual.

As in early studies of the Hubbard model [31, 32], we
consider the equation of motion of the Green’s function

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (3)

−iΘ(t − t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

This is the starting point for a locator expansion in pow-
ers of the hopping t/W [2]. It is easy to show that

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-
terested in the decay of the correlation function at large
distance. In analogy to the fermionic (single particle)
study by Nguyen et al. [3], we may restrict ourselves to
forward scattering paths to leading order in t/W . Hence,
we retain only the neighbors j, which are closest to 0,
cf. Fig. 1. Furthermore, to the same order, we may
neglect the time dependence of ni(t) and approximate
(−1)ni(t) ≈ sign(εi) + O((t/W )2).

To characterize the spatial decay of an excitation of
given energy, it is preferable to work in frequency space,

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt, (5)

and to define the boson localization length as the (log-
averaged) inverse decay rate of GR(ω) with distance,

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0|. (6)

As we will see below, for bosons this decay rate has a
strong frequency dependence, unlike fermions . Note that
the transition to the superfluid is signalled by the diver-
gence of ξ(ω = 0), where the bosons condense into a
delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a
simple recursion relation for the Green’s functions at in-
creasing distance. Upon iteration, the forward scattering
approximation yields the final result as a sum over all
shortest paths P (of length ℓ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω
. (7)

Setting ω = ε0 we find the ”wavefunction” of the quasi-
particle excitation, which is adiabatically connected to
the boson insertion/removal at site 0 in the non-hopping
limit (by extracting the residue of the corresponding pole
in GR). The forward scattering approximation, the many
body events on a path and their interference are illus-
trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single
particle locator expansion [2, 3]. Hard core bosons differ
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Fig. 1. Schematic picture of the sample and the leads con-
sidered: (a) narrow leads and (b) wide leads. The open cir-
cles represent sites in the system and the solid dots sites in
the leads. The lines represent the hopping between sites. The
dashed lines are just a guide to the eye.

times L × L matrices. With the iterative method we can
easily solve square samples with lateral dimension up to
L = 400. We have considered ranges of disorder W equal
to 13, 15 and 25, which correspond to localization lengths
of 1.12, 2.4 and 3.2, respectively, and lateral dimensions up
to L = 200 for the calculation of the distribution function,
which requires a huge number of independent runs to get
good statistics in the tails. For this purpose, we average
over a number of realizations larger than 6× 105 for each
disorder and size. The leads serve to obtain the conductiv-
ity from the transmission formula in a way well controlled
theoretically and close to the experimental situation.

To consider different possible geometries, we have used
two types of leads: wide leads with the same width as
the lateral dimension of the samples and narrow (one-
dimensional) leads. These are attached to the sample at
the centers of opposite edges, as shown in Figure 1a. The
scheme of the wide leads is shown in Figure 1b. In both
cases the leads are represented by the same Hamiltonian
as the system, equation (4), but without diagonal disorder.
The narrow leads can be viewed as a simplified model of a
point contact, while the wide leads should roughly corre-
spond to electrodes in contact with the whole edge of the
sample. We use cyclic periodic boundary conditions in the
direction perpendicular to the leads.

The introduction of a uniform magnetic field B per-
pendicular to the sample leads to complex hopping ma-
trix elements. In the Landau gauge the vector potential
is A = (0,−Bx, 0). Then, the hopping matrix elements

in the X direction are unchanged by the presence of the
field, while the elements in the Y direction have to be mul-
tiplied by the factor exp(±ixB), where the sign depends
on whether we are connecting a site with the upper or
lower site in the same column [27].

We have also studied the FSP approximation, first con-
sidered by Nguyen, Spivak and Shklovskii [16] and widely
studied by Medina and Kardar [17] in 2D square samples.
One can write the matrix elements of the Green function
between two sites a and b in terms of the locator expansion

⟨a|G|b⟩ =
∑

Γ

∏

i∈Γ

1
E − ϵi

, (6)

where the sum runs over all possible paths connecting the
two sites a and b. In general the convergence of this series
is very problematic, but in the strongly localized regime
for distances much larger than the localization length one
expect that the previous sum is dominated by the FSP.
Considering only directed paths is well justified in the
strongly localized regime, where the contribution of each
trajectory is exponentially small in its length. We expect
that back-scattering paths renormalize the site energies,
but they should be irrelevant in the renormalization-group
sense in the strongly localized regime. Based on this idea,
the FSP approximation only considers directed paths. In
this approximation, we will consider E = 0 and two types
of diagonal disorder: (i) ϵi can only take two values W and
−W , chosen at random with the same probability, which
was the model originally considered in reference [16]; (ii)
ϵi = max[|x|, 1]sign(x), where x is chosen randomly in the
interval (−W/2, W/2) with uniform probability. The rea-
son to substitute the small disorder energies, |ϵi| < 1 by
±1 is to take partially into account the effects of backward
paths, which for these sites are important, avoiding at the
same time problems of convergence in the locator expan-
sion and ensuring that the transmission through any path
is never larger than one. We will refer as NSS model to
the FSP approximation with the first type of disorder. For
the FSP approximation, we concentrate on the transmis-
sion amplitude between two points in opposite corners of
a square sample and we assume that the quantum trajec-
tories joining these two points have to follow one of the
(many) shortest possible paths. For the NSS model it is
standard to use the path length l, rather than the system
size L. For our geometry, l = 2L. The transmission at zero
energy is equal to [17]

T =
(

2t

W

)2l

J2(l), (7)

where the transmission amplitude J(l) is given by the sum
over all the directed paths

J(l) =
directed∑

Γ

JΓ . (8)

The contribution of each path, JΓ , is the product of the
signs of the disorder along the path Γ . J does not depend
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FIG. 1: In the configuration on the right, 2n (n = 4) paths
contribute to the Green’s function GR

ij between low energy
sites i, j. We compute the transmission amplitudes in n’th or-
der perturbation theory, summing over all paths. The sign of
fermion amplitudes depends on the number of occupied sites
on the path, whereas the paths for bosonic low energy excita-
tions always come with positive amplitudes. A magnetic field
suppresses their constructive interference, leading to positive
magnetoresistance, while fermions display the opposite effect.

by a homogeneous tunneling amplitude tij = t between
nearest neighbors,

H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

b†i , bi are creation and annihilation operators of fermions
or hard core bosons, resp. They satisfy the commutation
relations [bi, bj ]B = 0, [b†i , bj]B = δij [1 − 2B(1 − ni)],
where [., .]B is the commutator or the anticommutator
for bosons (B = 1) or fermions (B = 0), resp. In the
presence of a magnetic field, the hopping acquires a phase
tij = te−iφij , the sum of phases around a plaquette being
proportional to the flux threading it.

We focus on the strongly insulating regime t ≪ W ,
where hopping transport is expected at low tempera-
tures. A key element characterizing disordered insulators
is the localization length, ξ. For non-interacting fermions
it is well-defined as the (log-averaged) inverse spatial de-
cay rate of single particle wavefunction amplitudes. In
contrast, hard core bosons are inherently interacting, re-
quiring a generalization of this single particle concept.

In the limit t = 0 single particle excitations correspond
to the addition or removal of a particle on given sites. For
small hopping t/W ≪ 1, these excitations adiabatically
deform into dressed quasiparticle excitations, which are
still well localized in space. In fact, one may expect that
all low energy excitations remain discrete and localized
in this limit [13, 23, 24]. The spatial properties of such
a quasiparticle-excitations are best captured by the re-
tarded Green’s function,

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]B⟩. (2)

It describes the amplitude, at site i and after time t,
of the excitation created by adding a particle at site 0.
Here, A(t) = eiHtA(0)e−iHt, as usual.

As in early studies of the Hubbard model [31, 32], we
consider the equation of motion of the Green’s function

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (3)

−iΘ(t − t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

This is the starting point for a locator expansion in pow-
ers of the hopping t/W [2]. It is easy to show that

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (4)

where the sum runs over the neighbors of i. We are in-
terested in the decay of the correlation function at large
distance. In analogy to the fermionic (single particle)
study by Nguyen et al. [3], we may restrict ourselves to
forward scattering paths to leading order in t/W . Hence,
we retain only the neighbors j, which are closest to 0,
cf. Fig. 1. Furthermore, to the same order, we may
neglect the time dependence of ni(t) and approximate
(−1)ni(t) ≈ sign(εi) + O((t/W )2).

