The two-species exclusion process and Koornwinder moments

Lauren K. Williams, UC Berkeley

- 1. The asymmetric simple exclusion process (ASEP) and its applications
- 2. Staircase tableaux and steady state probabilities
- **3.** The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

1. The asymmetric simple exclusion process (ASEP) and its applications

- 2. Staircase tableaux and steady state probabilities
- **3.** The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

- 1. The asymmetric simple exclusion process (ASEP) and its applications
- 2. Staircase tableaux and steady state probabilities
- **3.** The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

- 1. The asymmetric simple exclusion process (ASEP) and its applications
- 2. Staircase tableaux and steady state probabilities
- 3. The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

- 1. The asymmetric simple exclusion process (ASEP) and its applications
- 2. Staircase tableaux and steady state probabilities
- 3. The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

- 1. The asymmetric simple exclusion process (ASEP) and its applications
- 2. Staircase tableaux and steady state probabilities
- 3. The ASEP with 2 kinds of particles (the 2-species ASEP)
- 4. Rhombic tableaux and steady state probabilities
- 5. Orthogonal polynomials (Askey-Wilson and Macdonald-Koornwinder)

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

• New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .

• A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.

• Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

• New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .

• A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.

• Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

- New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .
- A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.
- Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

- New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .
- A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.
- Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

- New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .
- A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.
- Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

- New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .
- A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.
- *Exclusion:* at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

Fix a 1D lattice of N sites, which can be occupied by particles. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$ between 0 and 1.

(Usually u = 1. Sometimes set $\gamma = \delta = 0$.)

- New particles can enter and exit the lattice from the left at rates α , γ , and particles can exit and enter from the right at rates β , δ .
- A particle can hop right at rate u and left at rate q. Model is *asymmetric*: we don't require u = q.
- Exclusion: at most one particle on each site

Depict particles as \bullet or 1 and "holes" as \circ or 0.

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970.

Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If $X = A \bullet \circ B$ and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

- 4 目 ト - 4 日 ト - 4 日 ト

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If $X = A \bullet \circ B$ and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

- 4 目 ト - 4 日 ト - 4 日 ト

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If $X = A \bullet \circ B$ and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

- 4 目 ト - 4 日 ト - 4 日 ト

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If $X = A \bullet \circ B$ and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

(4回) (4回) (4回)

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If $X = A \bullet \circ B$ and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

• If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.

- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

(4 回) (4 回) (4 回)

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If
$$X = A \bullet \circ B$$
 and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• If
$$X = A \bullet \circ B$$
 and $Y = A \circ \bullet B$ then $P_{X,Y} = \frac{u}{N+1}$ and $P_{Y,X} = \frac{q}{N+1}$.

- If $X = \circ B$ and $Y = \bullet B$ then $P_{X,Y} = \frac{\alpha}{N+1}$ and $P_{Y,X} = \frac{\gamma}{N+1}$.
- If $X = B \bullet$ and $Y = B \circ$ then $P_{X,Y} = \frac{\beta}{N+1}$ and $P_{X,Y} = \frac{\delta}{N+1}$.
- Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 \sum_{X \neq Y} P_{X,Y}$.

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

• Otherwise $P_{X,Y} = 0$ for $Y \neq X$ and $P_{X,X} = 1 - \sum_{X \neq Y} P_{X,Y}$.

・ 国 ト ・ 国 ト ・ 国 ト …

• Introduced by biologists (MacDonald, Gibbs, Pipkin) in 1968, and independently by a mathematician (Spitzer) in 1970. Enormous amount of study, e.g. by Liggett, Derrida, Spohn, Sasamoto, Borodin, Ferrari, Seppalainen, Tracy-Widom, Essler, de Gier, Johansson, Corwin, Peche, Gorin, Shkolnikov, Imamura, ..., many people here!

- Let B_N be the set of all 2^N words of length N on letters $\{\circ, \bullet\}$.
- The ASEP is the Markov chain on B_N with transition probabilities:

The state diagram of the ASEP for N = 2.

Some features of the ASEP

The ASEP exhibits boundary-induced phase transitions. (Here, q = 0.)

This picture from paper of Sasamoto. Phase diagram also appeared in e.g. works of Liggett.

2015 6/31

http://front.math.ucdavis.edu/9910.0270 (Sasamoto)

2015 7 / 31

・日本 ・日本 ・日本

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that:

- \bullet all boxes above an α are empty.
- all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that:

- \bullet all boxes above an α are empty.
- all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that:

- \bullet all boxes above an α are empty.
- all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that: • all boxes above an α are empty.

- all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that: • all boxes above an α are empty.

- all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Its type is the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α and a \circ to a β .

8 / 31

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that: • all boxes above an α are empty.

- \bullet all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Theorem (Corteel-Williams):

There is an explicit combinatorial formula for all steady state probabilities of the ASEP using *staircase tableaux*.

Def. (C.–W.) An α/β staircase tableau of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with α, β , such that: • all boxes above an α are empty.

- \bullet all boxes left of a β are empty.
- all boxes on the southeast border are nonempty.

Its *type* is the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α and a \circ to a β .

