

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut (Villigen) and ICTP (Trieste) Markus Müller

Manifestations of KPZ-scaling in localized quantum particles: Magnetoresistance, conductance fluctuations and the role of exchange statistics KITP, Non-eq. dynamics of stochastic and quantum integrable systems, Feb 2016

Outline and Scope

- Finding traces of KPZ in disordered quantum systems
 - Understand structure of quantum wavefunctions
 - KPZ equation with complex potential; negative weights
 - Amazing robustness of KPZ uiversality
- Effects of quantum statistics in insulators?
 - Opposite magnetoresistance due to quantum statistics
 - Bosons are harder to localize than fermions
- Experimental traces of KPZ behavior in disordered Cooper pair insulators

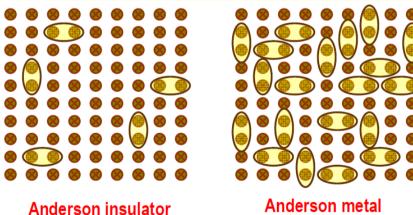
Anderson localization

Anderson localization (1958) [single particle]

$$H = \sum_{i} \varepsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(c_{i}^{+} c_{j}^{-} + \text{h.c.} \right)$$

Resonance = $\Delta \varepsilon$ < hopping t

Delocalization transition (insulator → metal) = Percolation of resonances



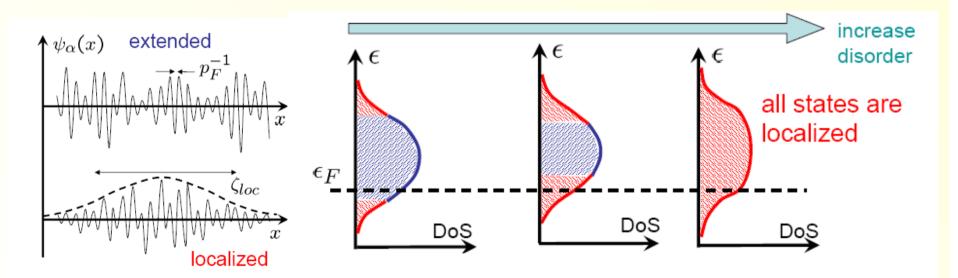
Few isolated resonances

There are many resonances and they overlap

Anderson localization

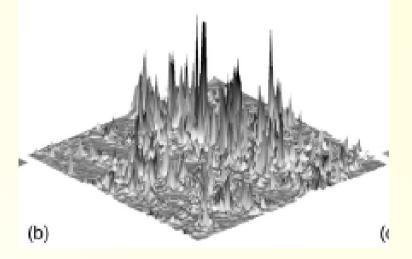
Anderson localization (1958) [single particle]

$$H = \sum_{i} \varepsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(c_{i}^{+} c_{j}^{-} + \text{h.c.} \right)$$



Quantum wavefunctions in d=2 (d>1)

Strongly localized electrons



- Strong inhomogeneity: Optimal disorder paths dominate over diffusive spreading
- Dictionary: Growth, Directed polymer \leftrightarrow Q-wavefunction Direction of Growth \leftrightarrow Distance from origin Height function; free energy $\leftrightarrow \log(|\psi|^2)$

Localization: Not only single particles! *X. Yu, MM, Ann. Phys. '13*

Similar localization properties of excitations above ground states of disordered quantum systems!

- e.g.:
- localized "spin waves" in disordered magnets
- excitations in Bose glasses (= "Dirty bosons")
- \rightarrow Dirty bosons versus dirty fermions?

Examples of "dirty bosons"

- Superconductors with preformed pairs Exp. systems: InOx, PbTe, and other negative U systems
- Granular superconductors / Josephson junction arrays
- Cold bosonic atoms in disordered potentials
- Disordered quantum spin systems (Ising, XY, Heisenberg)

Effects of quantum statistics in insulators?

How are hard core bosons different from free fermions?

(only difference: phase picked up upon exchange of two particles)

Model
$$H = \sum_{i} \varepsilon_{i} n_{i} - \sum_{\langle i,j \rangle} t_{ij} (b_{j}^{\dagger} b_{i} + b_{i}^{\dagger} b_{j}), \quad n_{i} = b_{i}^{\dagger} b_{i}.$$

Fermions
$$\{b_i, b_j\} = 0, , \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

Fock space: Fully antisymmetric wavefunctions with 0 or 1 particle on any given site

Model
$$H = \sum_{i} \varepsilon_{i} n_{i} - \sum_{\langle i,j \rangle} t_{ij} (b_{j}^{\dagger} b_{i} + b_{i}^{\dagger} b_{j}), \quad n_{i} = b_{i}^{\dagger} b_{i}.$$

Fermions
$$\{b_i, b_j\} = 0, , \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

P. W. Anderson (1958)

Hard core bosons $(\leftrightarrow \text{spin }^{1/2})$ $[b_i, b_j] = 0, \quad [b_i^{\dagger}, b_j] = \delta_{ij}(2n_i - 1)$ Krauth, Trivedi, Randeria; Feigelman, Ioffe, Kravtsov; Ioffe, Mézard, Feigelman; Syzranov, Moor, Efetov; Yu, MM

Fock space: Fully symmetric wavefunctions with 0 or 1 particle on any given site

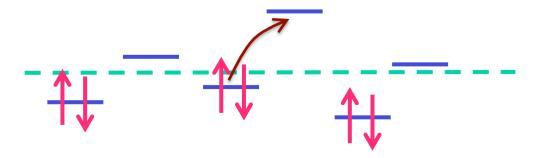
Model
$$H = \sum_{i} \varepsilon_{i} n_{i} - \sum_{\langle i,j \rangle} t_{ij} (b_{j}^{\dagger} b_{i} + b_{i}^{\dagger} b_{j}), \quad n_{i} = b_{i}^{\dagger} b_{i}.$$

