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Perturbation Theory (PT) is nothing less than ubiquitous in Field Theory. In principle the lattice 
is a regulator among the others ... in practice it is a dreadful one so that when it comes to 
compute something in Lattice Perturbation Theory (LPT) you will probably start to get nervous ...

where f ABC is the structure constant of SU(Nc) gauge group.
The first three vertices originate from the Wilson quark ac-
tion and the last three from the clover term. The momentum
assignments for the vertices are depicted in Fig. 1.
For the gauge action we consider the following general

form including the standard plaquette term and six-link loop
terms:
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where six-link loops are composed of a 1#2 rectangle, a
bent 1#2 rectangle "chair# and a three-dimensional paral-
lelogram. In this paper we consider the following choices:
c1!c2!c3!0 "Plaquette#, c1!$1/12, c2!c3!0 "Syman-
zik# $13,14% c1!$0.331, c2!c3!0 "Iwasaki#, c1
!$0.27,c2"c3!$0.04 "Iwasaki’# $15%, c1!$0.252,c2
"c3!$0.17 "Wilson# $16% and c1!$1.40686, c2!c3!0
"DBW2# $7%. The last four cases are called the RG improved
gauge action, whose parameters are chosen to be the values
suggested by approximate renormalization group analyses.
Some of these actions are now getting widely used, since
they realize continuumlike gauge field fluctuations better
than the naive plaquette action at the same lattice spacing.
The free gluon propagator is derived in Ref. $13%:

D&'"k #!
1

" k̂2#2 ! "1$A&'#k̂&k̂'"(&'!
)
k̂)
2A')" "17#

with

k̂&!2 sin! k&

2 " , "18#

k̂2! !
&!1

4

k̂&
2 , "19#

where we employ the Feynman gauge. The matrix A&'
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and its expression is given by
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with &*'*,*- the Lorentz indices. q&' and +4 are writ-
ten as

FIG. 1. Momentum assignments for the quark-antiquark-gluon
vertices.
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In particular for LGT:
lot of vertices (not given once and for all)
Sums and/or integrals ... a lot of trigonometrics ...
A variety of actions (both for glue and for quarks)

and as an extra bonus ... often bad convergence properties

SU(Nc) gauge group with the gauge coupling constant g.

II. ACTION AND FEYNMAN RULES

For the quark action we consider the O(a)-improved
quark action !2":
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The weak coupling perturbation theory is developed by writ-
ing the link variable in terms of the gauge potential
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where TA(A!1, . . . ,Nc
2"1) is a generator of color SU(Nc).

The quark propagator is obtained by inverting Wilson
Dirac operator in Eq. '1),
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To calculate the improvement coefficient cSW up to one-loop
level, we need one-, two-and three-gluon vertices with
quarks:
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SU(Nc) gauge group with the gauge coupling constant g.

II. ACTION AND FEYNMAN RULES

For the quark action we consider the O(a)-improved
quark action !2":

Squark!#
n

1
2 #

$
%& n'"r#($)Un ,$&n#$̂

#& n'"r"($)Un"$̂ ,$
† &n"$̂*#'m0#4r )

$#
n

& n&n"cSW#
n

#
$ ,+

ig
r
4& n,$+F$+'n )&n ,

'1)
where we define the Euclidean gamma matrices in terms of
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An invitation (original motivations…)



Despite this ...



From Gerald Dunne’s lectures at the Parma School 2016 
(Decoding the path integral: resurgence, Lefschetz thimbles, non-perturbative physics)

Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Écalle, 1980

n

m

Perturbation theory: divergent series

Divergent series are the invention of
the devil, and it is shameful to base on
them any demonstration whatsoever ...
That most of these things [summation
of divergent series] are correct, in spite
of that, is extraordinarily surprising. I
am trying to find a reason for this; it
is an exceedingly interesting question. N. Abel, 1802 – 1829

The series is divergent; therefore we
may be able to do something with it

O. Heaviside, 1850 – 1925

Motivation: (leading order…) RESURGENCE!



Simpler question: Can we make sense of the 
semi-classical expansion of  QFT?     

f(�~) ⇠
1X

k=0

c(0,k) (�~)k +
1X

n=1

(�~)��n e�nA/(�~)
1X

k=0

c(n,k) (�~)k

pert. th.                     n-instanton factor     pert. th. around n-instanton

All series appearing above are asymptotic, i.e., divergent as  c(0,k) ~ k!. The 
combined object is called trans-series following resurgence terminology.

Borel resummation idea: If P (�) ⌘ P (g2) =
P1

q=0 aqg
2q

has convergent

Borel transform

BP (t) :=
1X

q=0

aq
q!
tq

in neighborhood of t = 0, then

B(g2) = 1

g2

Z 1

0
BP (t)e�t/g2

dt .

formally gives back P (g2), but is ambiguous if BP (t) has singularities at t 2 R+
:

Argyres, MÜ,"
Dunne, MÜ, 2012 

From Mitat Unsal’s presentation at LATTICE2015

resurgence: fluctuations about the instanton/anti-instanton saddle 
are determined by those about the vacuum saddle. 