To characterize the spatial decay of an excitation of
given energy, it is preferable to work in frequency space,

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt, (5)

and to define the boson localization length as the (log-
averaged) inverse decay rate of GR(ω) with distance,

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0|. (6)

As we will see below, for bosons this decay rate has a
strong frequency dependence, unlike fermions . Note that
the transition to the superfluid is signalled by the diver-
gence of ξ(ω = 0), where the bosons condense into a
delocalized state forming at the chemical potential.

To leading order in t the above equations furnish a
simple recursion relation for the Green’s functions at in-
creasing distance. Upon iteration, the forward scattering
approximation yields the final result as a sum over all
shortest paths P (of length ℓ) between the sites 0 and i,

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω
. (7)

Setting ω = ε0 we find the ”wavefunction” of the quasi-
particle excitation, which is adiabatically connected to
the boson insertion/removal at site 0 in the non-hopping
limit (by extracting the residue of the corresponding pole
in GR). The forward scattering approximation, the many
body events on a path and their interference are illus-
trated in Fig. 1.

For fermions, Eq. (7) reproduces the result of the single
particle locator expansion [2, 3]. Hard core bosons differ
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H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

[bi, bj] = 0, [b†i , bj] = δij(2ni − 1) (2)

{bi, bj} = 0, , {b†i , bj} = δij (3)

tij → te−iφij (4)

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]⟩ (5)

GR
i,0(t − t′) = −iΘ(t − t′)⟨{bi(t), b

†
0(t

′)}⟩ (6)

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (7)

−iΘ(t− t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt (10)

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0| (11)

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω

The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.
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out of an insulator without the closing of a mobility gap.
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H =
∑

i

εini −
∑
⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

[bi, bj] = 0, [b†i , bj] = δij(2ni − 1) (2)

{bi, bj} = 0, , {b†i , bj} = δij (3)

tij → te−iφij (4)

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]⟩ (5)

GR
i,0(t − t′) = −iΘ(t − t′)⟨{bi(t), b

†
0(t

′)}⟩ (6)

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]B⟩ (7)

−iΘ(t− t′)⟨[[bi(t), H ], b†0(t
′)]B⟩.

[bi(t), H ] = εibi(t) − (−1)Bni(t)
∑
j∈∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
i,0(ω) =

∫ ∞

−∞
GR

i,0(t)e
iωtdt (10)

ξ(ω)−1 = − lim
r⃗i→∞

ln[|GR
i,0(ω)/GR

0,0(ω)|]/|r⃗i − r⃗0| (11)

GR
i,0(ω)

GR
0,0(ω)

=
∑

P={j0=0,...,jℓ=i}

ℓ∏
p=1

tjp−1,jp [sgn(εjp)]B

εjp − ω

The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.

We believe that the opposite interference behavior of
bosons and fermions is key to understanding the giant
MR peak in disordered films with remnant superconduc-
tive pairing. As long as the magnetic field does not
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particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.
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excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

Magnetoresistance: negative (Nguyen, Spivak, Shklovskii) 

0 i 

Forward scattering approximation:  Sum over shortest paths!  
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

The replica scaling arguments of Ref. [4], mapping the
forward scattering problem to directed polymers, should
apply also to the bosonic case. Here it predicts a neg-

ative perturbative correction to the hopping probability

scaling as Br3/2
hop, where rhop is the hopping distance. At

larger magnetic field, one finds a reduction of the boson
localization length, whose effect on the MR is exponen-
tially amplified in the hopping regime.

We believe that the opposite interference behavior of
bosons and fermions is key to understanding the giant
MR peak in disordered films with remnant superconduc-
tive pairing. As long as the magnetic field does not
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[bi(t), H ] = εibi(t) − (−1)ni(t)
∑

j∈∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

Sign difference Bosons/Fermions: 
Loop of two paths: 
Ring exchange of particles  

0 i 0 i 

MM (EPL ‘13)  
X. Yu, MM, Ann. Phys ‘13 
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ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.
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has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

Magnetoresistance: positive cf also Zhou, Spivak (1991) 
Syzranov et al (2012) 
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Giant positive magnetoresistance and localization in bosonic insulators
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We study the strong localization of disordered bosons, motivated by recent experiments that
suggest a bosonic superconductor-insulator transition in strongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively
interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations
shrinks as the constructive interference is suppressed by a magnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.
Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges
out of an insulator without the closing of a mobility gap.
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

Magnetoresistance: positive cf also Zhou, Spivak (1991) 
Syzranov et al (2012) 



Bosons vs fermions? 

Bosons: Change in inv loc length is ~7 times bigger than fermions! 
Exponentially strong effect on resistance! 
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εi ∈ [−W,W ]. We take W = 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ≪ W . We
fix the chemical potential to µ = 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A = Bx ey, with B being
the flux per plaquette in units of the flux quantum.
We now focus on the spatial structure of an excita-

tion localized around site i. It is characterized by the
residue of the pole at ω ≈ ϵi of the retarded Green’s
function GR

j,i(ω) = −i
∫∞
0 dteiωt⟨[cj(t), c

†
i (0)]⟩. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

i,j can be evaluated using a
locator expansion [16]. To leading order in small hopping
one obtains a sum over all paths Γ of shortest length [4],
dist(ij) (referring to Fig. 1, only steps going to the right
are allowed)

Sji(B) ≡
1

tdist(ij)
GR

j,i(ω)

GR
i,i(ω)

∣

∣

∣

∣

∣

ω→εi

=
∑

Γ

eiΦΓ(B)JΓ(ω = εi).(2)

This is closely analogous to the sum over paths for
fermions [1]. Each path Γ contributes with an amplitude

JΓ(ω) =
∏

k∈Γ\{i}

sgn(εk)

εk − ω
. (3)

and an accumulated phase ΦΓ(B) =
∫

Γ dr · A. On av-
erage, the larger the excitation energy εi, the faster the
spatial decay of |Sji| [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T )
and hence set εi to zero.
Within this “forward-scattering approximation” [4],

justified for t ≪ W , bosons and fermions differ only
by the presence and absence (respectively) of the fac-
tor sgn(εk) in the amplitudes (3). For bosons, they
are all positive for εi = 0. A magnetic field destroys
this complete constructive interference, and thus local-
izes the wavefunction more [16, 18, 22]. In contrast,
typical fermionic problems [4] feature amplitudes which
vary in sign, depending on the number of sites on the
path with εi < µ which are occupied in the ground state.
In this case the dominant effect of a magnetic field lies
in destroying negative interferences of competing paths,
which tends to delocalize the wave function slightly. Both
cases are readily amenable to efficient numerical studies
via transfer matrices [4, 17], which we use below. The
results shown in Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spa-

tial decay of localized excitations. Therefore one focuses
on the (typical) magnetoconductance, defined as [4]

∆σN (B) = exp
(

ln[|Sji(B)/Sji(0)|]
)

, N ≡ dist(ij), (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1).
The linear variation with distance in Fig. 2 shows that

x

y
Γ

Γ

1

2

ji

ℓ

ℓ
2/3

FIG. 1. The approximation of directed propagation [4] maps
the wavefunction to a directed polymer. The droplet pic-
ture suggests that traces of localized wavefunctions, or low
energy polymer configurations, form a string of loops of com-
peting/interfering paths. Relevant loops of size ℓ have trans-
verse roughness ∼ ℓζ=2/3). They are rare, being separated by
a typical distance ℓ1+θ = ℓ2ζ ≫ ℓ. Two competing paths Γ1,2

are shown, and the loops/droplets they form.