Fermions
$$\{b_i, b_j\} = 0, , \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

Hard core bosons (\leftrightarrow spin $\frac{1}{2}$)

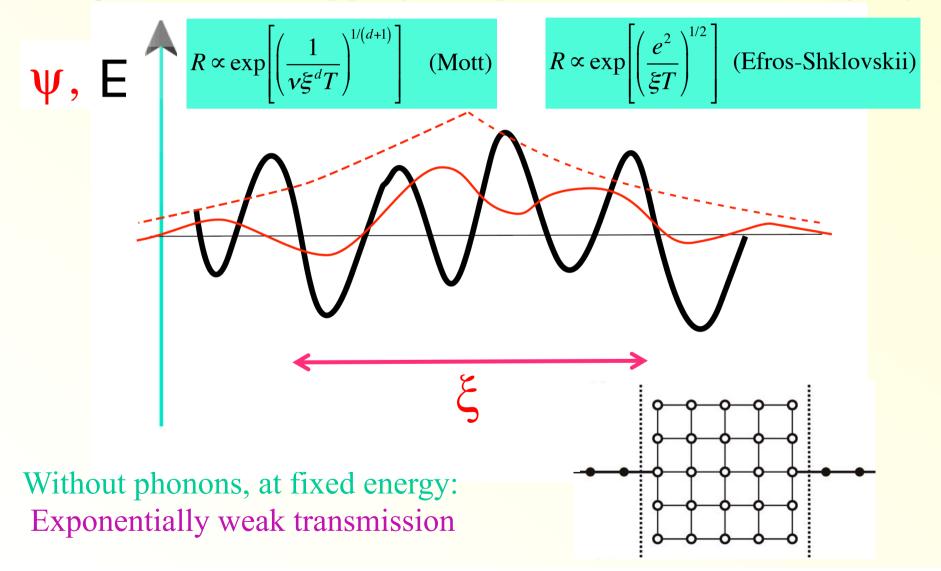
Example: Localized Anderson pseudospins = doubly occupied or empty orbitals

M. Ma and P. A. Lee (1985), Kapitulnik and Kotliar (1985)



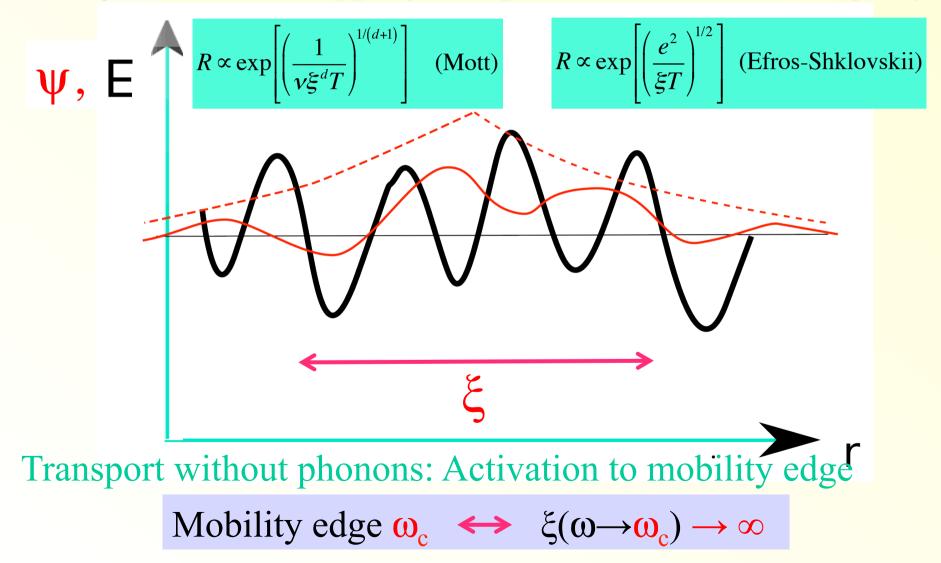
Localization length

Strong insulators: Hopping transport! - Localization length ξ?



Localization length

Strong insulators: Hopping transport! - Localization length ξ?



Localization length

Fermions $G_{i,0}^R(t-t') = -i\Theta(t-t')\langle \{b_i(t), b_0^{\dagger}(t')\} \rangle$

Bosons $G_{i,0}^R(t-t') = -i\Theta(t-t')\langle [b_i(t), b_0^{\dagger}(t')] \rangle$

Generalized localization length (also interacting)

$$\xi(\omega)^{-1} = -\lim_{\vec{r}_i \to \infty} \overline{\ln[|G_{i,0}^R(\omega)/G_{0,0}^R(\omega)|]/|\vec{r}_i - \vec{r}_0|}.$$

Free fermions: no features near E_F : $\xi(\omega) \sim \text{const.}$ What about bosons?

Locator expansion and forward
scatteringFermions $i \frac{d}{dt} b_i(t)$ J. Hubbard (1963):
Equation of motion for
Green's function! $(i \frac{d}{dt} - \varepsilon_i) G_{i,0}^R(t)$ $i \frac{d}{dt} b_i(t)$ $= \delta(t) \delta_{i,0} + i \Theta(t - t') \left\langle \left\{ \sum_{j \in \partial i} t_{ij} b_j(t), b_0^{\dagger}(t') \right\} \right\rangle$

$$\{b_i, b_j\} = 0, \qquad \{b_i^{\dagger}, b_j\} = \delta_{ij}$$

Locator expansion and forward
scatteringFermions $i\frac{d}{dt}b_i(t)$ J. Hubbard (1963):
Equation of motion for
Green's function! $(i\frac{d}{dt} - \varepsilon_i)G_{i,0}^R(t)$ $i\frac{d}{dt}b_i(t)$ $= \delta(t)\delta_{i,0} + i\Theta(t - t')\left\langle \left\{ \sum_{j \in \partial i} t_{ij}b_j(t), b_0^{\dagger}(t') \right\} \right\rangle$