Borel-Ecalle summability
Motivation: (leading order…) RESURGENCE!



Motivation: (leading order…) RESURGENCE!
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1 Introduction

One of the most intriguing aspects of resurgent asymptotics [1–5], as applied to quantum

theories, is that the characteristic divergence of fluctuations about certain saddle points,

such as the perturbative vacuum, may encode detailed information about the global non-

perturbative structure of the system. Two distinct types of resurgent behavior have been

identified in quantum spectral problems. The first is a generic type of “large order/low

order” form of resurgence [6–12], whereby the large order growth of the perturbative co-

efficients of fluctuations about a given non-perturbative sector is related to the low-order

perturbative coefficients of fluctuations about other non-perturbative sectors. This resur-

gent structure encodes an intricate network of relations between different non-perturbative

sectors, and reflects to a surprising degree the generic resurgent structure of the all-orders

steepest descents analysis of ordinary exponential integrals [13, 14], and indeed the general

resurgent structure of real trans-series [15]. A second type of resurgent behavior is less

generic, yielding a “low order/low order” form of resurgence, in which the fluctuations

about all non-perturbative sectors are explicitly encoded in the perturbative expansion

about the vacuum sector. This ‘constructive’ form of resurgence appears to have first

been noticed in formulas for the ionization rate for hydrogenic atoms [16], a result that

motivated a systematic study by Álvarez and Casares in the context of one dimensional

oscillators [17–20], in which such explicit perturbative/non-perturbative (P/NP) relations

were found in the cubic and quartic oscillator systems. Later studies found further exam-

ples of such P/NP relations in the periodic cosine (Mathieu), supersymmetric double-well,

radial anharmonic oscillator, and supersymmetric Mathieu potentials [21–25], and more

recently in quasi-exactly soluble models [26]. In a recent paper, Codesido and Mariño

have demonstrated the precise connection of these P/NP relations for some 1d quantum

oscillator systems with the refined holomorphic anomaly equation of topological string

theory [27]. Connections between similar quantum mechanical systems and topological

invariants of local Calabi-Yau spaces are also explored in [28, 29].

This constructive type of resurgence has the following form: consider the Schrödinger

spectral problem

− !2
2

d2

dx2
ψ + V (x)ψ = uψ (1.1)

with energy u. Then, given the perturbative series upert(!, N), where ! is the coupling

and N labels the unperturbed harmonic energy level, it is possible to write an explicit and

constructive expression for the fluctuations about any higher non-perturbative sector, di-

rectly in terms of the perturbative data, upert(!, N). For example, for the cosine (Mathieu)

potential, V (x) = cos2 x, the edges of the N th band, for N!≪ 1, are given by a trans-series

expression:

u±(!, N) = upert(!, N)±
√

2

π

1

N !

(
27/2

!

)N+ 1
2

exp

[
− 2
√
2

!

]
Pinst(!, N) + . . . (1.2)

– 2 –
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Both the perturbative series, upert(!, N), and the fluctuations about the one-instanton

sector, Pinst(!, N), are formal divergent series:

upert(!, N) =
∞∑

n=0

!nun(N) , Pinst(!, N) =
∞∑

n=0

!npn(N) (1.3)

where un(N) and pn(N) are polynomials in N . For the Mathieu system, the perturbative/

non-perturbative relation result is that the exponentially suppressed one-instanton term in

the trans-series, including the all orders fluctuation factor Pinst(!, N) is expressed entirely

in terms of the perturbative expansion upert(!, N) [21–23]:1

Pinst(!, N) =
∂upert(!, N)

∂N
exp

[
SI
ωc

∫ !

0

d!
!3

(
∂upert(!, N)

∂N
− !ωc +

!2ωc
(
N + 1

2

)

SI

)]
(1.4)

Here SI = 2
√
2 is the one-instanton action, and ωc =

√
2 is the classical frequency of har-

monic motion at the bottom of the potential well for the Mathieu potential V (x) = cos2 x.

Note that this expression shows that all the ! dependent prefactors in (1.2) are encoded

in the perturbative series upert(!, N). We stress that this manifestation of resurgence is

completely constructive: given a certain number of terms of the ! expansion of upert(!, N),

the expression (1.4) generates a similar number of terms in the fluctuations about the

one-instanton sector, Pinst(!, N). Furthermore, these relations propagate throughout the

entire trans-series, so that perturbation theory encodes the fluctuations about each non-

perturbative sector [17–25, 27].