8 / 31

Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux ${\mathcal T}$ of type $\sigma.$

Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux ${\mathcal T}$ of type $\sigma.$

Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

 $\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$

where sum is over all tableaux ${\cal T}$ of type $\sigma.$
Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux ${\mathcal T}$ of type $\sigma.$

Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

Tableaux formulas for probabilities

Assign q to each blank box with an α to the right and a β below it. Define the *weight* wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters α, β, q general, and $\gamma = \delta = 0$. The steady state probability that the ASEP is in configuration σ is

$$\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$$

where sum is over all tableaux \mathcal{T} of type σ .

The tableaux of the various types are:

Let $Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$. By the Theorem, we have that $\Pr(\bullet \bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet \circ) = \frac{\alpha\beta(\alpha + \beta + q)}{Z_2}, \Pr(\bullet \bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\bullet \circ) = \frac{\beta^2}{Z_2}.$

The tableaux of the various types are:

Let
$$Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$$
. By the Theorem, we have that
 $\Pr(\bullet \bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet \circ) = \frac{\alpha\beta(\alpha + \beta + q)}{Z_2}, \Pr(\circ \bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ \circ) = \frac{\beta^2}{Z_2}.$

The tableaux of the various types are:

Let
$$Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$$
. By the Theorem, we have that
 $\Pr(\bullet \bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet \circ) = \frac{\alpha\beta(\alpha + \beta + q)}{Z_2}, \Pr(\circ \bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ \circ) = \frac{\beta^2}{Z_2}.$

The tableaux of the various types are:

Let $Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$. By the Theorem, we have that

$$\Pr(\bullet \bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet \circ) = \frac{\alpha\beta(\alpha + \beta + q)}{Z_2}, \Pr(\circ \bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ \circ) = \frac{\beta^2}{Z_2}.$$

The tableaux of the various types are:

Let $Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$. By the Theorem, we have that

$$\Pr(\bullet\bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet\circ) = \frac{\alpha\beta(\alpha+\beta+q)}{Z_2}, \Pr(\circ\bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ\circ) = \frac{\beta^2}{Z_2}.$$

The tableaux of the various types are:

Let $Z_2 = \alpha^2 + \alpha\beta(\alpha + \beta + q) + \alpha\beta + \beta^2$. By the Theorem, we have that

$$\Pr(\bullet \bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet \circ) = \frac{\alpha\beta(\alpha + \beta + q)}{Z_2}, \Pr(\circ \bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ \circ) = \frac{\beta^2}{Z_2}.$$

$$\Pr(\bullet\bullet) = \frac{\alpha^2}{Z_2}, \Pr(\bullet\circ) = \frac{\alpha\beta(\alpha+\beta+q)}{Z_2}, \Pr(\circ\bullet) = \frac{\alpha\beta}{Z_2}, \Pr(\circ\circ) = \frac{\beta^2}{Z_2}.$$

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A staircase tableau of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to β , er, γ .

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A *staircase tableau* of size N is a Young diagram of shape $(N, \ldots, 2, 1)$, whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to β , er, γ .

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A staircase tableau of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to β , or, γ .

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A staircase tableau of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to β , φ , γ , φ .

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A *staircase tableau* of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to β , or, γ .

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A *staircase tableau* of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a β , to $\underline{a}, \beta, \underline{a}, \gamma, \underline{a}$

Previous slides were for $\gamma = \delta = 0$. But we can remove this hypothesis with a slightly more general definition of staircase tableaux.

Def. (C.-W.) A *staircase tableau* of size N is a Young diagram of shape (N, ..., 2, 1), whose boxes are empty or filled with $\alpha, \beta, \gamma, \delta$, such that:

- \bullet all boxes above an α or γ are empty.
- \bullet all boxes left of a β or δ are empty.
- all boxes on the southeast border are nonempty.

Define its *type* to be the word in $\{\bullet, \circ\}^N$ obtained by reading the southeast border and assigning a \bullet to an α or δ and a ρ to a β or γ .

2015

11 / 31

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(T) of tableau T as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux \mathcal{T} of type σ .

Lauren K. Williams (UC Berkeley) The two-species exclusion process and Koorn

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux \mathcal{T} of type σ .

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux \mathcal{T} of type σ .

Lauren K. Williams (UC Berkeley) The two-species exclusion process and Koorm

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general.

The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux $\mathcal T$ of type σ .

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

where sum is over all tableaux T of type σ .

Assign q's to some empty boxes (according to deterministic local RULE). Define weight wt(\mathcal{T}) of tableau \mathcal{T} as product of all boxes.

Let $Z_N = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})$, summing over all tableaux of size N.

Theorem (Corteel–W.)

Consider the ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

$$\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$$

where sum is over all tableaux \mathcal{T} of type σ .

- 2005 (W.): Enumerated cells according to dimension in the *positive* Grassmannian $Gr_{K,N}^+$, using Postnikov's Le-diagrams. Obtained: $\hat{E}_{K,N}(q) = q^{K-K^2} \sum_{i=0}^{K-1} (-1)^i [K-i]_q^N q^{Ki-K} \left(\binom{N}{i} q^{K-i} + \binom{N}{i-1} \right).$
- 2007 (Corteel): Proved that if $\alpha = \beta = 1$, $\gamma = \delta = 0$, the steady state probability that the ASEP on N sites is in configuration with exactly K particles is $\frac{\hat{E}_{K+1,N+1}(q)}{Z_N}$.
- 2007 (Corteel-W): When α, β, q general and $\gamma = \delta = 0$, gave formulas for all steady state probabilities of the ASEP using Le-diagrams.