Fourier transform → Anderson-Feynman sum over paths *Anderson (1958)* Forward scattering approximation: Sum over shortest paths!

$$\frac{G_{i,0}^{R}(\omega)}{G_{0,0}^{R}(\omega)} = \sum_{\mathcal{P}=\{j_{0}=0,\dots,j_{\ell}=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_{p}} \frac{1}{\varepsilon_{j_{p}}-\omega}$$

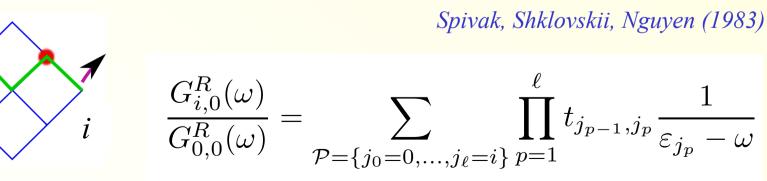
Locator expansion and forward scattering

Fermions

Magnetoresistance: negative (Nguyen, Spivak, Shklovskii)

Path amplitudes: real with random signs! B-field: $t_{ij} \rightarrow t e^{-i\phi_{ij}}$ makes destructive interference less likely $\rightarrow \xi$ increases, R decreases

Forward scattering approximation: Sum over shortest paths!



Locator expansion and forward scattering

Bosons (hard core)

MM (EPL '13)

Bosons
(hard core)

$$\begin{pmatrix} i\frac{d}{dt} - \varepsilon_i \end{pmatrix} G_{i,0}^R(t) = \delta(t)\delta_{i,0}(1 - 2\langle n_0 \rangle) \\
+i\Theta(t - t') \left\langle \left[(-1)^{n_i(t)} \sum_{j \in \partial i} t_{ij}b_j(t), b_0^{\dagger}(t') \right] \right\rangle \\
= 0$$
Equation of motion
for Green's function!

$$\begin{pmatrix} i\frac{d}{dt} - \varepsilon_i \end{pmatrix} G_{i,0}^R(t) = \delta(t)\delta_{i,0}(1 - 2\langle n_0 \rangle) \\
+i\Theta(t - t') \left\langle \left[(-1)^{n_i(t)} \sum_{j \in \partial i} t_{ij}G_{j,0}^R(t) + i\Theta(t) - 2\langle n_0 \rangle \right] \right\rangle \\
= 0$$

$$[b_i, b_j] = 0, \quad [b_i^{\dagger}, b_j] = \delta_{ij}(2n_i - 1)$$

Locator expansion and forward scattering

Bosons (hard core)

X. Yu, MM, Ann. Phys '13

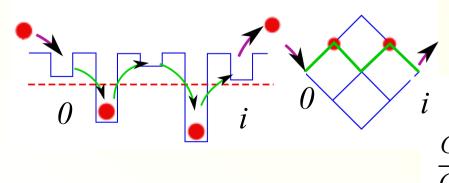
Equation of motion

MM (EPL '13)

Bosons
(hard core)
MM (EPL '13)
X. Yu, MM, Ann. Phys '13
Equation of motion
for Green's function!

$$\binom{i\frac{d}{dt} - \varepsilon_i}{G_{i,0}^R(t)} = \delta(t)\delta_{i,0}(1 - 2\langle n_0 \rangle) + i\Theta(t - t')\left\langle \left[(-1)^{n_i(t)} \sum_{j \in \partial i} t_{ij} b_j(t), b_0^{\dagger}(t') \right] \right\rangle$$

Forward scattering: Sum over shortest paths, lowest order in t!



Sign difference Bosons/Fermions: Loop of two paths: Ring exchange of particles

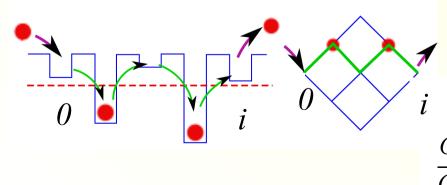
$$\frac{G_{i,0}^R(\omega)}{G_{0,0}^R(\omega)} = \sum_{\mathcal{P}=\{j_0=0,\dots,j_\ell=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_p} \underbrace{\operatorname{sgn}(\varepsilon_{j_p})}_{\varepsilon_{j_p}-\omega}$$

Locator expansion and forward scattering

Bosons (hard core)

Magnetoresistance: positivecf also Zhou, Spivak (1991)
Syzranov et al (2012)Path amplitudes: all positive at $(\omega \rightarrow 0)$!B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ destroys constructive
interference, ξ decreases, R increases.

Forward scattering: Sum over shortest paths, lowest order in t!



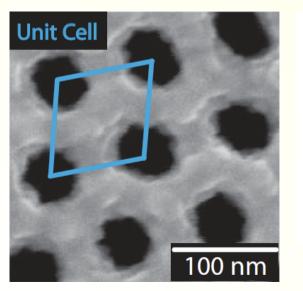
Sign difference Bosons/Fermions: Loop of two paths: Ring exchange of particles

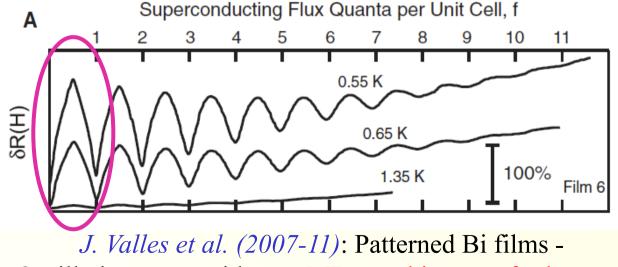
$$\frac{G_{i,0}^R(\omega)}{G_{0,0}^R(\omega)} = \sum_{\mathcal{P}=\{j_0=0,\dots,j_\ell=i\}} \prod_{p=1}^{\ell} t_{j_{p-1},j_p} \underbrace{\operatorname{sgn}(\varepsilon_{j_p})}_{\varepsilon_{j_p}-\omega}$$

