Multi-species exclusion process and Macdonald polynomials

Jan de Gier

18 February 2016, KITP Santa Barbara

Collaborators:
Luigi Cantini
Michael Wheeler

ACEMS

Motivation

- Obtain explicit expressions for the stationary state of the multi-species asymmetric simple exclusion process using represention theory and theory of symmetric polynomials.

Motivation

- Obtain explicit expressions for the stationary state of the multi-species asymmetric simple exclusion process using represention theory and theory of symmetric polynomials.
- Obtain new explicit expressions for Macdonald polynomials using stochastic processes.

Asymmetric simple exclusion process (ASEP)

ASEP

Asymmetric simple exclusion process (ASEP)

Continuous time Markov chain of hopping particles:

$$
\begin{array}{ll}
\uparrow 1 & \begin{array}{l}
\text { Configurations } \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \\
\\
\mu_{i} \in\{0,1\}
\end{array} \\
t \quad & \begin{array}{l}
\text { Markov chain: } \\
01 \mapsto 10 \text { with rate } 1 \\
\\
10 \mapsto 01 \text { with rate } t
\end{array}
\end{array}
$$

Generalise to multi-species process

multi-species ASEP

Configurations $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \mu_{i} \in\{0, \ldots, r\}$
$\ldots \mu_{i}, \mu_{i+1} \ldots \mapsto \ldots \mu_{i+1}, \mu_{i} \ldots \begin{cases}\text { rate } 1 & \text { if } \mu_{i}<\mu_{i+1} \\ \text { rate } t & \text { if } \mu_{i}>\mu_{i+1}\end{cases}$
We will be interested in the stationary state

Transition matrix

Let $|\mu\rangle \in \mathbb{C}^{r+1}$ be the standard basis.
The local transition matrix between $\left|\ldots \mu_{i}, \mu_{i+1} \ldots\right\rangle$ and $\left|\ldots \mu_{i+1}, \mu_{i} \ldots\right\rangle$ is given by

$$
L_{i}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & t & 0 \\
0 & 1 & -t & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The stationary state $|\infty\rangle$ is defined by

$$
\sum_{i=1}^{n} L_{i}|\infty\rangle=0, \quad|\infty\rangle=\sum_{\mu} f_{\mu_{1}, \ldots, \mu_{n}}|\mu\rangle .
$$

and we would like to know f_{μ}.

In the case of $r=1$:

Theorem (Derrida,Evans, Hakim,Pasquier,)

There exist matrices A_{0} and A_{1} such that

$$
f_{\mu_{1}, \ldots, \mu_{n}}=\operatorname{Tr}\left(A_{\mu_{1}} \cdots A_{\mu_{n}}\right)
$$

and

$$
A_{0} A_{1}-t A_{1} A_{0}=(1-t)\left(A_{0}+A_{1}\right) .
$$

Trivial representation $\left(A_{0}=A_{1}=2\right)$ suffices for $r=1$ periodic boundary conditions.
For general r (Prolhac et al) or open boundaries we need " t-bosons":

$$
\begin{gathered}
A_{0}=\phi+1, \quad A_{1}=\phi^{\dagger}+1 \\
\phi \phi^{\dagger}-t \phi^{\dagger} \phi=1-t
\end{gathered}
$$

with infinite "Fock representation"

$$
\phi^{\dagger}|m\rangle=|m+1\rangle, \quad \phi|m\rangle=\left(1-t^{m}\right)|m-1\rangle .
$$

Inhomogeneous generalisation

- The (multi-species) ASEP is a quantum integrable system (Yang-Baxter)
- There exist an integrable discrete time generalisation with spatial inhomogeneities:

Let

$$
\begin{array}{ll}
b^{+}=\frac{t(x-y)}{t x-y}, & b^{-}=t^{-1} b^{+} \\
c^{+}=1-b^{+}, & c^{-}=1-b^{-}
\end{array}
$$