These results are particularly interesting when interpreted not only in terms of differ-

ential equations, but in terms of a formal saddle point (Lefschetz thimble) decomposition

of the associated path integral. The extent to which these resurgent structures are inher-

ited from the basic resurgent structure of ordinary exponential integrals [13, 14] is still not

fully understood, even though much of our physical intuition about the non-perturbative

physics of path integrals is based on analogies drawn from saddle point analysis of ordi-

nary integrals. It is also quite surprising that such powerful P/NP relations exist in such

a disparate set of spectral problems, in various dimensions, with and without tunneling,

and with and without supersymmetry. Further, the interpretation of these P/NP relations

between perturbative and instanton sectors is quite mysterious in conventional Feynman

diagrammatic language, where they have been explicitly confirmed at three loop order of

fluctuations about the one-instanton sector, for the symmetric double-well potential and

the periodic (Mathieu) potential [30, 31]. These diagrammatic computations require a

complicated summation of many multi-loop Feynman diagrams, each of which involves

propagators in an instanton background. Moreover, remarkable cancellations of irrational

terms occur between different Feynman diagrams, producing the final rational coefficients

that come naturally from the P/NP relation. These cancellations are reminiscent of be-

havior in multi-loop QFT [32, 33].

1In refs [21–23], the Mathieu potential was written as V (x) = cosx. In this paper we use V (x) = cos2 x,

to emphasize the connection to other potentials, normalizing the wells to have the common energy range

u ∈ [0, 1], as shown in figure 3. These normalizations can be translated by: !there = 2
√
2 !here and

uthere = 2uhere − 1.
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PROBLEM!

Computations sometimes require (e.g. around instantons) heroic efforts!

QM:
low order/low order relations!



Agenda 

- Basics of Stochastic Quantization and Stochastic Perturbation Theory 

- From Stochastic Perturbation Theory to NSPT (coming back to the QM problem) 

- A few different frameworks for NSPT (i.e. a few handles to possibly improve it)

- NSPT around (euclidean QM) instantons!

- Conclusions
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Basics of Stochastic Quantization and Stochastic Perturbation Theory 

You start with a field theory you want to solve hO[�]i =
R
D� O[�] e�S[�]

R
D� e�S[�]

You now want an extra degree of freedom which you will think of as a stochastic time in which an 
evolution takes place according to the Langevin equation

�(x) 7! �⌘(x; t)
d�⌘(x; t)

dt

= � @S[�]

@�⌘(x; t)
+ ⌘(x; t)

... but beware! This is a stochastic differential equation due to the presence of the
gaussian noise

⌘(x; t) : h⌘(x, t) ⌘(x0
, t

0)i⌘ = 2 �(x� x

0) �(t� t

0)

Noise expectation values are now naturally defined h. . . i⌘ =

R
D⌘(z, ⌧) . . . e�

1
4

R
dzd⌧⌘2(z,⌧)

R
D⌘(z, ⌧) e�

1
4

R
dzd⌧⌘2(z,⌧)

The drift term is given by the equations of motion...

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227
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R
D⌘(z, ⌧) . . . e�

1
4

R
dzd⌧⌘2(z,⌧)

R
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4

R
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hO[�⌘(x1; t) . . .�⌘(xn; t)]i⌘!t!1hO[�(x1) . . .�(xn)]i

The key assertion of Stochastic Quantization can be now simply stated 

The drift term is given by the equations of motion...

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227

... but beware! This is a stochastic differential equation due to the presence of the
gaussian noise



A conceptually simple proof comes from the Fokker Planck equation formalism

Ṗ [�, t] =

Z
dx

�

��(x)

✓
�S[�]

��(x)
+

�

��(x)

◆
P [�, t]

hO[�⌘(t)]i⌘ =

R
D⌘O[�⌘(t)] e�

1
4

R
dzd⌧⌘2(z,⌧)

R
D⌘ e�

1
4

R
dzd⌧⌘2(z,⌧)

=

Z
D� O[�]P [�, t]



A conceptually simple proof comes from the Fokker Planck equation formalism

Ṗ [�, t] =

Z
dx

�

��(x)

✓
�S[�]

��(x)
+

�

��(x)

◆
P [�, t]

for the solution of which we can introduce a perturbative expansion which generates a hierarchy of 
equations

P [�, t] =
X

k=0

gkPk[�, t]

Leading order is easy to solve and admits an infinite time (equilibrium) limit such that

P0[�, t]!t!1P eq
0 [�] =

e�S0[�]

Z0

In a convenient weak sense at every order one gets equilibrium Pk[�, t]!t!1P eq
k [�]

in terms of quantities which are interelated by a set of relations in which one recognizes the 
Schwinger-Dyson equations ... i.e. we are done!

hO[�⌘(t)]i⌘ =

R
D⌘O[�⌘(t)] e�

1
4

R
dzd⌧⌘2(z,⌧)

R
D⌘ e�

1
4

R
dzd⌧⌘2(z,⌧)

=

Z
D� O[�]P [�, t]

Floratos-Iliopoulos, Nucl.Phys. B 214 (1983) 392
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in terms of quantities which are interelated by a set of relations in which one recognizes the 
Schwinger-Dyson equations ... i.e. we are done!
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Interacting case (cubic interaction in the following) is solved by superposition ...