Locator expansion and forward scattering

Bosons (hard core)

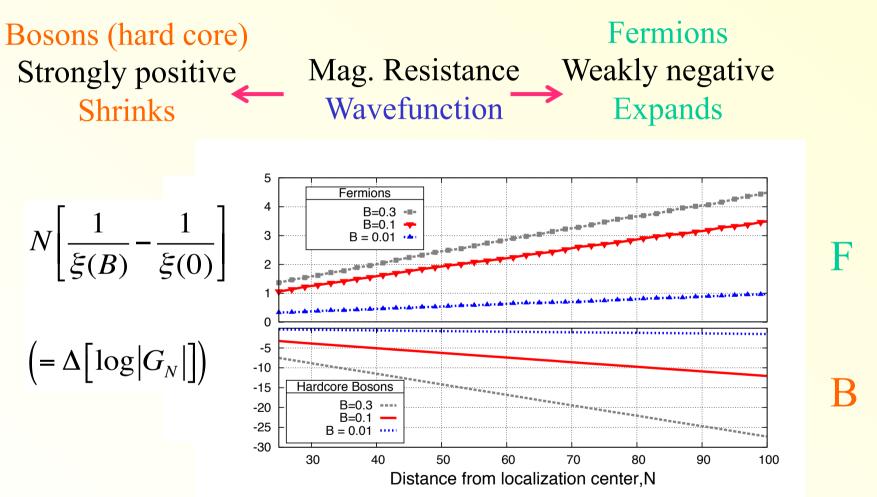
Magnetoresistance: positivecf also Zhou, Spivak (1991)
Syzranov et al (2012)Path amplitudes: all positive at $(\omega \rightarrow 0)$!B-field: $t_{ij} \rightarrow te^{-i\phi_{ij}}$ destroys constructive
interference, ξ decreases, R increases.





Oscillations start with pos. MR: smoking gun for bosons!

Bosons vs fermions?

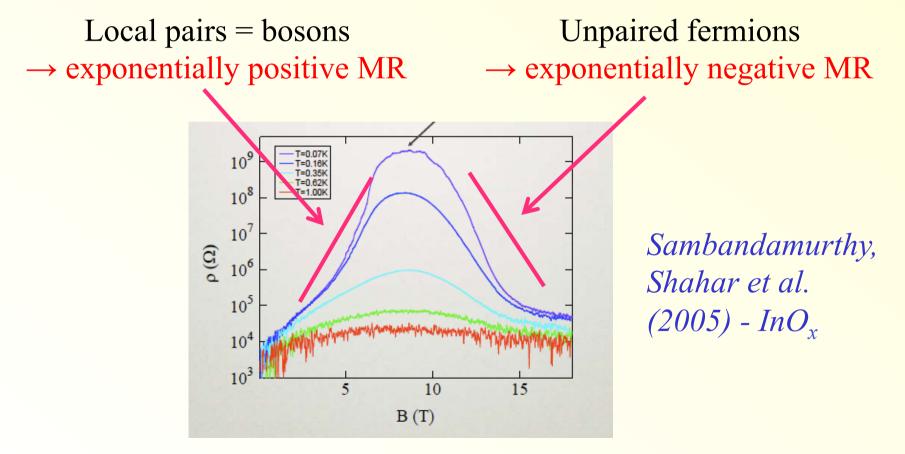


Bosons: Change in inv loc length is ~7 times bigger than fermions! Exponentially strong effect on resistance!

Magnetoresistance peak

A key ingredient to MR peak in superconducting films:

Hebard+Palaanen, Gantmakher et al., Shahar et al, Baturina et al, W. Wu, Valles et al., Goldman et al.

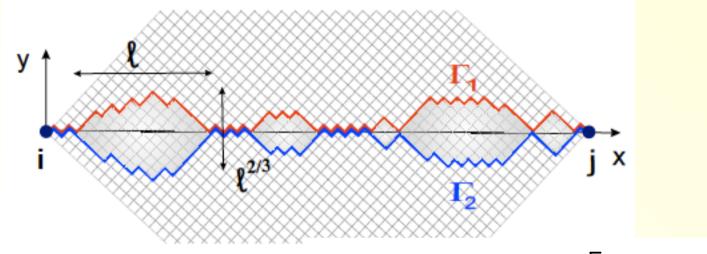


 $\xi(B)$ more quantitatively?

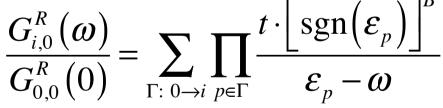
Magnetoresistance quantitaively

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Relevant paths form droplets:



Quantum Green's function

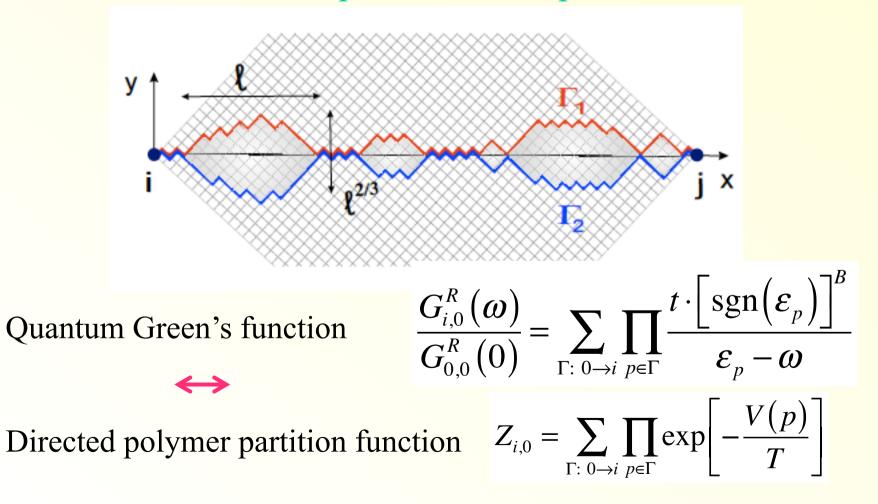


Essentially like directed polymers in random media! *(Monthus, Garel; Ortuno, Prior, Somoza; 2009)*

Forward propagation ↔ directed polymers

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Relevant paths form droplets:



Weak fields: Complex KPZ

A. Gangopadhyay, V. Galitski, MM, PRL 111, 026801 (2013)

Sum over forward paths:

$$S_{ji}(B) = \frac{1}{t^{\text{dist}(ij)}} \frac{G_{j,i}^{R}(\omega)}{G_{i,i}^{R}(\omega)} \Big|_{\omega \to \varepsilon_{i}} = \sum_{\Gamma} e^{i\Phi_{\Gamma}(B)} J_{\Gamma}(\omega = \varepsilon_{i}) \quad \text{amp} \quad J_{\Gamma}(\omega) = \prod_{k \in \Gamma \setminus \{i\}} \frac{\text{sgn}(\varepsilon_{k})}{\varepsilon_{k} - \omega}$$

$$\text{phase} \quad \Phi_{\Gamma}(B) = \int_{\Gamma} d\mathbf{r} \cdot \mathbf{A}$$

Recursion relation: ($\omega = 0$)

$$S_{x+1,y}(B) = V_{x+1,y}[e^{i\phi_{-}}S_{x,y-1}(B) + e^{i\phi_{+}}S_{x,y+1}(B)],$$

$$\phi_{\pm} = \int_{\Gamma_{\pm}} \mathbf{A} \cdot d\mathbf{r} \qquad \Gamma_{\pm}: (x, y \pm 1) \to (x+1, y)$$

Continuum limit for weak disorder and B-field: $(B = \nabla \times A)$

 $D_{x}S = D_{y}^{2}S + V(x, y)S$ Covariant derivative: $D_{\alpha=(x,y)} \equiv \partial_{\alpha} - iA_{\alpha}(x, y)$ In Landau gauge: $\vec{A}(x,y) = (0,Bx)$ $\partial_{x}S = \partial_{y}^{2}S + [V(x,y) + iBx]S$ Complex KPZ equation! – Field theoretic treatment?

Droplet arguments for magnetoresponse

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

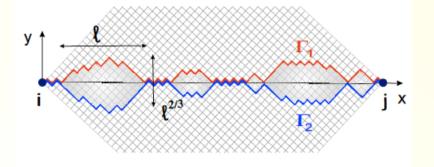
Disorder dominates entropy! (Larkin-Ovchinnikov) → interfering loops are NOT random walks!

Roughness of interfering regions ("magnetic length")

$$B\ell_B\ell_B^{\zeta} = 1 \implies \ell_B = B^{-1/(1+\zeta)} \qquad \zeta = 2/3$$

Probability of significant interference at scale $\ell_{\rm B}$ Contrast: $I = \frac{G_{\rm subdom.\,branch}}{G_{\rm dominant\,branch}} \propto \exp\left[-\Delta F(\ell_B)\right]$

 $\operatorname{Prob}(I = O(1)) \sim \operatorname{Prob}(\Delta F(\ell_B) = O(1)) \sim \ell_B^{-\theta} \qquad \theta = 1/3$



Droplet arguments for magnetoresponse

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Disorder dominates entropy! (Larkin-Ovchinnikov) \rightarrow interfering loops are NOT random walks!

Roughness of interfering regions ("magnetic length")

$$B\ell_B\ell_B^{\xi} = 1 \implies \ell_B = B^{-1/(1+\xi)} \qquad \zeta = 2/3$$

Probability of significant interference

Contrast: $I = \frac{G_{\text{subdom. branch}}}{G_{\text{dominant branch}}} \propto \exp\left[-\Delta F(\ell_B)\right]$ $\operatorname{Prob}(I = O(1)) \sim \operatorname{Prob}(\Delta F(\ell_B) = O(1)) \sim \ell_B^{-\theta} \qquad \theta = 1/3$

$$\Delta \left(\frac{L}{\xi}\right) \sim \frac{L}{\ell_B} \left[\operatorname{Prob}(I = O(1)) + cst \operatorname{Prob}(I = O(1))^2 + \dots \right]$$
$$\Delta \left(\frac{1}{\xi}\right) \sim \frac{1}{\ell_B^{1+\theta}} \left(1 + \frac{const}{\ell_B^{\theta}} + \dots \right) \sim B^{\chi} \left(1 + O\left(B^{\alpha}\right)\right)$$

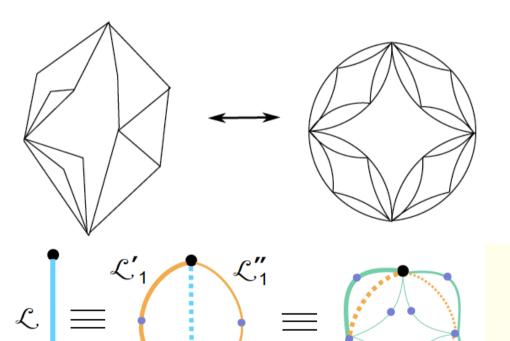
$$\chi = \frac{1+\theta}{1+\zeta} = \frac{4}{5};$$
$$\alpha = \frac{\theta}{1+\zeta} = \frac{1}{5}$$