Then for $r=1$, define a generalised local transition matrix between $\left|\ldots \mu_{i}, \mu_{i+1} \ldots\right\rangle$ and $\left|\ldots \mu_{i+1}, \mu_{i} \ldots\right\rangle$ by

$$
\check{R}_{i}(x, y)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c^{-} & b^{+} & 0 \\
0 & b^{-} & c^{+} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad L_{i}=\check{R}_{i}(1,1)^{-1} \check{R}_{i}^{\prime}(1,1)
$$

Generalised stationary state

The generalised inhomogeneous stationary state $|\infty\rangle$ is now defined by

$$
\check{R}_{i}\left(x_{i}, x_{i+1}\right)|\infty\rangle=s_{i}|\infty\rangle, \quad|\infty\rangle=\sum_{\mu} f_{\mu_{1}, \ldots, \mu_{n}}\left(x_{1}, \ldots, x_{n}\right)|\mu\rangle
$$

with quasi-periodic boundary condition

$$
f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}}\left(q x_{n}, x_{1}, \ldots, x_{n-1} ; q, t\right)=q^{\mu_{n}} f_{\mu_{1}, \ldots, \mu_{n}}\left(x_{1}, \ldots, x_{n} ; q, t\right) .
$$

Generalised stationary state

The generalised inhomogeneous stationary state $|\infty\rangle$ is now defined by

$$
\check{R}_{i}\left(x_{i}, x_{i+1}\right)|\infty\rangle=s_{i}|\infty\rangle, \quad|\infty\rangle=\sum_{\mu} f_{\mu_{1}, \ldots, \mu_{n}}\left(x_{1}, \ldots, x_{n}\right)|\mu\rangle
$$

with quasi-periodic boundary condition

$$
f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}}\left(q x_{n}, x_{1}, \ldots, x_{n-1} ; q, t\right)=q^{\mu_{n}} f_{\mu_{1}, \ldots, \mu_{n}}\left(x_{1}, \ldots, x_{n} ; q, t\right) .
$$

To solve for f_{μ} we assume that

$$
f_{\mu_{1}, \ldots, \mu_{n}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left(A_{\mu_{1}}\left(x_{1}\right) \cdots A_{\mu_{n}}\left(x_{n}\right) S\right)
$$

Macdonald polynomials

Macdonald polynomials

Symmetric group

Let $s_{i}(i=1, \ldots, n-1)$ be generators of the symmetric group S_{n} :

$$
\begin{aligned}
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} \\
s_{i}^{2} & =1
\end{aligned}
$$

There exist a natural t-deformation of S_{n} :

$$
\begin{aligned}
\left(T_{i}-t\right)\left(T_{i}+1\right) & =0, \quad(i=1, \ldots, n-1), \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} .
\end{aligned}
$$

This is the Hecke algebra (of type A_{n-1}) and S_{n} is recovered when $t \rightarrow 1$.

Polynomial action

The generators s_{i} act naturally on polynomials:

$$
s_{i} f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right) \quad i=1, \ldots n-1
$$

and the t-deformation also has an action:

$$
T_{i}=t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right) .
$$

Define the (non-symmetric) polynomials $f_{\mu}\left(x_{1}, \ldots, x_{n}\right)$ by these relations:

$$
\begin{array}{rlrl}
T_{i} f_{\ldots, \mu_{i}, \mu_{i+1}}, \ldots & =t f_{\ldots, \mu_{i}, \mu_{i+1}, \ldots}, & \mu_{i}=\mu_{i+1}, \\
T_{i} f_{\ldots, \mu_{i}, \mu_{i+1}, \ldots} & =f_{\ldots, \ldots, \mu_{i+1}, \mu_{i}, \ldots} \quad \mu_{i}>\mu_{i+1}, \\
\omega f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}} & =q^{\mu_{n}} f_{\mu_{1}, \ldots, \mu_{n}} . &
\end{array}
$$

- Dynamics of the multi-species inhomogeneous ASEP
- t-deformed Knizhnik-Zamolodchikov equations

Macdonald polynomial

Proposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geq \ldots \geq \lambda_{n}$. The polynomial P_{λ} defined by

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma \in S_{n}}^{*} f_{\sigma \circ \lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)
$$

is symmetric and equal to a Macdonald polynomial.