... which leaves the solution in a form which is ready for iteration. It is actually also ready 
for a graphical intepretation and for the formulation of a 

diagrammatic Stochastic Perturbation Theory
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We see that the dependence on the initial condition is damped out exponentially in t.

In the interacting case we finally obtain the exact integral equation

cb(k, t) = f exp{-(k2 + m2) (t - T)} [~i(k,r) - A f d~pd~qçb(p, r) çb(q, r) ô(k - p - q)].

(3.38)

Solving this equation by iteration one arrives at a power series expansion of 4 in the coupling A,
expressing 4’ as a certain function of the white noise ~.

Symbolically we can represent ~ as

~ (3.39)

or graphically as

x + + + + (3.40)

Here we denote G by a line and ii by a cross; integration over the momenta at the vertices and over the
fictitious times at the vertices as well as at the crosses is included.
Next we observe that eqs. (3.7) are given in momentum space as

(-q(k, t) -q(k’, t’)),
1 2(2ir)” ~5”(k+ k’) 8(t— t’). (3.41)

Let us now consider an L-point function (~(xi, t). . . 4~(xL, t) ) and substitute for çb its diagram-
matical expansion (3.40). When the random averages over the ~‘s are taken, all crosses are joined in all
possible ways due to the Wick-decomposition property (3.8) of the white noise. In this way (we
graphically denote the average over two noises by just one cross) diagrams are obtained, which we call
‘stochastic diagrams’,

+ +

+ ~ Q + )< + Q x . (3.42)

Each of these stochastic diagrams has the form of an ordinary Feynman diagram of the theory
described by the action S, apart from crosses on the lines where two i~’shave been joined together.
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The  stochastic  diagrams  one  obtains  when 
averaging  over  the  noise  (contractions!) 
reconstruct,  in  a  convenient  infinite  time 
limit, the contributions of the (topologically) 
correspondent Feynman diagrams ...

but we do not want to go this way ...
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NSPT in a nutshell  Di Renzo, Marchesini, Onofri Nucl. Phys. B 426 (1994) 675 

- Take

- Plug it into

- … which now becomes a HIERARCHY* of equations …

- … which you make the computer integrate for you!

* At any given order truncation is exact!



NSPT in plain English (coming back to the QM problem…) 
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A Monte Carlo method is used to evaluate the Euclidean version of Feynman’s sum 
over particle histories. Following Feynman’s treatment, individual paths are defined on a 
discrete (imaginary) time lattice with periodic boundary conditions. On each lattice site, 
a continuous position variable xi specifies the spatial location of the particle. Using a 
modified Metropolis algorithm, the low-lying energy eigenvalues, / &,(x)jZ, the propagator, 
and the effective potential for the anharmonic oscillator are computed, in good agreement 
with theory. For a deep double-well potential, instantons were found in our computer 
simulations appearing as multi-kink configurations on the lattice. 

I. INTRODUCTION 

Feynman’s path integral formulation of quantum mechanics reveals a deep con- 
nection between classical statistical mechanics and quantum theory. Indeed, in an 
imaginary time formalism the Feynman integral is mathematically equivalent to a 
partition function. Using this analogy, particle physicists have recently employed a 
well-known technique of statistical mechanics in using Monte Carlo simulation to 
study gauge field theories [ 1, 21. The simulations are a means of numerical evaluation 
of the path integrals. This has yielded new non-perturbative insight into the behavior 
of quantized Yang-Mills fields. 

A gauge system is a rather complicated quantum theory with many degrees of 
freedom. This masks the connection between a Euclidean Monte Carlo treatment and 
a more traditional Hilbert space formulation of quantum mechanics. In this paper we 
search for such connections by studying a considerably simpler model, a one- 
degree-of-freedom SchrGdinger system. We will see how Monte Carlo methods can 
provide information on the ground and first excited states of this problem. We do 
not advocate these methods for accuracy, rather we hope they may lead to better 
understanding of the workings of the Monte Carlo method. Furthermore, these 
methods are rather easily generalizable to systems with many degrees of freedom. 

This paper is organized as follows. In Section II we review the Feynman formalism 
and present the formulas we will use in our numerical studies. Section III presents and 

* This paper was authored under Contract DE-A02-76CHOO016 with the U.S. Department of 
Energy. Accordingly, the U.S. Government’s right to retain a nonexclusive, royalty-free license 
in and to the copyright covering this paper, for governmental purposes, is acknowledged. 

427 
0003-4916/81,!040427-36$05.00~0 

Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

428 CREUTZ AND FREEDMAN 

justifies the Monte Carlo method for evaluation of these path integrals. Section IV 
contains some numerical results obtained from the simple harmonic and anharmonic 
oscillators. Section V is a brief conclusion and in the Appendixes we treat more 
carefully some technical details. 