- 2005 (W.): Enumerated cells according to dimension in the *positive* Grassmannian $Gr_{K,N}^+$, using Postnikov's Le-diagrams. Obtained: $\hat{E}_{K,N}(q) = q^{K-K^2} \sum_{i=0}^{K-1} (-1)^i [K-i]_q^N q^{Ki-K} \left(\binom{N}{i} q^{K-i} + \binom{N}{i-1} \right).$
- 2007 (Corteel): Proved that if $\alpha = \beta = 1$, $\gamma = \delta = 0$, the steady state probability that the ASEP on N sites is in configuration with exactly K particles is $\frac{\hat{E}_{K+1,N+1}(q)}{Z_N}$.
- 2007 (Corteel-W): When α, β, q general and $\gamma = \delta = 0$, gave formulas for all steady state probabilities of the ASEP using Le-diagrams.

- 2005 (W.): Enumerated cells according to dimension in the *positive* Grassmannian $Gr_{K,N}^+$, using Postnikov's Le-diagrams. Obtained: $\hat{E}_{K,N}(q) = q^{K-K^2} \sum_{i=0}^{K-1} (-1)^i [K-i]_q^N q^{Ki-K} \left(\binom{N}{i} q^{K-i} + \binom{N}{i-1} \right).$
- 2007 (Corteel): Proved that if $\alpha = \beta = 1$, $\gamma = \delta = 0$, the steady state probability that the ASEP on *N* sites is in configuration with exactly *K* particles is $\frac{\hat{E}_{K+1,N+1}(q)}{Z_N}$.
- 2007 (Corteel-W): When α, β, q general and $\gamma = \delta = 0$, gave formulas for all steady state probabilities of the ASEP using Le-diagrams.

- 2005 (W.): Enumerated cells according to dimension in the *positive* Grassmannian $Gr_{K,N}^+$, using Postnikov's Le-diagrams. Obtained: $\hat{E}_{K,N}(q) = q^{K-K^2} \sum_{i=0}^{K-1} (-1)^i [K-i]_q^N q^{Ki-K} \left(\binom{N}{i} q^{K-i} + \binom{N}{i-1} \right).$
- 2007 (Corteel): Proved that if $\alpha = \beta = 1$, $\gamma = \delta = 0$, the steady state probability that the ASEP on *N* sites is in configuration with exactly *K* particles is $\frac{\hat{E}_{K+1,N+1}(q)}{Z_N}$.
- 2007 (Corteel-W): When α, β, q general and $\gamma = \delta = 0$, gave formulas for all steady state probabilities of the ASEP using Le-diagrams.

How and why did we come up with staircase tableaux?

- 2005 (W.): Enumerated cells according to dimension in the *positive* Grassmannian $Gr_{K,N}^+$, using Postnikov's Le-diagrams. Obtained: $\hat{E}_{K,N}(q) = q^{K-K^2} \sum_{i=0}^{K-1} (-1)^i [K-i]_q^N q^{Ki-K} \left(\binom{N}{i} q^{K-i} + \binom{N}{i-1} \right).$
- 2007 (Corteel): Proved that if $\alpha = \beta = 1$, $\gamma = \delta = 0$, the steady state probability that the ASEP on N sites is in configuration with exactly K particles is $\frac{\hat{E}_{K+1,N+1}(q)}{Z_N}$.
- 2007 (Corteel-W): When α, β, q general and γ = δ = 0, gave formulas for all steady state probabilities of the ASEP using Le-diagrams.

Lauren K. Williams (UC Berkeley) The two-species exclusion process and Koorn

2015 13 / 31

Let $Z_n(\alpha, \beta, \gamma, \delta; q) = \sum_{\mathcal{T}} wt(\mathcal{T})$, where the sum is over all staircase tableaux of size n.

α	β	γ	δ	q	$Z_n(lpha,eta,\gamma,\delta;q)$
1	1	1	1	1	$4^n n! = 4n!!!!$
1	1	1	0	1	(2n+1)!!
1	1	0	0	1	(n+1)!
1	1	0	0	0	$C_{n+1} = \frac{1}{n+2} \binom{2n+2}{n+1}$
α	β	γ	δ	1	$\prod_{j=0}^{n-1} (\alpha + \beta + \gamma + \delta + j(\alpha + \gamma)(\beta + \delta))$
α	β	γ	$-\beta$	q	$\prod_{j=0}^{n-1} (lpha + q^j \gamma)$

Let $\mathrm{Pr}_{N}(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0,1\}^{N}.$

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D,~E, and vectors $\langle W|$ and |V
angle, such that:

DE - qED = D + E $(\beta D - \delta E)|V\rangle = |V\rangle$ $\langle W|(\alpha E - \gamma D) = \langle W|$

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the *partition function*). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Ex. $\Pr_5(1, 1, 0, 0, 1) = \frac{\langle W | DDEED | V \rangle}{Z_e}$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

DE - qED = D + E $(\beta D - \delta E)|V\rangle = |V\rangle$ $\langle W|(\alpha E - \gamma D) = \langle W|$