Macdonald polynomials are (q, t) generalisations of Schur polynomials (characters of the symmetric group).

The form

$$
f_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left(A_{\lambda_{1}}\left(x_{1}\right) \cdots A_{\lambda_{n}}\left(x_{n}\right) S\right)
$$

implies a matrix product for Macdonald polynomials which is a completely new way of writing these polynomials

Theorem (Cantini, dG, Wheeler)

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\mu \mid \mu^{+}=\lambda} \operatorname{Tr}\left[S \prod_{i=1}^{n} A_{\mu_{i}}\left(x_{i}\right)\right]
$$

where the sum is over all permutations μ of λ.

Corollary

The normalised stationary state of the multi-species ASEP is given by

$$
f_{\mu_{1}, \ldots, \mu_{n}}=\frac{1}{P_{\mu^{+}}} \operatorname{Tr}\left[S \prod_{i=1}^{n} A_{\mu_{i}}\left(x_{i}\right)\right]
$$

specialised to $q=x_{1}=\ldots=x_{n}=1$.

Explicit construction

For $r=\lambda_{1}$ write

$$
\mathbb{A}(x)=\left(A_{0}(x), \ldots, A_{r}(x)\right)^{\top},
$$

as an $(r+1)$-dimensional operator valued column vector.

Lemma

The exchange relations are equivalent to

$$
\check{R}(x, y) \cdot[\mathbb{A}(x) \otimes \mathbb{A}(y)]=[\mathbb{A}(y) \otimes \mathbb{A}(x)]
$$

$\check{R}(x, y)$ is the $U_{t}\left(s_{r+1}\right)$ R-matrix of dimension $(r+1)^{2}(r=1$ is the 6-vertex model).

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank r Yang-Baxter algebra:

$$
\check{R}(x, y) \cdot[L(x) \otimes L(y)]=[L(y) \otimes L(x)] \cdot \check{R}(x, y)
$$

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank r Yang-Baxter algebra:

$$
\check{R}(x, y) \cdot[L(x) \otimes L(y)]=[L(y) \otimes L(x)] \cdot \check{R}(x, y)
$$

Assume a solution of the following modified RLL relation

$$
\check{R}^{(r)}(x, y) \cdot[\tilde{L}(x) \otimes \tilde{L}(y)]=[\tilde{L}(y) \otimes \tilde{L}(x)] \cdot \check{R}^{(r-1)}(x, y)
$$

in terms of an $(r+1) \times r$ operator-valued matrix $\tilde{L}(x)=\tilde{L}^{(r)}(x)$.

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank r Yang-Baxter algebra:

$$
\check{R}(x, y) \cdot[L(x) \otimes L(y)]=[L(y) \otimes L(x)] \cdot \check{R}(x, y)
$$

Assume a solution of the following modified $R L L$ relation

$$
\check{R}^{(r)}(x, y) \cdot[\tilde{L}(x) \otimes \tilde{L}(y)]=[\tilde{L}(y) \otimes \tilde{L}(x)] \cdot \check{R}^{(r-1)}(x, y)
$$

in terms of an $(r+1) \times r$ operator-valued matrix $\tilde{L}(x)=\tilde{L}^{(r)}(x)$.
Then

$$
\mathbb{A}^{(r)}(x)=\tilde{L}^{(r)}(x) \cdot \tilde{L}^{(r-1)}(x) \cdots \tilde{L}^{(1)}(x)
$$

Solves the algebra

$$
\check{R}(x, y) \cdot[\mathbb{A}(x) \otimes \mathbb{A}(y)]=[\mathbb{A}(y) \otimes \mathbb{A}(x)]
$$