II. THE PATH INTEGRAL 

In this section we will study the similarities between quantum theory and statistical 
mechanics. Our fundamental tool will be the Euclidean (imaginary time) version of 
Feynman’s sum over histories [3]: 

0.1) 

Both representations of Z require explanation: 
The vectors / xi) and 1 xr) in Eq. (2.1) are position eigenstates, If is the Hamiltonian 

operator for a spinless particle of mass m, moving in a potential, where 

H(P, Q) = P2/mo + W?), (2.2) 

and T is a positive number. Equation (2.1) is of interest because, if we expand in a 
complete set of energy eigenstates, 

then 
ff I n> = En I n) (2.3) 

zri = 2 e-EnT’“(xf / n)(n 1 xi). 
n 

(2.4) 

Thus, at large T the leading term in this expression gives us the energy and wave- 
function of the lowest-lying energy eigenstate. 

The second form for Z must also be explained. The Euclidean action is given by 

s = JOT dr [+m, [$I’ + v(x)], 

where 7 = it (t is real time), and s [dx] denotes integration over all functions X(T) 
obeying the boundary conditions 

x(0) = xi ) (2.6a) 

and 
x(T) = Xf . (2.6b) 
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where T == Na. The action for a discrete time lattice is just 

(2.11) 

where a =~ ie. We use the boundary conditions x,, = xi and XN = xf . The continuum 
limit is recovered by letting N ----f co and a -+ 0, keeping T fixed. For later use we define 
the trace of ZYj 

Equation (2.10) is identical to the partition function for a statistical mechanics 
problem. We have a one-dimensional lattice with sites labeled by index j. On each 
site there is a variable xj , which takes on continuous values as given by (2.8). The 
action couples nearest-neighbor variables xj and xj+r , and the integral J” JJ,“=7’ dxj 
is really a sum over all possible lattice configurations. The Boltzmann factor is just 

e-l /ri.qZl 
3 (2.12) 

where /I = temperature, and the Euclidean action, (2.11). is the classical Hamiltonian 
for a system with N degrees of freedom. 

In statistical mechanics the temperature is a measure of the statistical fluctuations 
in a system, while in quantum mechanics ti is a measure of the quantum fluctuations 
(through the uncertainty principle). In quantum mechanics, the h + 0 limit picks out 
classical physics. In particular, as fi + 0 the classical trajectory for a particle moving in 
a potential V(x) becomes the only path that contributes to the transition amplitude 
Zfi , fluctuations are completely suppressed. As T approaches zero for a statistical 
system, fluctuations are frozen out. These points allow for a one-to-one correspondence 
between doing quantum mechanics in imaginary time and statistical mechanics on a 
real crystal lattice. 

Since Z is a partition function we can also define a free energy for our lattice, namely 

Z = e-fiF (F = free energy), (2.13a) 

F = - 1 In Z, 
P 

(2.13b) 

where /I = l/r%. Because F is an extensive quantity, it is useful to define a free energy 
density f, where F = f. T, and T is the volume of our (time) crystal. Equation (2.13) 
now becomes 

-1 
f = mlnZ, (2.14) 
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which as T---f cc yields 

,f’ = E, . (2. I 5) 

As in statistical mechanics, it is useful to measure correlation functions, which are 
given formally by 

r(n) = Tr ,-HT,ily _ (71) x(72) *a. x(7,)/2, (2.16a) 

where 

In quantum theory the P) are called n-point propagator functions. We can write 
Eq. (2.16) in a compact form by defining 

Z(J) = Tr e ~T,fi[H+~;J,zil 9 (2.17) 

where Ji is an external c-number current (SJJSJ, = &). Then we have 

From the logarithm of Z we obtain the connected n-point functions 

p = s. I: SJ, ... & In zfJ) I/=,, . (2.18) 

For example, 
p := ~!X(T1) .Y(T2)1 - (S(T1)\‘./X(T*)“, 

where we have adopted the notation 

(2.19) 

(d) = Tr(e-HT/“A)/Tr(e-~T/~) (2.20) 

for any operator d. In terms of the functional (path) integral, (2.20) is equivalent to 
the expression: 

(2.21) 

where now A(.\- r ,..., x,) is just a normal function of the x’s. The propagators Pn) for 
a spin-system in statistical mechanics are the correlation functions 

rg = /s,s, ... s,;,, (2.22) 

where the Si are spin variables at sites {ij in the crystal. 
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In the limit T--f co, we recover the expectation values of our operators in the 
quantum theory: 

= (0 1 d/O), as T--t 00. (2.23) 

In this case, the two-point fuuction rr’ becomes 

kz p = <o 1 x(0) X(T) / 0) - (0 I x I O?a 

(2.24) 

We can find the energy gap between E1 and E,, by taking the large t limit in Eq. (2.24). 
Choosing 7’ > T + m, we see that 