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

 $\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$

Ex. $\Pr_5(1,1,0,0,1) = \frac{\langle W|DDEED|V \rangle}{Z_{\text{F}}}$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W|$ and |V
angle, such that:

$$DE - qED = D + E$$

$$(\beta D - \delta E)|V\rangle = |V\rangle$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
(3)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the *partition function*). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

 $\Pr_{1}(1, 1, 0, 0, 1) = \frac{\langle W | DDEED | V}{Z_{r}}$

2015 15 / 31

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E$$
 (1)

$$(\beta D - \delta E)|V\rangle = |V\rangle \tag{2}$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
 (3)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Lauren K. Williams (UC Berkeley) The two-species exclusion process and Koorn

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E)|V\rangle = |V\rangle$$
 (2)

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Lauren K. Williams (UC Berkeley) The two-species exclusion process and Koorn

2015 15 / 31
Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E)|V\rangle = |V\rangle \tag{2}$$

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E)|V\rangle = |V\rangle \tag{2}$$

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

15 / 31

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the *partition function*). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E)|V\rangle = |V\rangle \tag{2}$$

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

2015

15 / 31

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E) |V\rangle = |V\rangle \tag{2}$$

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

15 / 31

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N)=\frac{\langle W|(\prod_{i=1}^N(\sigma_i D+(1-\sigma_i)E))|V\rangle}{Z_N}.$$

Let $\Pr_N(\sigma)$ be the steady state prob. of configuration $\sigma \in \{0, 1\}^N$.

Theorem (Derrida, Evans, Hakim, Pasquier 1993):

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{1}$$

$$(\beta D - \delta E) |V\rangle = |V\rangle \tag{2}$$

$$\langle W | (\alpha E - \gamma D) = \langle W |$$
 (3)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N)=\frac{\langle W|(\prod_{i=1}^N(\sigma_i D+(1-\sigma_i)E))|V\rangle}{Z_N}.$$

Ex. $\Pr_5(1,1,0,0,1) = \frac{\langle W|DDEED|V\rangle}{Z_5}$.

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{4}$$

$$(\beta D - \delta E) |V\rangle = |V\rangle \tag{5}$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
 (6)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Idea of proving the tableaux formulas for steady state probabilities: find matrices and vectors $D, E, \langle W|, |V \rangle$ which are *transfer matrices* for staircase tableaux ... such that e.g. $\langle W|DDEED|V \rangle$ enumerates the weights of all tableaux of type • • • • • •. Then show that the matrices/vectors satisfy the relations above.

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{4}$$

$$(\beta D - \delta E)|V\rangle = |V\rangle \tag{5}$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
 (6)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Idea of proving the tableaux formulas for steady state probabilities:

find matrices and vectors $D, E, \langle W|, |V \rangle$ which are *transfer matrices* for staircase tableaux ... such that e.g. $\langle W|DDEED|V \rangle$ enumerates the weights of all tableaux of type $\bullet \circ \circ \circ \bullet$. Then show that the matrices/vectors satisfy the relations above.

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{4}$$

$$(\beta D - \delta E) |V\rangle = |V\rangle \tag{5}$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
 (6)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Idea of proving the tableaux formulas for steady state probabilities: find matrices and vectors $D, E, \langle W|, |V \rangle$ which are *transfer matrices* for staircase tableaux ... such that e.g. $\langle W|DDEED|V \rangle$ enumerates the weights of all tableaux of type $\bullet \circ \circ \circ \bullet$.

Then show that the matrices/vectors satisfy the relations above

Suppose there exists matrices D, E, and vectors $\langle W |$ and $|V \rangle$, such that:

$$DE - qED = D + E \tag{4}$$

$$(\beta D - \delta E) |V\rangle = |V\rangle \tag{5}$$

$$\langle W|(\alpha E - \gamma D) = \langle W|$$
 (6)

Let $Z_N := \langle W | (D + E)^N | V \rangle$ (the partition function). Then

$$\Pr_N(\sigma_1,\ldots,\sigma_N) = \frac{\langle W | (\prod_{i=1}^N (\sigma_i D + (1-\sigma_i)E)) | V \rangle}{Z_N}$$

Idea of proving the tableaux formulas for steady state probabilities: find matrices and vectors $D, E, \langle W|, |V \rangle$ which are *transfer matrices* for staircase tableaux ... such that e.g. $\langle W|DDEED|V \rangle$ enumerates the weights of all tableaux of type $\bullet \circ \circ \circ \bullet$. Then show that the matrices/vectors satisfy the relations above.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*.

Sometimes represent these particles by 2 and 1, and a hole by a 0. Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$. (Usually u = 1.)

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*. Sometimes represent these particles by 2 and 1, and a hole by a 0.

Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$.

 $\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*. Sometimes represent these particles by 2 and 1, and a hole by a 0. Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$. (Usually u = 1.)

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*. Sometimes represent these particles by 2 and 1, and a hole by a 0. Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$. (Usually u = 1.)

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*. Sometimes represent these particles by 2 and 1, and a hole by a 0. Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$. (Usually u = 1.)

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

Same as the ASEP, but with two kinds of particles, *heavy* and *light*. Sometimes represent these particles by 2 and 1, and a hole by a 0. Fix a 1D lattice of N sites. Choose parameters $q, u, \alpha, \beta, \gamma, \delta$. (Usually u = 1.)