Zipper proof

$$
\begin{aligned}
& \check{R}^{(r)}(x, y) \cdot\left[\tilde{L}^{(r)}(x) \otimes \tilde{L}^{(r)}(y)\right] \cdot\left[\tilde{L}^{(r-1)}(x) \otimes \tilde{L}^{(r-1)}(y)\right] \\
& =\left[\tilde{L}^{(r)}(y) \otimes \tilde{L}^{(r)}(x)\right] \cdot \check{R}^{(r-1)}(x, y) \cdot\left[\tilde{L}^{(r-1)}(x) \otimes \tilde{L}^{(r-1)}(y)\right] \\
& =\left[\tilde{L}^{(r)}(y) \otimes \tilde{L}^{(r)}(x)\right] \cdot\left[\tilde{L}^{(r-1)}(y) \otimes \tilde{L}^{(r-1)}(x)\right] \cdot \check{R}^{(r-2)}(x, y)
\end{aligned}
$$

Rank 1 solution

Explicitly

$$
\check{R}^{(r)}(x, y) \cdot[\tilde{L}(x) \otimes \tilde{L}(y)]=[\tilde{L}(y) \otimes \tilde{L}(x)] \cdot \check{R}^{(r-1)}(x, y)
$$

for $r=1$ is given by

$$
\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & c^{-} & b^{+} & 0 \\
\hline 0 & b^{-} & c^{+} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left[\binom{1}{x} \otimes\binom{1}{y}\right]=\left[\binom{1}{y} \otimes\binom{1}{x}\right] .
$$

Rank 2 solution

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c^{-} & 0 & b^{+} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c^{-} & 0 & 0 & 0 & b^{+} & 0 & 0 \\
\hline 0 & b^{-} & 0 & c^{+} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c^{-} & 0 & b^{+} & 0 \\
\hline 0 & 0 & b^{-} & 0 & 0 & 0 & c^{+} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & b^{-} & 0 & c^{+} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \cdot\left[\left(\begin{array}{cc}
1 & \phi^{\dagger} \\
x k & 0 \\
x \phi & x
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & \phi^{\dagger} \\
y k & 0 \\
y \phi & y
\end{array}\right)\right]= \\
\\
{\left[\left(\begin{array}{ccc}
1 & \phi^{\dagger} \\
y k & 0 \\
y \phi & y
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & \phi^{\dagger} \\
x k & 0 \\
x \phi & x
\end{array}\right)\right] \cdot\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & c^{-} & b^{+} & 0 \\
\hline 0 & b^{-} & c^{+} & 0 \\
0 & 0 & 0 & 1
\end{array}\right),}
\end{gathered}
$$

We construct a solution for \mathbb{A} in the following way:

$$
\mathbb{A}(x)=\tilde{L}^{(2)}(x) \cdot \tilde{L}^{(1)}(x)=\left(\begin{array}{cc}
1 & \phi^{\dagger} \\
x k & 0 \\
x \phi & x
\end{array}\right)\binom{1}{x}=\left(\begin{array}{c}
1+x \phi^{\dagger} \\
k x \\
x \phi+x^{2}
\end{array}\right) .
$$

Example:

$$
f_{001122}\left(x_{1}, \ldots, x_{6} ; q=t^{u}, t\right)=\operatorname{Tr}\left[A_{0}\left(x_{1}\right) A_{0}\left(x_{2}\right) A_{1}\left(x_{3}\right) A_{1}\left(x_{4}\right) A_{2}\left(x_{5}\right) A_{2}\left(x_{6}\right) S\right],
$$

$$
\begin{aligned}
& A_{0}(x)=1+x \phi^{\dagger}, \\
& A_{1}(x)=x k, \\
& A_{2}(x)=x \phi+x^{2},
\end{aligned}
$$

S has the form

$$
S=k^{u}=\operatorname{diag}\left\{1, t^{-u}, t^{-2 u}, \ldots\right\}=\operatorname{diag}\left\{1, q^{-1}, q^{-2}, \ldots\right\} .
$$