-30
-25
-20
-15
-10

-5

 30  40  50  60  70  80  90  100
Distance from localization center,N

Hardcore Bosons
B=0.3
B=0.1

B = 0.01

 0

 1

 2

 3

 4

 5

ln
 !
" N

(B
) =

 N
•[1

/#
(B

) -
 1

/#
(0

)] Fermions
B=0.3
B=0.1

B = 0.01

FIG. 2. Magnetoconductance of fermions and bosons as a
function of distance N in a half filled impurity band (µ =
0). The linear dependence implies that the magnetic flux B
changes the localization length ξ. While it increases slightly
for fermions, it shrinks rather substantially in bosons.

at large scales B changes the typical decay rate (inverse
localization length 1/ξ) of the excitations.
Numerical evaluation- One numerically evaluates

Sji(B) ≡ Sxj,yj (B) (with i as origin) by recursion

Sx+1,y(B) = Vx+1,y

[

eiφ−Sx,y−1(B) + eiφ+Sx,y+1(B)
]

(5)

with φ± =
∫

Γ±
A·dr, where Γ± : (x, y±1) → (x+1, y) are

straight paths along the lattice links and Vx,y = 1/|εx,y|.
∆σN (B) evaluated from this varies as B2N3 for small
(B,N) and shows a sharp crossover to NB4/5 at larger
fields/distances (cf. Fig. 3). The data for different N is
found to collapse onto a scaling function

ln∆σN (B) = N−1/3Φ
(

NB
3/5
)

, (6)

Φ(x ≪ 1) = b1x
10/3 ; Φ(x ≫ 1) = b2x

4/3.

with b1 ≈ 0.31, b2 ≈ 0.56. This scaling is expected theo-
retically from DPRM physics, as we explain below.
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Magnetoresistance peak 

Local pairs = bosons  
→ exponentially positive MR  

Unpaired fermions 
→ exponentially negative MR  

A key ingredient to MR peak in 
superconducting films: 

Hebard+Palaanen, 
Gantmakher et al.,  
Shahar et al,  
Baturina et al, W. Wu,  
Valles et al., Goldman et al.  

ξ(B) more quantitatively? 
 

Sambandamurthy, 
Shahar et al. 
(2005) - InOx  



Magnetoresistance quantitaively 

Relevant paths form droplets: 

Essentially like directed polymers in random media! 
(Monthus, Garel; Ortuno, Prior, Somoza; 2009) 

A. Gangopadhyay, V. Galitski, MM (PRL 2013) 

Gi,0
R ω( )

G0,0
R 0( ) =

t ⋅ sgn ε p( )⎡⎣ ⎤⎦
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ε p −ωp∈Γ
∏

Γ: 0→i
∑Quantum Green’s function 



Forward propagation ↔ directed polymers 

Relevant paths form droplets: 

A. Gangopadhyay, V. Galitski, MM (PRL 2013) 
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Directed polymer partition function 
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Weak fields: Complex KPZ 
A. Gangopadhyay, V. Galitski, MM, PRL 111, 026801 (2013) 
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(1)

with uniformly distributed on-site disorder in the range
"i 2 ½#W;W(. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.

We now focus on the spatial structure of an excitation
localized around site i. It is characterized by the residue of
the pole at ! * "i of the retarded Green’s function
GR

j;ið!Þ ¼ #i
R1
0 dtei!th½cjðtÞ; cyi ð0Þ(i [21]. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths ! of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)

SjiðBÞ +
1

tdistðijÞ
GR

j;ið!Þ
GR

i;ið!Þ

########!!"i

¼
X

!

ei"!ðBÞJ!ð! ¼ "iÞ;

(2)

which is closely analogous to the sum over paths for
fermionic Anderson insulators [1]. In Eq. (2), each path
! contributes with an amplitude

J!ð!Þ ¼
Y

k2!nfig

sgnð"kÞ
"k #!

; (3)

and an accumulated phase "!ðBÞ ¼
R
! dr %A. On aver-

age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

##NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj(Þ; N+distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ + Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
!,

A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.

FIG. 2 (color online). Magnetoconductance of fermions and
bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length $. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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with uniformly distributed on-site disorder in the range
"i 2 ½#W;W(. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.

We now focus on the spatial structure of an excitation
localized around site i. It is characterized by the residue of
the pole at ! * "i of the retarded Green’s function
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0 dtei!th½cjðtÞ; cyi ð0Þ(i [21]. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths ! of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)
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and an accumulated phase "!ðBÞ ¼
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! dr %A. On aver-

age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

##NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj(Þ; N+distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ + Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
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A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.
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bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
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fermions, it shrinks much more substantially in bosons.
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with uniformly distributed on-site disorder in the range
"i 2 ½#W;W(. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.

We now focus on the spatial structure of an excitation
localized around site i. It is characterized by the residue of
the pole at ! * "i of the retarded Green’s function
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j;ið!Þ ¼ #i
R1
0 dtei!th½cjðtÞ; cyi ð0Þ(i [21]. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths ! of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)
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and an accumulated phase "!ðBÞ ¼
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! dr %A. On aver-

age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]
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where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates
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Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
!,

A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.

FIG. 2 (color online). Magnetoconductance of fermions and
bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length $. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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with uniformly distributed on-site disorder in the range
"i 2 ½#W;W(. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.

We now focus on the spatial structure of an excitation
localized around site i. It is characterized by the residue of
the pole at ! * "i of the retarded Green’s function
GR

j;ið!Þ ¼ #i
R1
0 dtei!th½cjðtÞ; cyi ð0Þ(i [21]. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths ! of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)
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which is closely analogous to the sum over paths for
fermionic Anderson insulators [1]. In Eq. (2), each path
! contributes with an amplitude
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and an accumulated phase "!ðBÞ ¼
R
! dr %A. On aver-

age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

##NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj(Þ; N+distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ + Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
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A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.

FIG. 2 (color online). Magnetoconductance of fermions and
bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length $. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.
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j;i can be evaluated using a
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spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

##NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj(Þ; N+distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ + Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
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A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.

FIG. 2 (color online). Magnetoconductance of fermions and
bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length $. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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"i 2 ½#W;W(. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t ) W. We
fix the chemical potential to ! ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being
the flux per plaquette in units of the flux quantum.

We now focus on the spatial structure of an excitation
localized around site i. It is characterized by the residue of
the pole at ! * "i of the retarded Green’s function
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away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths ! of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)
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and an accumulated phase "!ðBÞ ¼
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age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-
frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t ) W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i <! which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

##NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj(Þ; N+distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=$, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ + Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei%#Sx;y#1ðBÞ þ ei%þSx;yþ1ðBÞ(; (5)

with %, ¼ R
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A % dr, where !,: ðx; y, 1Þ ! ðxþ 1; yÞ
are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ##NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness -‘&¼2=3. They are rare, being separated by
a typical distance ‘1þ' ¼ ‘2& . ‘. We show two competing
paths !1;2 and the loops or droplets they form.
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bosons as a function of distance N in a half-filled impurity band
(! ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length $. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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jln!!NðBÞj¼N$1=3"ðNB3=5Þ;
"ðx%1Þ¼b1x

10=3; "ðx&1Þ¼b2x
4=3; (6)

with b1 ' 0:31, b2 ' 0:56. This scaling is expected theo-
retically from the physics of directed polymers (DPRM),
as we explain below.

Mapping to directed polymers.—By virtue of the posi-
tive path amplitudes, SjiðB ¼ 0Þ can be interpreted as the
partition sum of DPRM in 1þ 1 dimensions [24,25] with
random on-site energies lnj"ij (at temperature T ¼ 1) and
ends fixed at sites i and j. Each polymer configuration
corresponds to a directed path # of the expansion (2).

In low dimensions, DPRM exhibit a pinned phase at
large scales, as the random potential is relevant under
renormalization [26,27]. Beyond a characteristic pinning
scale Lc (of the order of the lattice scale here), the random
potential competes strongly with the polymer’s entropic
elasticity and induces roughness exceeding that of random
walks: on longitudinal scales ‘, typical transverse excur-
sions of configurations grow as ‘" with " > 1=2. A low-
energy excitation that differs from dominant configurations
on scale, ‘ has typical excitation energy Eð‘Þ ) ‘#, with
energy exponent # ¼ 2" $ 1 [28]. In 1þ 1 dimensions
(MR in 2D), the value " ¼ 2=3 is known exactly [29],
while "3D ' 0:62 is known numerically [30].