- Light particles cannot leave the lattice, so their number is conserved.
- For two adjacent sites on the lattice, we have $21 \rightarrow 12$ and $20 \rightarrow 02$ and $10 \rightarrow 01$ with rate u. The reverse transitions happen with rate q.

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones.

The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones. The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

There is an explicit combinatorial formula for all steady state probabilities of the two-species ASEP using *rhombic staircase tableaux*.

When $\gamma = \delta = 0$, analogous formula first proved by Mandelshtam-Viennot. New idea: one should use "generalized" Young diagrams containing diagonal edges as well as horizontal and vertical ones.

The diagram $\Gamma(\sigma)$ associated to a state σ is obtained as follows:

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $\alpha, \beta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain lpha or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain lpha or $\gamma {m q}$
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an lpha or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(\mathcal{T}) of a tableau is the product of all tiles.

2015

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an lpha or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(T) of a tableau is the product of all tiles.

2015 19 / 31

Def. (Corteel-Mandelshtam-W.) A *rhombic staircase tableau* of type $\Gamma(\sigma)$ is a filling of its maximum rhombic tiling such that:

- Squares are empty or filled with $lpha, eta, \gamma, \delta$
- Tall rhombi are empty or contain β or δq
- Short rhombi are empty or contain α or γq
- ullet The lowest square in each vertical strip must be filled according to σ
- Each tile "above" an α or γ is empty
- Each tile "left of" a β or δ is empty.

Assign a monomial to each empty tile according to deterministic local RULE. The *weight* wt(T) of a tableau is the product of all tiles.

2015 19 / 31

RULE for filling in blank tiles and determining the weight

 α q \overline{n}

Theorem (Corteel–Mandelshtam – W.)

Consider the 2-species ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

$$\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$$

where sum is over all rhombic tableaux \mathcal{T} of type σ .

Example: Consider the two-species ASEP on a lattice of 2 sites with precisely 1 light particle. Let $\sigma = (2, 1)$. The tableaux of type σ are:

So the probability of state σ is equal to $\frac{\alpha\beta u + \alpha\delta q}{Z_{\alpha}}$

Theorem (Corteel–Mandelshtam – W.)

Consider the 2-species ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

$$\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$$

where sum is over all rhombic tableaux T of type σ .

So the probability of state σ is equal to $\frac{\alpha\beta u + \alpha\delta q + \alpha u}{Z_{\alpha 1}}$

Theorem (Corteel–Mandelshtam – W.)

Consider the 2-species ASEP with parameters $\alpha, \beta, \gamma, \delta, q$ general. The steady state probability that the ASEP is in configuration σ is

$$\frac{\sum_{\mathcal{T}} \mathsf{wt}(\mathcal{T})}{Z_N},$$

where sum is over all rhombic tableaux \mathcal{T} of type σ .

So the probability of state σ is equal to $\frac{\alpha\beta u + \alpha\delta q + \alpha uq + \delta q^2}{Z_{2,1}}$.
- Choose a measure μ. We say that {P_k(x)}_{k≥0} is a family of orthogonal polynomials if ∫ P_j(x)P_k(x)dμ(x) = 0 for j ≠ k.
- Given such a measure (or family of orthogonal polynomials), we define the Nth moment μ_N to be $\mu_N = \int x^N d\mu$.
- Note: if one understands the moments, then by linearity, one can integrate any polynomial with respect to the measure.
- Askey-Wilson polynomials $P_n(x, a, b, c, d|q)$ are at the top of the hierarchy of classical orthogonal polynomials in one variable.

- Choose a measure μ. We say that {P_k(x)}_{k≥0} is a family of orthogonal polynomials if ∫ P_j(x)P_k(x)dμ(x) = 0 for j ≠ k.
- Given such a measure (or family of orthogonal polynomials), we define the *N*th moment μ_N to be $\mu_N = \int x^N d\mu$.
- Note: if one understands the moments, then by linearity, one can integrate any polynomial with respect to the measure.
- Askey-Wilson polynomials $P_n(x, a, b, c, d|q)$ are at the top of the hierarchy of classical orthogonal polynomials in one variable.

- Choose a measure μ. We say that {P_k(x)}_{k≥0} is a family of orthogonal polynomials if ∫ P_j(x)P_k(x)dμ(x) = 0 for j ≠ k.
- Given such a measure (or family of orthogonal polynomials), we define the Nth moment μ_N to be $\mu_N = \int x^N d\mu$.
- Note: if one understands the moments, then by linearity, one can integrate any polynomial with respect to the measure.
- Askey-Wilson polynomials $P_n(x, a, b, c, d|q)$ are at the top of the hierarchy of classical orthogonal polynomials in one variable.

- Choose a measure μ. We say that {P_k(x)}_{k≥0} is a family of orthogonal polynomials if ∫ P_j(x)P_k(x)dμ(x) = 0 for j ≠ k.
- Given such a measure (or family of orthogonal polynomials), we define the Nth moment μ_N to be $\mu_N = \int x^N d\mu$.
- Note: if one understands the moments, then by linearity, one can integrate any polynomial with respect to the measure.
- Askey-Wilson polynomials P_n(x, a, b, c, d|q) are at the top of the hierarchy of classical orthogonal polynomials in one variable.