Example

$$
\begin{aligned}
& f_{001122}\left(x_{1}, \ldots, x_{6} ; q=t^{u}, t\right)= \\
& \operatorname{Tr}\left[\left(1+x_{1} \phi^{\dagger}\right)\left(1+x_{2} \phi^{\dagger}\right) x_{3} k x_{4} k x_{5}\left(\phi+x_{5}\right) x_{6}\left(\phi+x_{6}\right) S\right] \\
& =x_{3} x_{4} x_{5} x_{6} \operatorname{Tr}\left[\left(x_{5} x_{6} k^{2}+\left(x_{1}+x_{2}\right)\left(x_{5}+x_{6}\right) \phi^{\dagger} k^{2} \phi+x_{1} x_{2}\left(\phi^{\dagger}\right)^{2} k^{2} \phi^{2}\right) S\right],
\end{aligned}
$$

where other terms involving unequal powers of ϕ^{\dagger} and a have zero trace.
Normalising with $\operatorname{Tr}\left(k^{2} S\right)$ we finally get

$$
\begin{aligned}
& f_{001122}\left(x_{1}, \ldots, x_{6} ; q=t^{u}, t\right)=x_{3} x_{4} x_{5}^{2} x_{6}^{2} \\
& \quad+x_{3} x_{4} x_{5} x_{6}\left(x_{1}+x_{2}\right)\left(x_{5}+x_{6}\right) t^{2} \frac{\operatorname{Tr} \phi^{\dagger} \phi k^{2} S}{\operatorname{Tr} k^{2} S}+x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} t^{4} \frac{\operatorname{Tr}\left(\phi^{\dagger}\right)^{2} \phi^{2} k^{2} S}{\operatorname{Tr} k^{2} S}
\end{aligned}
$$

General construction and sum rules

General construction

Starting from RLL=LLR

corresponds with $L_{1,0}^{(3)}=k_{3} k_{2} \phi_{1}$,

Trivialising ϕ_{1}

Combinatorial rule

For $r=3$ and $\lambda=(0,2,3,1,0,2)$, the matrix product can be represented in the following way:

Column by column transition

With $\lambda=(3,1,0,2)$. We obtain the following four terms:

Solution for rank 3

$$
\begin{aligned}
& \mathbb{A}^{(3)}(x)=\left(\begin{array}{ccc}
1 & \phi_{2}^{\dagger} & \phi_{3}^{\dagger} \\
x k_{3} k_{2} & 0 & 0 \\
x k_{3} \phi_{2} & x k_{3} & 0 \\
x \phi_{3} & x \phi_{3} \phi_{2}^{\dagger} & x
\end{array}\right)^{(3)} \cdot\left(\begin{array}{cc}
1 & \phi_{2}^{\dagger} \\
x k_{2} & 0 \\
x \phi_{2} & x
\end{array}\right)^{(2)} \cdot\binom{1}{x}^{(1)}=\left(\begin{array}{l}
A_{0}(x) \\
A_{1}(x) \\
A_{2}(x) \\
A_{3}(x)
\end{array}\right) . \\
& \mathbb{A}^{(3)}(x)=\left(\begin{array}{ccc}
\square & \square 0 & \square \cdot \\
\square & \boxed{\square} & \boxed{\square} \\
\square & \boxed{\square} & \boxed{\square} \\
\square & \square 0 & \square \cdot
\end{array}\right)^{(3)} \cdot\left(\begin{array}{ll}
\square & \square \cdot \\
\square & \circ \cdot \\
\square & \boxed{\square}
\end{array}\right)^{(2)} \cdot\binom{\square}{\square}^{(1)}=\left(\begin{array}{l}
A_{0}(x) \\
A_{1}(x) \\
A_{2}(x) \\
A_{3}(x)
\end{array}\right) . \\
& A_{2}(x)= \\
& \text { (3) (2) (1) } \\
& x k_{3}^{(3)} \phi_{2}{ }^{(3)} \\
& + \\
& \text { (1) } \\
& \text { 年 } \\
& + \\
& \text { (3) (2) (1) } \\
& x^{2} k_{3}^{(3)} k_{2}^{(2)} \\
& \text { (3) (2) (1) } \\
& x^{2} k_{3}^{(3)} \phi_{2}^{(3)} \phi_{2}^{(2)^{\dagger}}
\end{aligned}
$$

Summation formula

A corollary is the following new summation formula.