___ = e-(E1-EO) k-7) /s l-p’(Y) 
y’(T) 

or 

A (El - E,) = Fi (2 ln[ri2)(7 + Ll,)jP”‘(,)l). (2.25b) 

To determine the lowest energy eigenvalue, E,, is in principle easy, since we know that 

E0 = (0 / H 1 0) = Qrnm [Tr(e-HTlnH)/Tr e-HTIK] 

Using the path integral representation for 2, Eq. (2.26a) becomes 

(2.26a) 

(2.26b) 

Unfortunately, the expectation value of the action, (S), diverges like l/a for small 
lattice spacing. For any potential I’(x), the velocity-dependent part of (S) behaves 
in the following way: 

(2.27) 

Although a mean velocity can be defined, no mean-square velocity exists at any point. 
In other words, the important paths for a quantum-mechanical particle are non- 
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differentiable! Although these paths are very irregular, one possible remedy is to define 
the expectation of v2 following Feynman and Hibbs [3] 

The expectation value in Eq. (2.28) is perfectly well behaved when a ---f 0. Eq. (2.28) is 
a split-point definition for vi2 and allows us to calculate E, for our system. Operators 
local in time, in contrast, have a nice continuum limit as a+ 0; no redefinition is 
necessary. An alternative procedure is to use the virial theorem to calculate the 
kinetic energy 

&Mo(vi2;) = 3(x . V’(X)>, (2.29) 

The ground-state energy is thus given by the formula: 

E. = g++ (j [dx] ,-l'hs["][~xV'(x) + t'(x)]jj [dx] e-lins[zl). (2.30) 

The ultimate goal is to evaluate the integrals in the partition function. For most 
potentials, however, analytic solutions simply do not exist. Furthermore, we must do 
N integrations, where N becomes infinite as a + 0. In the next section, we describe a 
numerical method for calculating the expectation values of operators [as in (2.21)] 
motivated, in part, by statistical physics. 

III. EVALUATING PATH INTEGRALS 

In this section we describe a technique for performing the sum “over paths” of the 
Feynman integral [4]. This approach is based on the Monte Carlo method of Metro- 
polis et al. [5]. 

Let us begin by defining the expectation value of any operator d for a finite time 
interval T as 

(cd. = x A(x,) exp[-S(x,J]/C exp[-Wx,.)]. (3.1) I, 1. 

where X~ denotes a configuration (or path) of the system. Each configuration depends 
on N dynamical variables {xi} which give the position of the particle at each timeslice 
{to. The action for a configuration xy = (xi’), xi” ... x$‘) is given by 

S(x,) == F aLi?( x2,,, i=, (3.2) 

where the Lagrangian couples nearest-neighbor variables and T = Na. In statistical 
mechanics, Eq. (3.1) corresponds to the canonical ensemble average of an operator A 

QM via (lattice regularized) PATH INTEGRALS
(a primer by M. Creutz)

or

… to be sampled by Monte Carlo

Put it on a LATTICE!
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Suppose you want to compute the QUARTIC OSCILLATOR in NSPT
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Suppose you want to compute the QUARTIC OSCILLATOR in NSPT

This is your expansion …

… and these are your equations

Needless to say

- You need to expand your observables as well
- You need a numerical integration scheme (Euler, Runge Kutta, …)

IT WORKS!

S[x] =
1

2
m

✓
dx

d⌧

◆2

+
1

2
m!

2
x

2 + �x

4

x = x

(0) + �x

(1) + �

2
x

(2) + . . .

8
>>>><

>>>>:

d

dtL
x

(0) = m

d

2
x

(0)

d⌧

2 �m!

2
x

(0) + ⌘

d

dtL
x

(1) = m

d

2
x

(1)

d⌧

2 �m!

2
x

(1) + 4x(0)3

d

dtL
x

(2) = m

d

2
x

(2)

d⌧

2 �m!

2
x

(2) + 4 ⇤ 3x(1)
x

(0)2

. . .



Of course there are smarter 
ways to compute this…

BenderWu.nb 

(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 8.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       157,          7]
NotebookDataLength[      2182,         81]
NotebookOptionsPosition[      1823,         64]
NotebookOutlinePosition[      2283,         83]
CellTagsIndexPosition[      2240,         80]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
VZero = 3/4 EigV[0] + 3 Sqrt[2]/2 EigV[2] + Sqrt[6]/2
EigV[4];

EigV[n_Integer] := 0 /; n<0;

Bracket[a__ EigV[n_Integer],c__] := a
Bracket[EigV[n],c]; 
Bracket[c__,a__ EigV[n_Integer]] := a
Bracket[c,EigV[n]]; 

Bracket[Plus[a_. EigV[n_Integer],b__],c__] := 
a Bracket[EigV[n],c] + Bracket[Plus[b],c]; 

Bracket[c__,Plus[a_. EigV[n_Integer],b__]] := 
a Bracket[c,EigV[n]] + Bracket[c,Plus[b]]; 