- Choose a measure μ. We say that {P_k(x)}_{k≥0} is a family of orthogonal polynomials if ∫ P_j(x)P_k(x)dμ(x) = 0 for j ≠ k.
- Given such a measure (or family of orthogonal polynomials), we define the Nth moment μ_N to be $\mu_N = \int x^N d\mu$.
- Note: if one understands the moments, then by linearity, one can integrate any polynomial with respect to the measure.
- Askey-Wilson polynomials $P_n(x, a, b, c, d|q)$ are at the top of the hierarchy of classical orthogonal polynomials in one variable.

- Since the 1970's, there was a lot of work developing a combinatorial theory of orthogonal polynomials (Viennot, Flajolet, Foata, Stanton, Ismail, ...), but no results for Askey-Wilson polynomials.
- 2005: Uchiyama-Sasamoto-Wadati discovered a close link between the ASEP and the Askey-Wilson moments. Tridiagonal solution to Matrix Ansatz ...
- 2011: Using USW and our work on the ASEP, we gave a formula for Askey-Wilson moments in terms of staircase tableaux (Corteel-W.)

- Since the 1970's, there was a lot of work developing a combinatorial theory of orthogonal polynomials (Viennot, Flajolet, Foata, Stanton, Ismail, ...), but no results for Askey-Wilson polynomials.
- 2005: Uchiyama-Sasamoto-Wadati discovered a close link between the ASEP and the Askey-Wilson moments. Tridiagonal solution to Matrix Ansatz ...
- 2011: Using USW and our work on the ASEP, we gave a formula for Askey-Wilson moments in terms of staircase tableaux (Corteel-W.)

- Since the 1970's, there was a lot of work developing a combinatorial theory of orthogonal polynomials (Viennot, Flajolet, Foata, Stanton, Ismail, ...), but no results for Askey-Wilson polynomials.
- 2005: Uchiyama-Sasamoto-Wadati discovered a close link between the ASEP and the Askey-Wilson moments. Tridiagonal solution to Matrix Ansatz ...
- 2011: Using USW and our work on the ASEP, we gave a formula for Askey-Wilson moments in terms of staircase tableaux (Corteel-W.)

- Since the 1970's, there was a lot of work developing a combinatorial theory of orthogonal polynomials (Viennot, Flajolet, Foata, Stanton, Ismail, ...), but no results for Askey-Wilson polynomials.
- 2005: Uchiyama-Sasamoto-Wadati discovered a close link between the ASEP and the Askey-Wilson moments. Tridiagonal solution to Matrix Ansatz ...
- 2011: Using USW and our work on the ASEP, we gave a formula for Askey-Wilson moments in terms of staircase tableaux (Corteel-W.)

- Since the 1970's, there was a lot of work developing a combinatorial theory of orthogonal polynomials (Viennot, Flajolet, Foata, Stanton, Ismail, ...), but no results for Askey-Wilson polynomials.
- 2005: Uchiyama-Sasamoto-Wadati discovered a close link between the ASEP and the Askey-Wilson moments. Tridiagonal solution to Matrix Ansatz ...
- 2011: Using USW and our work on the ASEP, we gave a formula for Askey-Wilson moments in terms of staircase tableaux (Corteel-W.)

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (*n*! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

A (10) A (10)

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (*n*! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

超す イヨト イヨト

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (n! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

超す イヨト イヨト

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (n! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

< 回 > < 三 > < 三 >

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (n! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

< 同 > < 三 > < 三 >

- Let x = (x₁,...,x_m), λ = (λ₁,...,λ_m) be a partition, and a, b, c, d, q, t be generic complex parameters.
- The Koornwinder polynomials P_λ(x; a, b, c, d|q, t) are multivariate orthogonal polynomials which are the type BC-case of Macdonald polynomials. Include Askey-Wilson polynomials as a limiting case.
- Macdonald polynomials have deep relationship with affine Hecke algebras and Hilbert schemes. In type A, lots of amazing combinatorics: Haiman (n! conjecture), Haglund-Haiman-Loehr explicit formula, etc.
- So far not much combinatorics of Koornwinder polynomials. But understanding these would be very desirable – the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Koornwinder polynomials (Van Diejen).

• Question (Haiman): Can one generalize the relationships

replacing "Askey-Wilson" by Koornwinder?

- First need to define Koornwinder moments. How do we generalize ∫ xⁿdµ in a multivariable setting? One option: replace xⁿ by the degree n homogeneous symmetric polynomial in m variables.
- At q = t, Koornwinder polynomials are equal to

$$P_{\lambda}(x; a, b, c, d|q, q) = const \cdot \frac{\det(p_{m-j+\lambda_j}(x_i; a, b, c, d|q))_{i,j=1}^m}{\det(p_{m-j}(x_i; a, b, c, d|q))_{i,j=1}^m},$$

• Question (Haiman): Can one generalize the relationships

replacing "Askey-Wilson" by Koornwinder?