When B ! 0, the polymer configurations acquire com-
plex weights. Studies of " and # exponents of complex
DPRM [31] suggest that the scalings of the pinned phase
do not change with complex weights. In fact, for fermi-
ons at B ¼ 0, where negative weights are abundant,
there is numerical evidence that the wave functions are
still governed by DPRM exponents [32–34]. We thus
assume that the DPRM exponents hold for finite fields
as well.

It is interesting to note that for weak fields, Eq. (5)
admits a continuum limit, where S obeys the equation

DxS ¼ D2
ySþ Vðx; yÞS; (7)

with a $-correlated random potential term Vðx; yÞ and
D%¼ðx;yÞ * @% $ iA%ðx; yÞ being the gauge-covariant
derivative (in Landau gauge Ay ¼ 0). This generalizes
the Kardar-Parisi-Zhang equation [35] to the presence of
complex potentials V ! V þ iAx and may render bosonic
MR amenable to a field theoretic analysis similar to
Refs. [36,37]. However, a rigorous study of this modified
Kardar-Parisi-Zhang equation is not attempted here.
In DPRM language, the magnetoconductance can be

cast as a thermodynamic average of the phase factors
ei"#ðBÞ over polymer configurations, and the ratio of ampli-
tudes Sji takes the manifestly gauge-invariant form:

!!!!!!!!
SjiðBÞ
Sjið0Þ

!!!!!!!!
2
¼

"P
#;#0 e$E#$E#0 cosðBA##0ÞP

#;#0 e$E#$E#0

#
: (8)

Here E# ¼ P
k2#ni lnj"kj is the energy of configuration #,

and A##0 is the oriented area enclosed by # and #0.
MR in weak fields.—For weak fields or short distances,

one can evaluate !!NðBÞ perturbatively in B. Typical
loops of linear extent ‘ enclose a flux )B‘1þ" . Of the
N=‘ possible independent loops, only a fraction )‘$#

interfere significantly, cf. Fig. 1, and are thus sensibly
affected by B. As long as N % ‘B * B$ð1=ð"þ1ÞÞ, the domi-
nant contribution to Eq. (8) comes from the largest loops of
length ‘) N, which nevertheless enclose only a fraction of
a flux quantum. This results in the magnetoconductance (4)
!!N / $N$#ðBN1þ" Þ2 ¼ $B2N3. The roughness expo-
nent drops out of this perturbative result. We therefore
recover the scaling previously predicted for interfering
paths with positive weights [3], even though those assumed
random walk scaling, " ¼ 1=2.
MR in strong fields.—For N > ‘B, DPRM scalings show

more clearly in the magnetoresponse. The dominant con-
tribution to!!N comes from reduced interference in loops
of length ‘B, each of which decreases!!N byOð1Þ. Larger
loops contribute similarly, but their probability to interfere
significantly decreases as ‘$#. On the other hand, smaller
loops, albeit more abundant and likely to interfere, enclose
a small fraction of a flux quantum, and thus have a negli-
gible effect. The contribution from loops of size ‘B gives
rise to an extensive lnð!!NÞ proportional to the density of
significantly interfering loops,

ln!!N

N
* $!

"
1

&

#
)$‘$1

B ‘$#
B ¼ $Bð1þ#Þ=ð1þ"Þ

¼ $B2"=ð1þ"Þ: (9)

This is equivalent to a reduction of the inverse localization
length by B4=5 in 2D. In 3D the same arguments yield an
exponent 2"=ð1þ "Þ ' 0:765. Both exceed the value 2=3
obtained upon neglecting pinning and assuming random

FIG. 3 (color online). Scaling of the magnetoconductance !!
with distance N and flux per plaquette B. The crossover from the
perturbative regime j ln!!NðBÞj) B2N3 to the nonperturbative
regime j ln!!NðBÞj) NB4=5 occurs at N ) ‘B, where many
successive interfering loops start contributing. Inset: change of
inverse localization length for N ¼ 200, and best fit to the
leading two terms in Eq. (11), &$1ðBÞ$&$1ð0Þ¼c1B

4=5þc2B.
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tive path amplitudes, SjiðB ¼ 0Þ can be interpreted as the
partition sum of DPRM in 1þ 1 dimensions [24,25] with
random on-site energies lnj"ij (at temperature T ¼ 1) and
ends fixed at sites i and j. Each polymer configuration
corresponds to a directed path # of the expansion (2).

In low dimensions, DPRM exhibit a pinned phase at
large scales, as the random potential is relevant under
renormalization [26,27]. Beyond a characteristic pinning
scale Lc (of the order of the lattice scale here), the random
potential competes strongly with the polymer’s entropic
elasticity and induces roughness exceeding that of random
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sions of configurations grow as ‘" with " > 1=2. A low-
energy excitation that differs from dominant configurations
on scale, ‘ has typical excitation energy Eð‘Þ ) ‘#, with
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while "3D ' 0:62 is known numerically [30].
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plex weights. Studies of " and # exponents of complex
DPRM [31] suggest that the scalings of the pinned phase
do not change with complex weights. In fact, for fermi-
ons at B ¼ 0, where negative weights are abundant,
there is numerical evidence that the wave functions are
still governed by DPRM exponents [32–34]. We thus
assume that the DPRM exponents hold for finite fields
as well.
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admits a continuum limit, where S obeys the equation
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with a $-correlated random potential term Vðx; yÞ and
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derivative (in Landau gauge Ay ¼ 0). This generalizes
the Kardar-Parisi-Zhang equation [35] to the presence of
complex potentials V ! V þ iAx and may render bosonic
MR amenable to a field theoretic analysis similar to
Refs. [36,37]. However, a rigorous study of this modified
Kardar-Parisi-Zhang equation is not attempted here.
In DPRM language, the magnetoconductance can be
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length ‘) N, which nevertheless enclose only a fraction of
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recover the scaling previously predicted for interfering
paths with positive weights [3], even though those assumed
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of length ‘B, each of which decreases!!N byOð1Þ. Larger
loops contribute similarly, but their probability to interfere
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loops, albeit more abundant and likely to interfere, enclose
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successive interfering loops start contributing. Inset: change of
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Sum over forward paths: 

amp 

phase 

Recursion relation: (ω = 0) 

Continuum limit for weak disorder and B-field: B = ∇× A( )

Covariant derivative: 

In Landau gauge: ∂xS = ∂y
2S + V x, y( )+ iBx⎡⎣ ⎤⎦S

!
A x, y( ) = 0,Bx( )

Complex KPZ equation! – Field theoretic treatment? 



Roughness of interfering regions (“magnetic length”)  
ζ = 2/3 

Probability of significant interference at scale lB  

Disorder dominates entropy! (Larkin-Ovchinnikov) 
→ interfering loops are NOT random walks! 

A. Gangopadhyay, V. Galitski, MM (PRL 2013) 

l lζ BBB
ζ =1  →   B = B

−1/ 1+ζ( )

θ = 1/3  

Contrast: I =Gsubdom. branch
Gdominant branch

∝  exp −ΔF ℓB( )⎡⎣ ⎤⎦

Prob I =O 1( )( ) ~ Prob ΔF ℓB( ) =O 1( )( ) ~ ℓB
−θ

Droplet arguments for magnetoresponse 



ζ = 2/3 

Disorder dominates entropy! (Larkin-Ovchinnikov) 
→ interfering loops are NOT random walks! 

A. Gangopadhyay, V. Galitski, MM (PRL 2013) 
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5

BBB
ζ =1  →   B = B

−1/ 1+ζ( )

Roughness of interfering regions (“magnetic length”)  l lζ 

Probability of significant interference 

θ = 1/3  

Contrast: I =Gsubdom. branch
Gdominant branch

∝  exp −ΔF ℓB( )⎡⎣ ⎤⎦

Prob I =O 1( )( ) ~ Prob ΔF ℓB( ) =O 1( )( ) ~ ℓB
−θ

Droplet arguments for magnetoresponse 



Simplified hierarchical model 

(cf. Hwa, 
Fisher+Huse’s 
droplet theory 
for directed 
polymers, 
1994) 

Interference sum 
S recursively 

defined – 
Use virial 
expansion! 

A. Gangopadhyay, V. Galitski, MM (PRL 2013) 



So far 
 

KPZ-traces in ξ(B) 
 
 

Other hall marks of KPZ scaling in 2d? 
Phononless conductance! 