Simplified hierarchical model

A. Gangopadhyay, V. Galitski, MM (PRL 2013)

Sum over all directed paths

Simplified hierarchical loop model



(cf. *Hwa*, *Fisher+Huse's* droplet theory for directed polymers, 1994)

 $S_{\mathcal{L}}^{k} = S_{\mathcal{L}_{1}'}^{k+1} S_{\mathcal{L}_{2}'}^{k+1} + e^{-f_{\mathcal{L}}L_{k}^{\theta}} e^{ia_{\mathcal{L}}BL_{k}^{1+\zeta}} S_{\mathcal{L}_{1}''}^{k+1} S_{\mathcal{L}_{2}''}^{k+1}$

Interference sum S recursively defined – Use virial expansion! So far

KPZ-traces in $\xi(B)$

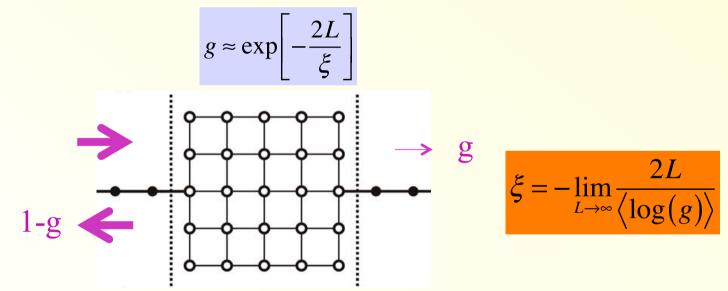
Other hall marks of KPZ scaling in 2d? Phononless conductance!

Anderson localization and directed polymers A.M.Somoza, J. Prior,

Phononless conductance

A.M.Somoza, J. Prior, M. Ortuno PRB 73, 184201 (2006).
C. Monthus and T. Garel, PRB 80, 024203 (2009).

Typical set-up: g measures transmission from left to right lead:



Distribution of conductance: like partition function of directed polymer!

$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{\theta_{DP}} \chi_{DP}; \qquad \theta_{DP} = 2\zeta - 1 \begin{cases} = 1/3 & d = 1+1 \\ \approx 0.244 & d = 1+2 \end{cases}$$

J. Prior, A.M.Somoza, and M. Ortuno, EPJB **70**, *513*(2009). *A.M. Somoza, P. Le Doussal. M. Ortuno, PRB* **91**, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{1/3} \chi_{TW}$$

Amazing robustness of Tracy-Widom law: holds also

- with negative weights (finite energies, fermions)
- with complex weights (B-field)
- with loops (full Anderson problem instead of forward scattering)

Those only determine ξ and possibly the number α (varies very little numerically!) – despite the fact that the average conductance follows different RG flow with size:

$$\beta(g) = \frac{d\log(g)}{d\log(L)}; \quad \beta_{B=0}(g) \neq \beta_{B\neq0}(g)$$

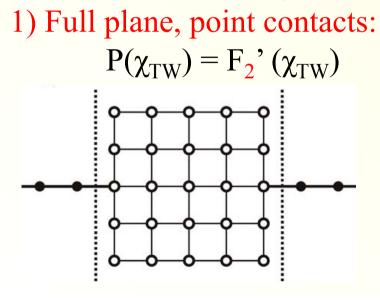
$$\beta(g) = \log(g) + \frac{\alpha \overline{\chi_{TW}}}{3} \left[-\frac{1}{2} \log(g) \right]^{1/3}$$

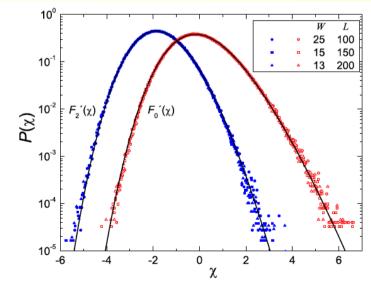
J. Prior, A.M.Somoza, and M. Ortuno, EPJB **70**, *513*(2009). *A.M. Somoza, P. Le Doussal. M. Ortuno, PRB* **91**, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{1/3} \chi_{TW}$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):





J. Prior, A.M.Somoza, and M. Ortuno, EPJB **70**, *513*(2009). *A.M. Somoza, P. Le Doussal. M. Ortuno, PRB* **91**, 155413 (2015).

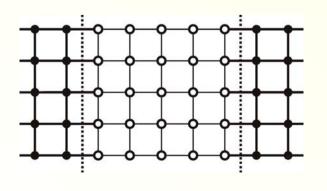
2d bulk systems: Distribution of conductance g is Tracy-Widom!

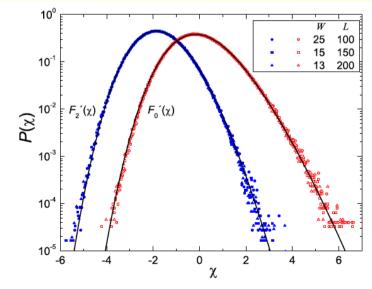
$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{1/3} \chi_{TW}$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):

2) Full plane, wide contacts:

 $P(\chi_{TW}) = F_0'(\chi_{TW})$





J. Prior, A.M.Somoza, and M. Ortuno, EPJB **70**, *513*(2009). *A.M. Somoza, P. Le Doussal. M. Ortuno, PRB* **91**, 155413 (2015).

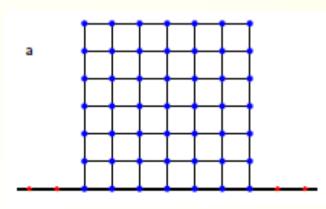
2d bulk systems: Distribution of conductance g is Tracy-Widom!