Bracket[EigV[n_Integer],EigV[m_Integer]] :=

If[n==m,1,0];

OpeR[x__] := OpeR[ExpandAll[x]];

OpeR[a__ EigV[n_Integer]] := a OpeR[EigV[n]]; 
OpeR[Plus[a_. EigV[n_Integer],b__]] := a OpeR[EigV[n]] +
OpeR[Plus[b]];
OpeR[EigV[n_Integer]] := 1/n EigV[n] /; n>0; 
OpeR[EigV[0]] := 0;

OpeV[x__] := OpeV[ExpandAll[x]];

OpeV[a__ EigV[n_Integer]] := a OpeV[EigV[n]]; 
OpeV[Plus[a_. EigV[n_Integer],b__]] := a OpeV[EigV[n]] +
OpeV[Plus[b]];
OpeV[EigV[n_Integer]] :=
1/4(Sqrt[n(n-1)(n-2)(n-3)] EigV[n-4] + 
(4n-2)*Sqrt[n(n-1)] EigV[n-2] +
3(2 n^2+2n+1) EigV[n] + (4n+6)*Sqrt[(n+1)(n+2)]
EigV[n+2] + 
Sqrt[(n+1)(n+2)(n+3)(n+4)] EigV[n+4]);

deltaE[n_Integer] := deltaE[n] = Bracket[VZero,deltaV[n-
1]];

deltaV[0] = EigV[0];
deltaV[1] = - OpeR[VZero];

deltaV[n_Integer] := deltaV[n] = 
OpeR[Sum[deltaE[j] deltaV[n-j],{j,1,n-1}] -
OpeV[deltaV[n-1]]];

\
\>", "Input"]
},
WindowSize->{1430, 844},
WindowMargins->{{5, Automatic}, {3, Automatic}},
DockedCells->FEPrivate`FrontEndResource[
"FEExpressions", "CompatibilityToolbar"],



A few different frameworks for NSPT (i.e. a few handles to possibly improve it)

(there are projects going on this!)



There are various formulations of NSPT one can think of … 



There are various formulations of NSPT one can think of … 

(1) Is Langevin the only stochastic equation one can play with in NSPT? 
NO! e.g. Stochastic Molecular Dynamics (SMD Horowitz 1985 …)

which is Langevin for 

Notice that one can tune the lattice parameter            to minimize errors!
(which depend on both autocorrelation times and standard deviations (*)!)
(*) subtle issues in the continuum limit! 
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Dalla Brida Kennedy Garofalo 2015         Dalla Brida Luescher 2016 (Gradient Flow!)
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(2) Numerical integrators (numerical integration schemes) DO MATTER! 
… and of course various combinations are possible … e.g.

Bali Bauer Torrero 2008        Dalla Brida Kennedy Garofalo 2015        Dalla Brida Luescher 2016 

(2a) Langevin with 2nd order integrator

(2b) Stochastic Molecular Dynamics with 4th order OMF integrator

(1) Is Langevin the only stochastic equation one can play with in NSPT? 
NO! e.g. Stochastic Molecular Dynamics (SMD Horowitz 1985 …)



Something in which NSPT can quite easily perform well

PERTURBATION THEORY IN THE BACKGROUND OF AN INSTANTON!



A canonical example of expansion around a non-trivial vacuum: 
the Schrodinger Functional (SF) in NSPT Brambilla, Dalla Brida, Di Renzo, Hesse, Sint

The SF is a perfect framework for NSPT! Fluctuations in the background of classical solution …
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To arrive at our main result, that is the Λ-parameter in terms of a low-energy scale, we
solve the equation

(2.28)σ
(
ḡ2(L/2)

)
= ḡ2(L)

recursively for ḡ2(L/2). We start this recursion at a maximal value umax = ḡ2(Lmax) of
the coupling. The value of umax is chosen such that the associated scale Lmax is a scale in
the hadronic regime of QCD. Following the recursion (2.28) to larger and larger energies,
we obtain the values for

(2.29)ui = ḡ2
(
2−iLmax

)
, i = 0, . . . , n, u0 = umax.

We perform n = 7 or n = 8 steps of this recursion and can in this way cover a scale separa-
tion of a factor 100 to 250. Eventually, for sufficiently large energies, perturbation theory
can safely be applied. Then we use (2.9) with µ = 2n/Lmax and with the β-function trun-
cated at 3-loop order, (2.6)–(2.8). The final result for ΛLmax in the Schrödinger functional
scheme can be converted to the MS scheme with (2.11). We also check the admissibility
of employing perturbation theory by studying the variation of our final result with respect
to the number of non-perturbative steps n in the scale evolution of the strong coupling.