Anderson localization and directed 
polymers 

Phononless conductance 

ξ = − lim
L→∞

2L
log g( )

log g( ) = − 2L
ξ

+α L
ξ

⎛
⎝⎜

⎞
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θDP

χDP;        θDP = 2ζ −1  
=   1 3         d =1+1
≈   0.244     d =1+ 2

⎧
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A.M.Somoza, J. Prior, M. Ortuno,  
   PRB 73, 184201 (2006). 
C. Monthus and T. Garel, 
   PRB 80, 024203 (2009). 
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Fig. 1. Schematic picture of the sample and the leads con-
sidered: (a) narrow leads and (b) wide leads. The open cir-
cles represent sites in the system and the solid dots sites in
the leads. The lines represent the hopping between sites. The
dashed lines are just a guide to the eye.

times L × L matrices. With the iterative method we can
easily solve square samples with lateral dimension up to
L = 400. We have considered ranges of disorder W equal
to 13, 15 and 25, which correspond to localization lengths
of 1.12, 2.4 and 3.2, respectively, and lateral dimensions up
to L = 200 for the calculation of the distribution function,
which requires a huge number of independent runs to get
good statistics in the tails. For this purpose, we average
over a number of realizations larger than 6× 105 for each
disorder and size. The leads serve to obtain the conductiv-
ity from the transmission formula in a way well controlled
theoretically and close to the experimental situation.

To consider different possible geometries, we have used
two types of leads: wide leads with the same width as
the lateral dimension of the samples and narrow (one-
dimensional) leads. These are attached to the sample at
the centers of opposite edges, as shown in Figure 1a. The
scheme of the wide leads is shown in Figure 1b. In both
cases the leads are represented by the same Hamiltonian
as the system, equation (4), but without diagonal disorder.
The narrow leads can be viewed as a simplified model of a
point contact, while the wide leads should roughly corre-
spond to electrodes in contact with the whole edge of the
sample. We use cyclic periodic boundary conditions in the
direction perpendicular to the leads.

The introduction of a uniform magnetic field B per-
pendicular to the sample leads to complex hopping ma-
trix elements. In the Landau gauge the vector potential
is A = (0,−Bx, 0). Then, the hopping matrix elements

in the X direction are unchanged by the presence of the
field, while the elements in the Y direction have to be mul-
tiplied by the factor exp(±ixB), where the sign depends
on whether we are connecting a site with the upper or
lower site in the same column [27].

We have also studied the FSP approximation, first con-
sidered by Nguyen, Spivak and Shklovskii [16] and widely
studied by Medina and Kardar [17] in 2D square samples.
One can write the matrix elements of the Green function
between two sites a and b in terms of the locator expansion

⟨a|G|b⟩ =
∑

Γ

∏

i∈Γ

1
E − ϵi

, (6)

where the sum runs over all possible paths connecting the
two sites a and b. In general the convergence of this series
is very problematic, but in the strongly localized regime
for distances much larger than the localization length one
expect that the previous sum is dominated by the FSP.
Considering only directed paths is well justified in the
strongly localized regime, where the contribution of each
trajectory is exponentially small in its length. We expect
that back-scattering paths renormalize the site energies,
but they should be irrelevant in the renormalization-group
sense in the strongly localized regime. Based on this idea,
the FSP approximation only considers directed paths. In
this approximation, we will consider E = 0 and two types
of diagonal disorder: (i) ϵi can only take two values W and
−W , chosen at random with the same probability, which
was the model originally considered in reference [16]; (ii)
ϵi = max[|x|, 1]sign(x), where x is chosen randomly in the
interval (−W/2, W/2) with uniform probability. The rea-
son to substitute the small disorder energies, |ϵi| < 1 by
±1 is to take partially into account the effects of backward
paths, which for these sites are important, avoiding at the
same time problems of convergence in the locator expan-
sion and ensuring that the transmission through any path
is never larger than one. We will refer as NSS model to
the FSP approximation with the first type of disorder. For
the FSP approximation, we concentrate on the transmis-
sion amplitude between two points in opposite corners of
a square sample and we assume that the quantum trajec-
tories joining these two points have to follow one of the
(many) shortest possible paths. For the NSS model it is
standard to use the path length l, rather than the system
size L. For our geometry, l = 2L. The transmission at zero
energy is equal to [17]

T =
(

2t

W

)2l

J2(l), (7)

where the transmission amplitude J(l) is given by the sum
over all the directed paths

J(l) =
directed∑

Γ

JΓ . (8)

The contribution of each path, JΓ , is the product of the
signs of the disorder along the path Γ . J does not depend

Typical set-up: g measures transmission from left to right lead: 

g ≈ exp − 2L
ξ

⎡

⎣
⎢

⎤

⎦
⎥

g 

1-g 

Distribution of conductance: like partition function of directed polymer! 



Tracy-Widom distribution in 
conductance 

J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009). 
A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015). 
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2d bulk systems: Distribution of conductance g is Tracy-Widom! 
          
 
 

log g( ) = − 2L
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χTW

Amazing robustness of Tracy-Widom law: holds also 
•  with negative weights (finite energies, fermions) 
•  with complex weights (B-field) 
•  with loops (full Anderson problem instead of forward scattering) 
 

Those only determine ξ and possibly the number α (varies very 
little numerically!) – despite the fact that the average conductance 
follows different RG flow with size:   

β g( ) = d log g( )
d log(L)

;     βB=0 g( ) ≠ βB≠0 g( )



Tracy-Widom distribution in 
conductance 

Only aspect determining the type of Tracy-Widom distribution: 
Geometrical boundary conditions of the conductance (like dir. Pol!): 
1) Full plane, point contacts:   

 P(χTW) = F2’ (χTW) 

J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009). 
A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015). 

2d bulk systems: Distribution of conductance g is Tracy-Widom! 
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Fig. 1. Schematic picture of the sample and the leads con-
sidered: (a) narrow leads and (b) wide leads. The open cir-
cles represent sites in the system and the solid dots sites in
the leads. The lines represent the hopping between sites. The
dashed lines are just a guide to the eye.

times L × L matrices. With the iterative method we can
easily solve square samples with lateral dimension up to
L = 400. We have considered ranges of disorder W equal
to 13, 15 and 25, which correspond to localization lengths
of 1.12, 2.4 and 3.2, respectively, and lateral dimensions up
to L = 200 for the calculation of the distribution function,
which requires a huge number of independent runs to get
good statistics in the tails. For this purpose, we average
over a number of realizations larger than 6× 105 for each
disorder and size. The leads serve to obtain the conductiv-
ity from the transmission formula in a way well controlled
theoretically and close to the experimental situation.

To consider different possible geometries, we have used
two types of leads: wide leads with the same width as
the lateral dimension of the samples and narrow (one-
dimensional) leads. These are attached to the sample at
the centers of opposite edges, as shown in Figure 1a. The
scheme of the wide leads is shown in Figure 1b. In both
cases the leads are represented by the same Hamiltonian
as the system, equation (4), but without diagonal disorder.
The narrow leads can be viewed as a simplified model of a
point contact, while the wide leads should roughly corre-
spond to electrodes in contact with the whole edge of the
sample. We use cyclic periodic boundary conditions in the
direction perpendicular to the leads.

The introduction of a uniform magnetic field B per-
pendicular to the sample leads to complex hopping ma-
trix elements. In the Landau gauge the vector potential
is A = (0,−Bx, 0). Then, the hopping matrix elements

in the X direction are unchanged by the presence of the
field, while the elements in the Y direction have to be mul-
tiplied by the factor exp(±ixB), where the sign depends
on whether we are connecting a site with the upper or
lower site in the same column [27].