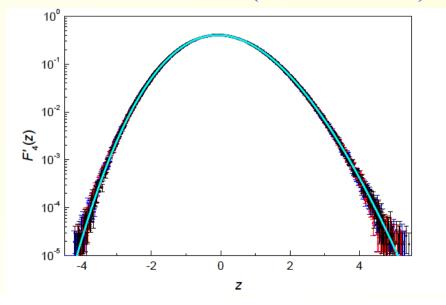
$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{1/3} \chi_{TW}$$

Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):

3) Half plane, point contacts:

$$P(\chi_{TW}) = F_4'(\chi_{TW})$$





J. Prior, A.M.Somoza, and M. Ortuno, EPJB **70**, *513*(2009). *A.M. Somoza, P. Le Doussal. M. Ortuno, PRB* **91**, 155413 (2015).

2d bulk systems: Distribution of conductance g is Tracy-Widom!

$$\log(g) = -\frac{2L}{\xi} + \alpha \left(\frac{L}{\xi}\right)^{1/3} \chi_{TW}$$

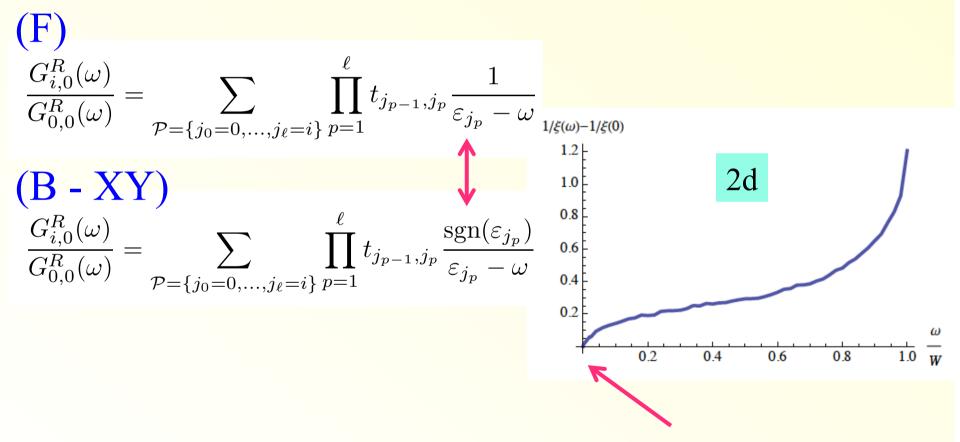
Only aspect determining the type of Tracy-Widom distribution: Geometrical boundary conditions of the conductance (like dir. Pol!):

Open challenge: why is Tracy-Widom so robust?

Energy dependence of ξ ?

(without magnetic field)

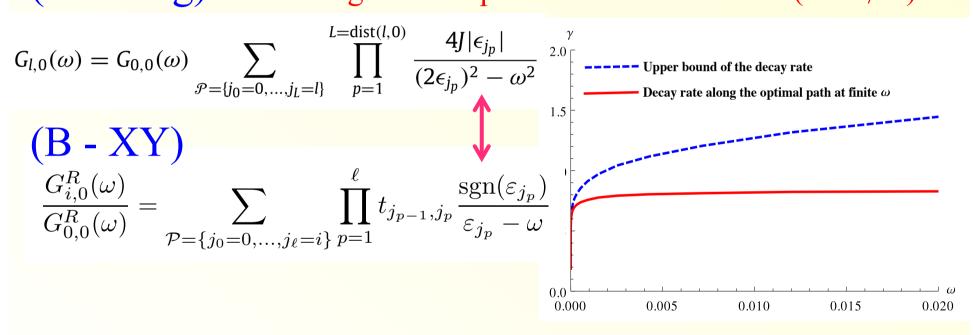
Bosons vs fermions *X. Yu, MM, Ann. Phys. '13* Interference in finite dimensions: leading terms



Delocalization strongest at lowest energies: $\xi(0) > \xi(\omega)!$ \rightarrow Bosons delocalize best at low energy!

Bosons vs fermions *X. Yu, MM, Ann. Phys. '13* Interference in finite dimensions: leading terms

(**B** - Ising) + singular non-perturbative corrections (at $\omega \neq 0$)



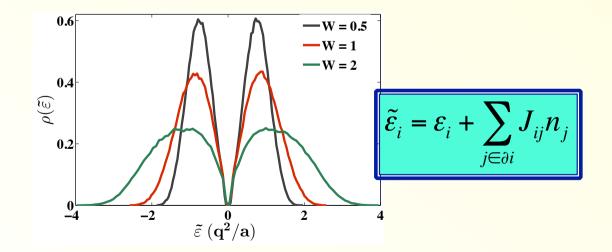
Effect is even much stronger in quantum Ising models [Due to symmetry protection of small denominators] (X. Yu, MM '13) \rightarrow "Activated" scaling $\xi \sim \log(1/\omega)$. Real, interacting insulators in d=2? Add: long range Coulomb interactions + magnetic field

Obtain qualitative results from approximate treatment

Magneto-oscillations of mobility edge T. Nguyen and MM (2014)

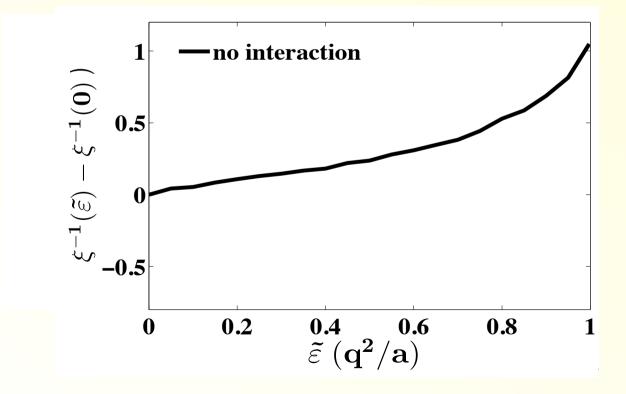
$$H = -t \sum_{\langle i,j \rangle} \left(b_i^* b_j + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