- First need to define Koornwinder moments. How do we generalize ∫ xⁿdµ in a multivariable setting? One option: replace xⁿ by the degree n homogeneous symmetric polynomial in m variables.
- At q = t, Koornwinder polynomials are equal to

$$P_{\lambda}(x; a, b, c, d|q, q) = const \cdot \frac{\det(p_{m-j+\lambda_j}(x_i; a, b, c, d|q))_{i,j=1}^m}{\det(p_{m-j}(x_i; a, b, c, d|q))_{i,j=1}^m},$$

• Question (Haiman): Can one generalize the relationships

ASEP Askey-Wilson moments

replacing "Askey-Wilson" by Koornwinder?

- First need to define Koornwinder moments. How do we generalize ∫ xⁿdµ in a multivariable setting? One option: replace xⁿ by the degree n homogeneous symmetric polynomial in m variables.
- At q = t, Koornwinder polynomials are equal to

$$P_{\lambda}(x;a,b,c,d|q,q) = const \cdot \frac{\det(p_{m-j+\lambda_j}(x_i;a,b,c,d|q))_{i,j=1}^m}{\det(p_{m-j}(x_i;a,b,c,d|q))_{i,j=1}^m},$$

• Question (Haiman): Can one generalize the relationships

ASEP Askey-Wilson moments

replacing "Askey-Wilson" by Koornwinder?

- First need to define Koornwinder moments. How do we generalize ∫ xⁿdµ in a multivariable setting? One option: replace xⁿ by the degree n homogeneous symmetric polynomial in m variables.
- At q = t, Koornwinder polynomials are equal to

$$P_{\lambda}(x; a, b, c, d|q, q) = const \cdot \frac{\det(p_{m-j+\lambda_j}(x_i; a, b, c, d|q))_{i,j=1}^m}{\det(p_{m-j}(x_i; a, b, c, d|q))_{i,j=1}^m}$$

• Question (Haiman): Can one generalize the relationships

ASEP Askey-Wilson moments

replacing "Askey-Wilson" by Koornwinder?

- First need to define Koornwinder moments. How do we generalize ∫ xⁿdµ in a multivariable setting? One option: replace xⁿ by the degree n homogeneous symmetric polynomial in m variables.
- At q = t, Koornwinder polynomials are equal to

$$P_{\lambda}(x; a, b, c, d|q, q) = const \cdot rac{\det(p_{m-j+\lambda_j}(x_i; a, b, c, d|q))_{i,j=1}^m}{\det(p_{m-j}(x_i; a, b, c, d|q))_{i,j=1}^m},$$

 Eric Rains defined the following "Koornwinder moments at q = t": for λ = (λ₁, λ₂,..., λ_m), set

$$M_{\lambda} = I_{\mathcal{K}}(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q),$$

where s_{λ} is a Schur polynomial, and I_{K} means integrate with respect to the Koornwinder density.

- One can express M_λ as a ratio of two determinants in the Askey-Wilson moments.
- When λ = (λ₁, 0, 0, ..., 0), we are integrating a homogeneous symmetric polynomial of degree λ₁ in x₁,..., x_m, which is a very natural analogue of ∫ xⁿdμ.

 Eric Rains defined the following "Koornwinder moments at q = t": for λ = (λ₁, λ₂,..., λ_m), set

$$M_{\lambda} = I_{\mathcal{K}}(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q),$$

where s_{λ} is a Schur polynomial, and I_{K} means integrate with respect to the Koornwinder density.

- One can express M_λ as a ratio of two determinants in the Askey-Wilson moments.
- When λ = (λ₁, 0, 0, ..., 0), we are integrating a homogeneous symmetric polynomial of degree λ₁ in x₁,..., x_m, which is a very natural analogue of ∫ xⁿdμ.

 Eric Rains defined the following "Koornwinder moments at q = t": for λ = (λ₁, λ₂,..., λ_m), set

$$M_{\lambda} = I_{\mathcal{K}}(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q),$$

where s_{λ} is a Schur polynomial, and $I_{\mathcal{K}}$ means integrate with respect to the Koornwinder density.

- One can express M_{λ} as a ratio of two determinants in the Askey-Wilson moments.
- When λ = (λ₁, 0, 0, ..., 0), we are integrating a homogeneous symmetric polynomial of degree λ₁ in x₁,..., x_m, which is a very natural analogue of ∫ xⁿdμ.

 Eric Rains defined the following "Koornwinder moments at q = t": for λ = (λ₁, λ₂,..., λ_m), set

$$M_{\lambda} = I_{\mathcal{K}}(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q),$$

where s_{λ} is a Schur polynomial, and $I_{\mathcal{K}}$ means integrate with respect to the Koornwinder density.

- One can express M_{λ} as a ratio of two determinants in the Askey-Wilson moments.
- When λ = (λ₁, 0, 0, ..., 0), we are integrating a homogeneous symmetric polynomial of degree λ₁ in x₁,..., x_m, which is a very natural analogue of ∫ xⁿdμ.

Let $Z_{N,r}$ be the partition function for the two-species ASEP on a lattice of N sites with precisely r light particles. We have

 $Z_{N,r} = \text{const.} \ M_{(N-r,0^r)},$

where $M_{(N-r,0^r)}$ is the homogeneous Koornwinder moment (and there is a particular change of variable between α , β , γ , δ and a, b, c, d).