We have also studied the FSP approximation, first con-
sidered by Nguyen, Spivak and Shklovskii [16] and widely
studied by Medina and Kardar [17] in 2D square samples.
One can write the matrix elements of the Green function
between two sites a and b in terms of the locator expansion

⟨a|G|b⟩ =
∑

Γ

∏

i∈Γ

1
E − ϵi

, (6)

where the sum runs over all possible paths connecting the
two sites a and b. In general the convergence of this series
is very problematic, but in the strongly localized regime
for distances much larger than the localization length one
expect that the previous sum is dominated by the FSP.
Considering only directed paths is well justified in the
strongly localized regime, where the contribution of each
trajectory is exponentially small in its length. We expect
that back-scattering paths renormalize the site energies,
but they should be irrelevant in the renormalization-group
sense in the strongly localized regime. Based on this idea,
the FSP approximation only considers directed paths. In
this approximation, we will consider E = 0 and two types
of diagonal disorder: (i) ϵi can only take two values W and
−W , chosen at random with the same probability, which
was the model originally considered in reference [16]; (ii)
ϵi = max[|x|, 1]sign(x), where x is chosen randomly in the
interval (−W/2, W/2) with uniform probability. The rea-
son to substitute the small disorder energies, |ϵi| < 1 by
±1 is to take partially into account the effects of backward
paths, which for these sites are important, avoiding at the
same time problems of convergence in the locator expan-
sion and ensuring that the transmission through any path
is never larger than one. We will refer as NSS model to
the FSP approximation with the first type of disorder. For
the FSP approximation, we concentrate on the transmis-
sion amplitude between two points in opposite corners of
a square sample and we assume that the quantum trajec-
tories joining these two points have to follow one of the
(many) shortest possible paths. For the NSS model it is
standard to use the path length l, rather than the system
size L. For our geometry, l = 2L. The transmission at zero
energy is equal to [17]

T =
(

2t

W

)2l

J2(l), (7)

where the transmission amplitude J(l) is given by the sum
over all the directed paths

J(l) =
directed∑

Γ

JΓ . (8)

The contribution of each path, JΓ , is the product of the
signs of the disorder along the path Γ . J does not depend

Universal distribution of conductance in 2D localized phase

Somoza, Ortuno, Prior (2007)

localization length

system sizeL Nguyen, Spivak, Shklovski (85)

NSS

random variable with 
Tracy Widom distribution 



Tracy-Widom distribution in 
conductance 

Only aspect determining the type of Tracy-Widom distribution: 
Geometrical boundary conditions of the conductance (like dir. Pol!): 
2) Full plane, wide contacts: 
            P(χTW) = F0’(χTW) 

J. Prior, A.M.Somoza, and M. Ortuno, EPJB 70, 513(2009). 
A.M. Somoza, P. Le Doussal. M. Ortuno, PRB 91, 155413 (2015). 
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Fig. 1. Schematic picture of the sample and the leads con-
sidered: (a) narrow leads and (b) wide leads. The open cir-
cles represent sites in the system and the solid dots sites in
the leads. The lines represent the hopping between sites. The
dashed lines are just a guide to the eye.

times L × L matrices. With the iterative method we can
easily solve square samples with lateral dimension up to
L = 400. We have considered ranges of disorder W equal
to 13, 15 and 25, which correspond to localization lengths
of 1.12, 2.4 and 3.2, respectively, and lateral dimensions up
to L = 200 for the calculation of the distribution function,
which requires a huge number of independent runs to get
good statistics in the tails. For this purpose, we average
over a number of realizations larger than 6× 105 for each
disorder and size. The leads serve to obtain the conductiv-
ity from the transmission formula in a way well controlled
theoretically and close to the experimental situation.

To consider different possible geometries, we have used
two types of leads: wide leads with the same width as
the lateral dimension of the samples and narrow (one-
dimensional) leads. These are attached to the sample at
the centers of opposite edges, as shown in Figure 1a. The
scheme of the wide leads is shown in Figure 1b. In both
cases the leads are represented by the same Hamiltonian
as the system, equation (4), but without diagonal disorder.
The narrow leads can be viewed as a simplified model of a
point contact, while the wide leads should roughly corre-
spond to electrodes in contact with the whole edge of the
sample. We use cyclic periodic boundary conditions in the
direction perpendicular to the leads.

The introduction of a uniform magnetic field B per-
pendicular to the sample leads to complex hopping ma-
trix elements. In the Landau gauge the vector potential
is A = (0,−Bx, 0). Then, the hopping matrix elements

in the X direction are unchanged by the presence of the
field, while the elements in the Y direction have to be mul-
tiplied by the factor exp(±ixB), where the sign depends
on whether we are connecting a site with the upper or
lower site in the same column [27].

We have also studied the FSP approximation, first con-
sidered by Nguyen, Spivak and Shklovskii [16] and widely
studied by Medina and Kardar [17] in 2D square samples.
One can write the matrix elements of the Green function
between two sites a and b in terms of the locator expansion

⟨a|G|b⟩ =
∑

Γ

∏

i∈Γ

1
E − ϵi

, (6)

where the sum runs over all possible paths connecting the
two sites a and b. In general the convergence of this series
is very problematic, but in the strongly localized regime
for distances much larger than the localization length one
expect that the previous sum is dominated by the FSP.
Considering only directed paths is well justified in the
strongly localized regime, where the contribution of each
trajectory is exponentially small in its length. We expect
that back-scattering paths renormalize the site energies,
but they should be irrelevant in the renormalization-group
sense in the strongly localized regime. Based on this idea,
the FSP approximation only considers directed paths. In
this approximation, we will consider E = 0 and two types
of diagonal disorder: (i) ϵi can only take two values W and
−W , chosen at random with the same probability, which
was the model originally considered in reference [16]; (ii)
ϵi = max[|x|, 1]sign(x), where x is chosen randomly in the
interval (−W/2, W/2) with uniform probability. The rea-
son to substitute the small disorder energies, |ϵi| < 1 by
±1 is to take partially into account the effects of backward
paths, which for these sites are important, avoiding at the
same time problems of convergence in the locator expan-
sion and ensuring that the transmission through any path
is never larger than one. We will refer as NSS model to
the FSP approximation with the first type of disorder. For
the FSP approximation, we concentrate on the transmis-
sion amplitude between two points in opposite corners of
a square sample and we assume that the quantum trajec-
tories joining these two points have to follow one of the
(many) shortest possible paths. For the NSS model it is
standard to use the path length l, rather than the system
size L. For our geometry, l = 2L. The transmission at zero
energy is equal to [17]

T =
(

2t

W

)2l

J2(l), (7)

where the transmission amplitude J(l) is given by the sum
over all the directed paths

J(l) =
directed∑

Γ

JΓ . (8)

The contribution of each path, JΓ , is the product of the
signs of the disorder along the path Γ . J does not depend
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Only aspect determining the type of Tracy-Widom distribution: 
Geometrical boundary conditions of the conductance (like dir. Pol!): 
3) Half plane, point contacts:  
            P(χTW) = F4’(χTW) 
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Tracy-Widom distribution in 
conductance 

Only aspect determining the type of Tracy-Widom distribution: 
Geometrical boundary conditions of the conductance (like dir. Pol!): 
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2d bulk systems: Distribution of conductance g is Tracy-Widom! 
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Open challenge: why is Tracy-Widom so robust? 



 
Energy dependence of ξ? 

 
 

(without magnetic field) 
 
 
 



Bosons vs fermions 
Interference in finite dimensions: leading terms  

Delocalization strongest at lowest energies: ξ(0) > ξ(ω)! 
→ Bosons delocalize best at low energy!  

 

Giant positive magnetoresistance and localization in bosonic insulators

Markus Müller1

1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
(Dated: August 19, 2011)

We study the strong localization of disordered bosons, motivated by recent experiments that
suggest a bosonic superconductor-insulator transition in strongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively
interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations
shrinks as the constructive interference is suppressed by a magnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.
Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges
out of an insulator without the closing of a mobility gap.

PACS numbers: 73.50.Jt, 74.81.Bd, 05.30.Jp, 72.20.Ee, 71.55.Jv

H =
∑

i

εini −
∑

⟨i,j⟩

tij(b
†
jbi + b†ibj), ni = b†i bi. (1)

[bi, bj] = 0, [b†i , bj] = δij(2ni − 1) (2)

{bi, bj} = 0, , {b†i , bj} = δij (3)

tij → te−iφij (4)

GR
i,0(t − t′) = −iΘ(t− t′)⟨[bi(t), b

†
0(t

′)]⟩ (5)

GR
i,0(t − t′) = −iΘ(t − t′)⟨{bi(t), b

†
0(t

′)}⟩ (6)

i
d

dt
GR

i,0(t − t′) = δ(t − t′)δi,0⟨[b0(0), b†0(0)]⟩ (7)

−iΘ(t − t′)⟨[[bi(t), H ], b†0(t
′)]⟩.