Theorem

Let $\lambda[k]$ be a partition obtained from λ by replacing all parts of size $\leq k$ with 0 .

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)=\sum_{\sigma \in S_{\lambda}} T_{\sigma} \circ x_{\lambda} \circ \prod_{i=1}^{r-1}\left(\sum_{\sigma \in S_{\lambda[1]}} C_{i}\binom{\lambda[i-1]}{\sigma \circ \lambda[i]} T_{\sigma} \circ x_{\lambda[1]} \circ\right) 1
$$

with coefficients that satisfy $C_{i}(\lambda, \mu)=0$ if any $0<\lambda_{k}<\mu_{k}$, and

$$
C_{i}(\lambda, \mu) \equiv C_{i}\binom{\lambda_{1} \cdots \lambda_{n}}{\mu_{1} \cdots \mu_{n}}=\prod_{j=i+1}^{r}\left(q^{(j-i) a_{j}(\lambda, \mu)} \prod_{k=1}^{b_{j}(\lambda, \mu)} \frac{1-t^{k}}{1-q^{j-i} t^{\lambda_{i}^{\prime}-\lambda_{j}^{\prime}+k}}\right)
$$

otherwise.

Specialisations

- Monomial symmetric polynomials $(t=1)$

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, 1\right)=\sum_{\sigma \in S_{\lambda}} s_{\sigma} \circ x_{\lambda} \circ \prod_{i=1}^{r-1} x_{\lambda[[]}=\sum_{\sigma \in s_{\lambda}} \sigma \circ\left(\prod_{i=1}^{n} x_{i}^{\lambda_{i}}\right)=m_{\lambda}\left(x_{1}, \ldots, x_{n}\right),
$$

- Hall-Littlewood polynomials ($q=0$)

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; t\right)=\sum_{\sigma \in S_{\lambda}} T_{\sigma} \circ x_{\lambda} \circ \prod_{i=1}^{r-1} x_{\lambda[]]}=\sum_{\sigma \in S_{\lambda}} T_{\sigma} \circ\left(\prod_{i=1}^{n} x_{i}^{\lambda_{i}}\right) .
$$

Specialisations

- q-Whittaker polynomials $(t=0)$

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, 0\right)=\sum_{\sigma \in S_{\lambda}} D_{\sigma} \circ x_{\lambda} \circ \prod_{i=1}^{r-1}\left(\sum_{\sigma \in S_{\lambda[j]}} C_{i}\binom{\lambda[i-1]}{\sigma \circ \lambda[i]} D_{\sigma} \circ x_{\lambda[i]} \circ\right) 1
$$

with coefficients that satisfy $C_{i}(\lambda, \mu)=0$ if any $0<\lambda_{k}<\mu_{k}$, and $C_{i}(\lambda, \mu)=\prod_{j=i+1}^{r} q^{(j-i) a_{j}(\lambda, \mu)}$ otherwise, and where each D_{σ} is now composed of the divided-difference operators

$$
D_{i}=\left(x_{i} / x_{i+1}-1\right)^{-1}\left(1-s_{i}\right), \quad 1 \leq i \leq n-1
$$

Conclusion

- Explicit construction of (matrix product) stationary state of a multi-species inhomgeneous exclusion process
- Use Yang-Baxter integrability, representation theory, theory of multi-variable polynomials
- New explicit formulas for Macdonald polynomials using ideas from stochastic processes