Efros-Shklovskii Coulomb gap for effective potentials:



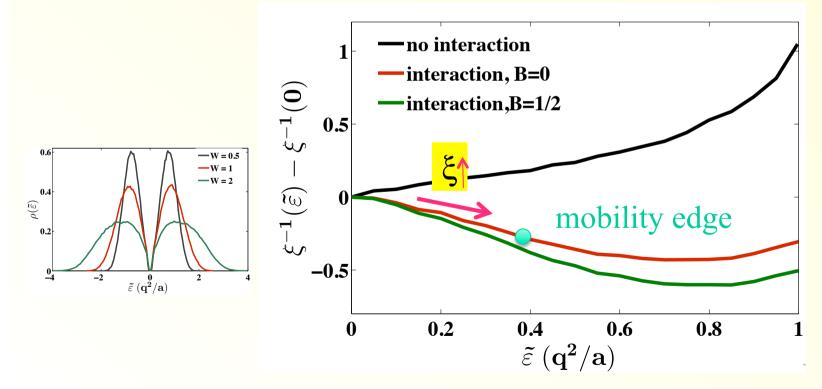
Magneto-oscillations of mobility edge T. Nguyen and MM (2014)

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^* b_j + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$

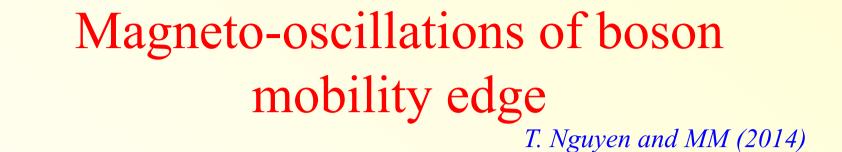


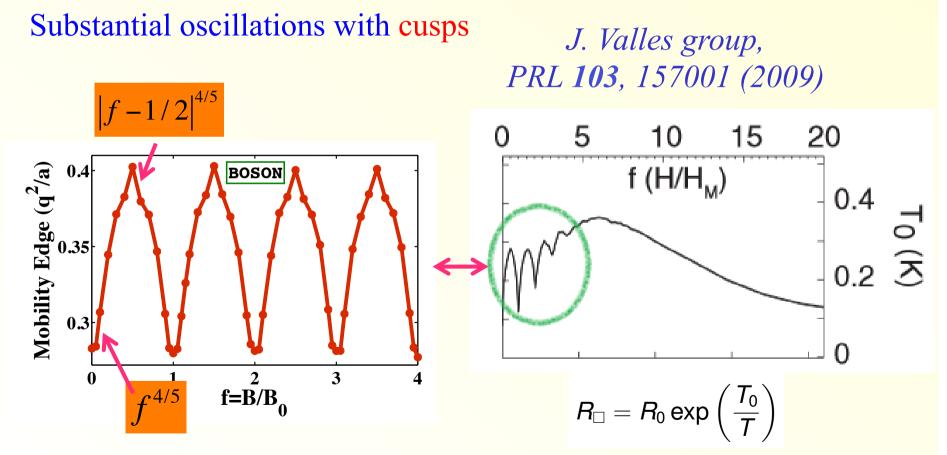
Magneto-oscillations of mobility edge T. Nguyen and MM (2014)

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + \text{h.c.} \right) + \sum_i \varepsilon_i n_i + \frac{1}{2} \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j$$



Apply magnetic flux: oscillation of mobility edge!

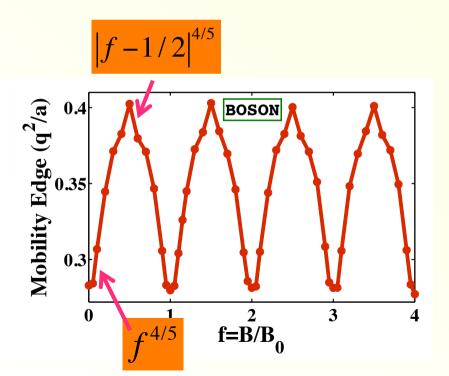


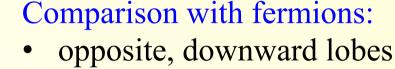


If no phonons: expect transport by activation to mobility edge!

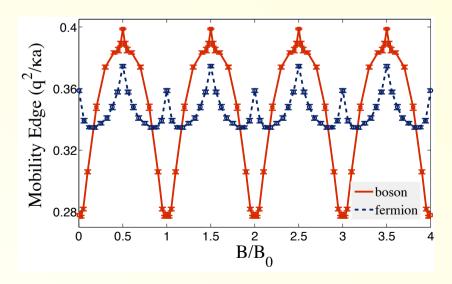
Magneto-oscillations of boson mobility edge *T. Nguyen and MM (2014)*

Substantial oscillations with cusps





- smaller amplitude
- two maxima per period



If no phonons: expect transport by activation to mobility edge!

Conclusions

- Wavefunction tails in 2d realize KPZ physics

 despite negative or complex weights.

 Scaling exponents of MR and Tracy-Widom distribution of amplitudes: like for positive weights!
- ξ of bosons shrinks in B-field (destroys positive interference) \rightarrow Positive magnetoresistance in insulators, unlike fermions.
- Hard core bosons localize less than [hard core] fermions in all d>1!
- Effect of Coulomb gap: → Mobility edge

 → Magneto-oscillations of mobility edge:
 Cuspy features in exp: non-trivial KPZ scaling at small B field!