(

i
d

dt
− εi
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GR
i,0(t) = δ(t)δi,0(1 − 2⟨n0⟩)
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〈

[(−1)ni(t)
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j∈∂i

tijbj(t), b
†
0(t

′)]

〉

[bi(t), H ] = εibi(t) − (−1)ni(t)
∑

j∈∂i

tijbj(t), (8)

(−1)ni(t) ≈ sign(εi) (9)

GR
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∫ ∞

−∞
GR

i,0(t)e
iωtdt (10)

ξ(ω)−1 = − lim
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ln[|GR
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GR
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∑
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.

(F) 

(B - XY) 2d 
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Interference in finite dimensions: leading terms  
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→ “Activated” scaling ξ ~ log(1/ω). 
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Upper bound of the decay rate

Decay rate along the optimal path at finite

Fig. 6. (Color online) Spatial decay rate � as a function of frequency ! for the Ising model at the transition point for a tree
branching ratio K = 2. � is strictly positive for ! > 0. The red solid line shows the decay rate along a rare path with a biased,
!-dependent disorder distribution (116). The blue dashed line shows the upper bound obtained by restricting the propagation
to a path P0 with distribution (113) which is optimal for propagation ! = 0. At low energy, the two estimates nearly coincide
and exhibit the activated scaling 1/| log(!)| ; cf. Fig. 7.

In other words, the Isingmodel orders atweaker exchange than the XYmodel, given an equal strength
of random field disorder. This essentially reflects the fact that propagation of order in the Ising model
is stronger at! = 0, as resonances at low energy are not softened by self-energy effects, unlike in the
XY model.

We conjecture that the ratio gc,Ising/gc,XY ⇡ 2/e yields a good estimate for the ratio of critical points
in the limit of high dimensional lattices.

6.7. Effects from rare regions on spatial decay rates in the Ising paramagnet

Note that so far our analysis for frequency dependent decay rates in the Ising model was restricted
to the leading order in exchange. This yielded corrections � (!)�� (0) ⇡ A!2 for both the Isingmodel
and the XY model, with a coefficient A, which is only slightly bigger in the Ising case.

However, from the 1-dimensional Ising chain studied in Section 5, it is clear that for the Isingmodel
we should expect strong corrections to this quadratic behavior, because of the special role played
by ! = 0 and the analogue of the rare stretches that we identified in 1d. The effect of subleading
corrections in the Ising model is indeed quite different from the XY case. As we argued in Section 5.6,
and as also appears clearly from the explicit calculations in the 1d chain, self-energy corrections
are essentially absent in the limit ! ! 0, while they do appear at finite !. On the other hand, as
we discussed above for the XY model, the regularizing self-energy corrections along the dominant
delocalizing path at ! = 0 are responsible for the leading corrections to the decay rate, both in free
fermions and in the XY model [92,97]. Since such self-energy corrections are absent along 1d Ising
chains, we expect that the first corrections to gc,Ising will be subleading in the large K limit. Hence we
expect that Eq. (112) captures the correct asymptotics for the critical point of the Ising model.

To assess the effect of rare regions on excitations at finite energy, we need to study the spatial
decay rate of finite energy excitations. One expects that such excitations still decay preferentially
along one preferred path, which optimizes the Lyapunov exponent at that given frequency. However,
this path in general depends on the frequency, and thus is not necessarily identical to the path P0
which optimizes propagation at ! = 0. Nevertheless, by restricting the analysis of propagation to
P0 we obtain an upper bound on �Ising(!). This bound turns out to be rather tight at very low !, as
we confirmed by comparing it with a calculation where the paths are optimized for each frequency
individually, cf. Fig. 6.
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We study the strong localization of disordered bosons, motivated by recent experiments that
suggest a bosonic superconductor-insulator transition in strongly disordered films. In the insulator,
unlike for fermions, nearly all scattering paths between low-energy sites contribute constructively
interfering amplitudes to hopping matrix elements. The localization length of bosonic excitations
shrinks as the constructive interference is suppressed by a magnetic field, entailing a giant positive
magnetoresistance, opposite to the analogous effect in strongly localized fermions. In zero field, both
the localization length and the density of states are predicted to increase with decreasing energy.
Applied to hard core bosons on the Bethe lattice, our method shows that the superfluid emerges
out of an insulator without the closing of a mobility gap.
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The difference is simple to understand. In order to
observe a particle at site i, in response to inserting a par-
ticle at 0, all the nP ≡

∑ℓ
j=1 nj ≈

∑ℓ
j=1(1 − sgn(εj))/2

particles on the path P have to move to the next negative
energy site closer to site i, cf. Fig. ??. Upon removing
the particle at site i, a ring exchange of nP particles
has been carried out in the ground state, which causes
the sign difference (−1)nP between bosonic and fermionic
amplitudes. This difference has important consequences
and will shed new light not only on strong localized in-
sulators, but also on the approach to delocalization.

Most importantly, Eq. (??) shows that for low energy
excitations ω → 0, in the absence of a magnetic field,
all paths contribute with a positive amplitude and there-
fore interfere constructively, unlike fermions. This differ-
ence manifests itself in completely opposite response to
a magnetic field. It is well known that hopping fermions
experience a negative MR due to the suppression of de-
structive interference [3, 5]. In contrast, we find the MR
of bosons to be strongly positive in the hopping regime
due to the phases in the hopping amplitudes. Indeed, the
latter reduce the constructive interference of paths that
connect low energy sites relevant for transport.
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The spin flip operators �±
l (t) satisfy Heisenberg equations. For the Ising model, they read

i�̇±
l (t) =

⇥
�±
l ,H0

⇤
= ±2✏l�±

l (t) ⌥ J� z
l (t)

X

j2@ l

� x
j (t). (23)

The sum is over the set @ l of nearest-neighbors of site l. To leading order in J , we can restrict
ourselves to the neighbors j whose distance to site 0 is smaller than that of site l. Other terms lead
to contributions of higher order in J . Furthermore, when evaluating the expectation value in the last
term of Eq. (22), we can decouple the average over � z

l (t) from the other operators,

h� z
l (t)� x

j · · ·i = h� z
l (t)ih� x

j · · ·i, (24)

and use h� z
l (t)i = sign(✏l) + O(J2). Corrections to this approximation lead again to higher powers of

J . They can be determined systematically by an extension of the present approach [54].
To the leading order in the exchange, the recursion relations for the Green’s functions, after Fourier

transform, become

(2✏l ⌥ !)G±
l,0 = J sign(✏l)

X

j2@ l

Gj,0(!). (25)

Solving for Gl,0(!) from Eq. (21) we obtain the recursion relation

Gl,0(!) =
X

j2@ l

J sign(✏l)
4✏l

(2✏l)2 � !2 Gj,0(!), (26)

which is exact to leading order in J . Upon iterating the recursion until we reach the site 0, we obtain
the leading order of the Green’s function as a sum over all shortest paths from l to 0 (of length
L = dist(l, 0), the Hamming distance on the lattice between l and 0),

Gl,0(!) = G0,0(!)
X

P={j0=0,...,jL=l}

L=dist(l,0)Y

p=1

4J|✏jp |
(2✏jp)2 � !2 + o(JL). (27)

Notice that G0,0(! ! E0 � EGS) ⇡ 1
!+EGS�E0 to zeroth order in J . Therefore, the sought residue of the

pole at ! = E0 � EGS = 2|✏0| + O(J2) in Gl,0(!) is

Al0 = Gl,0(!)

G0,0(!)

����
!=2|✏0|

=
X

P={j0=0,...,jL=l}

LY

p=1

J|✏jp |
✏2
jp � ✏2

0
+ o(JL), (28)

to the leading order in J . An alternative derivation of this result by standard perturbation theory is
given in the Appendix for the special, but non-trivial case of a three site Ising chain.