Theorem (Corteel-Mandelshtam-W.):

 $M_{(N-r,0^r)} = \text{const.} \sum_{\mathcal{T}} \text{wt}(\mathcal{T})$, where the sum is over all rhombic staircase tableaux of size N with precisely r diagonal steps on the border.

Let $Z_{N,r}$ be the partition function for the two-species ASEP on a lattice of N sites with precisely r light particles. We have

$$Z_{N,r} = \text{const.} \ M_{(N-r,0^r)},$$

where $M_{(N-r,0^r)}$ is the homogeneous Koornwinder moment (and there is a particular change of variable between α , β , γ , δ and a, b, c, d).

Theorem (Corteel-Mandelshtam-W.):

 $M_{(N-r,0^r)} = \text{const.} \sum_{\mathcal{T}} \text{wt}(\mathcal{T})$, where the sum is over all rhombic staircase tableaux of size N with precisely r diagonal steps on the border.

Let $Z_{N,r}$ be the partition function for the two-species ASEP on a lattice of N sites with precisely r light particles. We have

$$Z_{N,r} = \text{const.} \ M_{(N-r,0^r)},$$

where $M_{(N-r,0^r)}$ is the homogeneous Koornwinder moment (and there is a particular change of variable between α , β , γ , δ and a, b, c, d).

Theorem (Corteel-Mandelshtam-W.):

 $M_{(N-r,0^r)} = \text{const.} \sum_{\mathcal{T}} \text{wt}(\mathcal{T})$, where the sum is over all rhombic staircase tableaux of size N with precisely r diagonal steps on the border.

Let $Z_{N,r}$ be the partition function for the two-species ASEP on a lattice of N sites with precisely r light particles. We have

$$Z_{N,r} = \text{const.} \ M_{(N-r,0^r)},$$

where $M_{(N-r,0^r)}$ is the homogeneous Koornwinder moment (and there is a particular change of variable between α , β , γ , δ and a, b, c, d).

Theorem (Corteel-Mandelshtam-W.):

 $M_{(N-r,0^r)} = \text{const.} \sum_{\mathcal{T}} \text{wt}(\mathcal{T})$, where the sum is over all rhombic staircase tableaux of size N with precisely r diagonal steps on the border.

Rk: $M_{(N-r,0^r)}$ is the evaluation of a Koornwinder polynomial at $x_i = 1 \forall i$.

Let $Z_{N,r}$ be the partition function for the two-species ASEP on a lattice of N sites with precisely r light particles. We have

$$Z_{N,r} = \text{const.} \ M_{(N-r,0^r)},$$

where $M_{(N-r,0^r)}$ is the homogeneous Koornwinder moment (and there is a particular change of variable between α , β , γ , δ and a, b, c, d).

Theorem (Corteel-Mandelshtam-W.):

 $M_{(N-r,0^r)} = \text{const.} \sum_{\mathcal{T}} \text{wt}(\mathcal{T})$, where the sum is over all rhombic staircase tableaux of size N with precisely r diagonal steps on the border.

Rk: $M_{(N-r,0^r)}$ is the evaluation of a Koornwinder polynomial at $x_i = 1 \forall i$.

- Positivity conjecture: M_λ can be written as a polynomial in α, β, γ, δ, q with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?
Next steps

- Positivity conjecture: M_{λ} can be written as a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients. (We proved it for partitions with one non-zero part.)
- Use rhombic staircase tableaux to give formulas for Koornwinder moments and polynomials? (Cantini: our Koornwinder moments are specializations of certain Koornwinder polynomials)
- Particle model interpretation of general moments M_{λ} ?
- Relate our work to that of Cantini, and Cantini-de Gier-Wheeler, which also relates various Macdonald polynomials to multispecies exclusion process?
- Relate our work to that of Borodin-Corwin on Macdonald processes?
- Is there a dynamics on the tableaux themselves?

Dynamics on staircase tableaux when $\gamma = \delta = 0$

2015 29 / 31

Thank you for listening!

- Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials (with Corteel), *Duke Math.*, 2011.
- Macdonald-Koornwinder moments and the two-species exclusion process (with Corteel), arXiv:1505.00843.
- Combinatorics of the two-species ASEP and Koornwinder moments (with Corteel and Mandelshtam), arXiv:1510.05023.

Relationship between ASEP and Askey-Wilson moments

Let $Z_N(\xi; \alpha, \beta, \gamma, \delta; q) = \sum_{\mathcal{T}} \operatorname{wt}(\mathcal{T})\xi^{b(\mathcal{T})}$, where $b(\mathcal{T})$ is the number of black particles in the type of \mathcal{T} . This is the *fugacity partition function*.

Theorem (Corteel-Stanton-Stanley-W.)

The Nth Askey-Wilson moment is equal to

$$\mu_N(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}|\boldsymbol{q}) = \frac{(1-q)^N}{2^N i^N} Z_N(-1;\alpha,\beta,\gamma,\delta;\boldsymbol{q}),$$

where $i^2 = -1$ and

$$\alpha = \frac{1-q}{1-ac+ai+ci}, \qquad \beta = \frac{1-q}{1-bd-bi-di},$$
$$\gamma = \frac{(1-q)ac}{1-ac+ai+ci}, \qquad \delta = \frac{(1-q)bd}{1-bd-bi-di}.$$