4.3. Equations of motion—the XY model

It is straightforward to repeat the same steps for the XY model. Without loss of generality, we
suppose that the flipped spin sits on a site 0 with ✏0 � 0 and thus essentially points up in the ground
state. We aim at the matrix element of the operator � x

l between the ground state and the excited
eigenstate |E0i = ��

0 |GSi (up to corrections of order O(J2)),

hGS|� x
l |E0i ⇡ hGS|�+

l |E0ihE0|��
0 |GSi ⌘ Al0. (29)

We thus define the relevant Green’s function as

GXY
l,0(t) ⌘ �i⇥(t)hGS|[�+

l (t), ��
0 ]|GSi. (30)

+ singular non-perturbative corrections (at ω ≠ 0) 

Effect is even much stronger in quantum Ising models 
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Real, interacting insulators in d=2? 
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Magneto-oscillations of mobility edge 
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FIG. 1: Single-particle density of states for various disorder strengths W . A linear soft gap is formed due to Coulomb interactions

by imposing stability with respect to all possible single electron transitions.

III. RESULTS

A. Bosonic mobility edge

1. Energy and field dependence of localization length
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FIG. 2: Inverse localization length as a function of excitation energy ! for bosons.

The Coulomb gap enhances localization at low excitation energies as illustrated in Fig. 2. Without interaction, the
maximal constructive interference at zero energy leads to a maximum of the localization length. The situation changes
when Coulomb interactions create a gap and remove states close to zero-energy. In this case the localization length
of excitations follows qualitatively the variation of the density of states. This picture gives rise to the appearance of
an e↵ective mobility edge. Once a magnetic field is applied to the system, the constructive interference is reduced,
and therefore, the localization length is decreased. Of course the e↵ect is strongest at zero energy.

+ Field dependence (Fig. 3):
- Oscillation with period of one flux quantum per plaquette with corresponding charge.
- At low field: a) for very low energies (! ! 0), there is a direct increase of inverse localization length once the

magnetic field is applied. This is due to the suppression of constructive interference. b) for higher energies (eg.
! � 0.2 in the figure), the inverse localization length depends on B-field non-monotonically at low field: first decrease
and then gradual increase. The reason is that at non-zero energies the path amplitudes start having negative sign,
besides the positive one. A small B-field first reduces the destructive interference of paths with opposite signs, when B
is larger, its main e↵ect is to suppress the positive interference between the majority of paths. This dip survives only
as long as ! is small enough, so that most paths are positive in sign. [CITE SHLOV.-SPIVAK ’90] c) The gradual
increase of the inverse localization length at low field follows the power law / B4/5 by mapping to directed polymer
scaling analysis. (Inset figure showing that power law !?)

- At half integer flux, for low energies, there is first another dip due to suppression of constructive interference of
paths that di↵er by two unit cells. Inside this dip there is a cusp, which comes from the non-analyticity of logarithm
of a sum whose terms cancel each other strongly. For higher energies, the cusp is of the same origin as that at B = 0
and !0: the reduction of negative interference of paths.

εi = εi + Jijnj
j∈∂i
∑

Efros-Shklovskii Coulomb gap for effective potentials: 

T. Nguyen and MM (2014) 
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ξ
mobility edge 

Apply magnetic flux: oscillation of mobility edge! 

T. Nguyen and MM (2014) 
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FIG. 1: Single-particle density of states for various disorder strengths W . A linear soft gap is formed due to Coulomb interactions

by imposing stability with respect to all possible single electron transitions.

III. RESULTS

A. Bosonic mobility edge

1. Energy and field dependence of localization length
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FIG. 2: Inverse localization length as a function of excitation energy ! for bosons.

The Coulomb gap enhances localization at low excitation energies as illustrated in Fig. 2. Without interaction, the
maximal constructive interference at zero energy leads to a maximum of the localization length. The situation changes
when Coulomb interactions create a gap and remove states close to zero-energy. In this case the localization length
of excitations follows qualitatively the variation of the density of states. This picture gives rise to the appearance of
an e↵ective mobility edge. Once a magnetic field is applied to the system, the constructive interference is reduced,
and therefore, the localization length is decreased. Of course the e↵ect is strongest at zero energy.

+ Field dependence (Fig. 3):
- Oscillation with period of one flux quantum per plaquette with corresponding charge.
- At low field: a) for very low energies (! ! 0), there is a direct increase of inverse localization length once the

magnetic field is applied. This is due to the suppression of constructive interference. b) for higher energies (eg.
! � 0.2 in the figure), the inverse localization length depends on B-field non-monotonically at low field: first decrease
and then gradual increase. The reason is that at non-zero energies the path amplitudes start having negative sign,
besides the positive one. A small B-field first reduces the destructive interference of paths with opposite signs, when B
is larger, its main e↵ect is to suppress the positive interference between the majority of paths. This dip survives only
as long as ! is small enough, so that most paths are positive in sign. [CITE SHLOV.-SPIVAK ’90] c) The gradual
increase of the inverse localization length at low field follows the power law / B4/5 by mapping to directed polymer
scaling analysis. (Inset figure showing that power law !?)

- At half integer flux, for low energies, there is first another dip due to suppression of constructive interference of
paths that di↵er by two unit cells. Inside this dip there is a cusp, which comes from the non-analyticity of logarithm
of a sum whose terms cancel each other strongly. For higher energies, the cusp is of the same origin as that at B = 0
and !0: the reduction of negative interference of paths.
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superconducting flux quantum h/2e.
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Bosonic Mobility Edge

The Coulomb gap induces an effective mobility edge within

forward-scattering approximation.
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If no phonons: expect transport by activation to mobility edge!  
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Substantial oscillations with cusps 

T. Nguyen and MM (2014) 
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If no phonons: expect transport by activation to mobility edge!  
 

4

ii) Initial decrease of ⇠�1 because of the suppression of negative interference. iii) ⇠�1 decreases as B4/5 for low field
( 0  B/B0  0.05) (same power law dependence as for bosons). [CITE IOFFE-SPIVAK]

+Mobility edge: Follow the same behavior as B-field dependence of ⇠�1: i) oscillation period: one flux quantum
per plaquette with corresponding charge; a remnant of doubling period at zero frequency. ii) Initial down-turn.
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FIG. 6: Magnetic field dependence of fermionic e↵ective mobility edge.

+Bosonic vs. Fermionic EME :
- Period: one flux quantum per plaquette with corresponding charge, i.e. if one considers bosons being Cooper

pairs with charge 2e and fermions being single electrons with charge e, the oscillation period of fermionic mobility
edge is twice as big as the bosonic one.

- Opposite tendencies: an initial increase for bosons and a decrease for fermion.
- Oscillation amplitude for bosons is much more substantial than for fermions. For the former, the fact that most

of the paths have positive sign at low energy excitations and interfere constructively results in a strong suppression of
localization length when magnetic field is applied. However, for the latter, the destructive interference of paths with
opposite signs is a part of path sum, besides the positive interference of the one with same sign.
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FIG. 7: Comparison of the e↵ective mobility edge of bosons and fermions as a function of magnetic field.

IV. CONCLUSION

APPENDIX: LATTICE INDEPENDENCE OF THE DOUBLING IN THE PERIOD OF ⇠(! = 0, B) FOR
NON-INTERACTING FERMIONS

1
Efros- Shklovskii

2
Baranovskii et al, J. Phys. C 12, 1023 (1979)

3
MM EPL ’13

Comparison with fermions: 
•  opposite, downward lobes 
•  smaller amplitude 
•  two maxima per period 

T. Nguyen and MM (2014) 



Conclusions 
•  Wavefunction tails in 2d realize KPZ physics  

  - despite negative or complex weights.  
     Scaling exponents of MR and Tracy-Widom  
     distribution of amplitudes: like for positive weights!   

•  ξ of bosons shrinks in B-field (destroys positive interference) 
 → Positive magnetoresistance in insulators, unlike fermions. 

 
•  Hard core bosons localize less than [hard core] fermions in all 

d>1! 
 
•  Effect of Coulomb gap: → Mobility edge  
         → Magneto-oscillations of mobility edge:  
         Cuspy features in exp: non-trivial KPZ scaling at small B field! 

 
 