2.4. Discretization effects

The influence of the underlying space–time lattice on the evolution of the coupling can
be estimated perturbatively [29], by generalizing Symanzik’s discussion [36–38] to the
present case. Close to the continuum limit we expect that the relative deviation

(2.30)δ(u, a/L) = Σ(u, a/L) − σ (u)

σ (u)
= δ1(a/L)u + δ2(a/L)u2 + · · ·

of the lattice step scaling function from its continuum limit converges to zero with a rate
roughly proportional to a/L. More precisely, since the action is O(a) improved, we expect

(2.31)δ1(a/L) ∼
(

d0,1 + d1,1 ln
a

L

)(
a

L

)2
+ · · · ,

(2.32)δ2(a/L) ∼ e0,2
a

L
+

(
d0,2 + d1,2 ln

a

L
+ d2,2

(
ln

a

L

)2)(
a

L

)2
+ · · ·

for the 1-loop value of ct and the same form with e0,2 = 0 for the 2-loop value of ct. Note
that the tree-level discretization effects vanish exactly, since we normalize the coupling
such that its perturbative expansion starts with g20 for all values of the lattice spacing.
The coefficients δ1 and δ2 are collected in Table 1 for the resolutions needed in this

work. An expanded version of this table can be found in [39]. The entries in the last column
are very small. For larger values of L/a than shown in the table, δct=2-loop

2 decreases as
expected. Since δ

ct=1-loop
2 is of the order a/L, it is no surprise that it is much larger than

δ
ct=2-loop
2 . In fact, it is of the same size as δ1, for which the linear term in a/L is absent.
The largest coupling at which the step scaling function has been computed with the

1-loop value of ct is u = 1.7319. With the 2-loop value of ct, this is u = 3.334. Table 1
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We have a working implementation of the SF in NSPT!
At least, useful for taking the continuum limit …

Alpha Collaboration
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Around which vacuum are we going to expand?
Notice that till now we have always assumed the trivial one…
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RECIPE
1. Select a classical solution xcl 

2. Re-express your field as x = xcl  + xfluct 

3. Plug this in and then write the NSPT expansion for xfluct 

4. You will get a PERTURBATIVE COMPUTATION AROUND (say) AN INSTANTON!



Apparently it works! These are signals for NSPT around an instanton for DW
Everything still very preliminary… just work of these days!



Conclusions

- NSPT has been around for roughly 20 years, but it is never too 
late to have a closer look at it!

- I think there can be many applications relevant for Resurgence! 

- Remember: it is a numerical method (with issues of errors and 
statistics), but in many cases it is quite difficult to have 
something better than this at high orders!



… extra stuff … 



Something maybe more field-theoretic (numerics stumbles on fundamental QFT…)
Renormalons



PROBLEM: expect RENORMALONS! 
From dimensional and RG arguments W ren = C

Z Q2

r⇤2

k2 dk2

Q4
↵s(k

2)

by changing variable z ⌘ z0
�
1� ↵s(Q

2)/↵s(k
2)
�

z0 ⌘ 1

3b0

W ren = N
Z z0�

0
dz e��z (z0 � z)�1��

4⇡↵s(Q
2) ⌘ 6/� � ⌘ 2

b1
b20

0 < z < z0� ⌘ z0(1� ↵s(Q
2)/↵ss(r⇤

2))

The experts will recognize a Borel integral …

W ren =
X

`=1

��` {cren` +O(e�z0�)} cren` = N 0 �(`+ �) z�`
0

CAN WE INSPECT RENORMALONS IN A NSPT COMPUTATION OF THE PLAQUETTE? Di Renzo Marchesini Onofri 1995

An old goal: a lattice determination of the gluon condensate … 

… where an OPE is in place … W =
⌦
↵s F

2
↵
/Q4 = W0 + (⇤4/Q4) W4 + · · ·

… now the plaquette is our observable W (N) = 1� 1

3
hTrUpi

… unavoidably computed on a lattice of finite extent Na

�

Perturbative (PT) contribution (associated to the identity) should 
be subtracted from Non-Perturbative (NPT) Monte Carlo (MC) data 
measured at various values of the lattice coupling   , looking for 
the signature dictated by asymptotic scaling, i.e. ⇤a ⇠ e��/12b0

WMC �Wpert = (⇤4/Q4) W4 + · · ·



PROBLEMS
1.Computing power …
2.The IR renormalon deserves its name and relevant momenta go like k⇤ ⇠ s�1e�(`�1)/2

… rather study W ren(N) = C

Z Q2

Q2
0(N)

k2 dk2

Q4
↵s(sk

2) !
X

`=1

��` cren` (N ; s, C)

… where the finite lattice has been explicitly taken 
into  account,  while  the  change  of  scale  can  be 
reabsorbed  in  a  change  of  scheme  (i.e.,  look  for  a 
scheme in which renormalon is better described…)

( )G. Burgio et al.rPhysics Letters B 422 1998 219–226224

Ž . Ž . 2 2 4 4Fig. 2. a The subtracted Monte Carlo data D W of Eq. 15 compared to L rQ and L rQ for various values of L: upper curve forL
Ž . Ž .Ls2, lower curve for Ls8; b The subtracted Monte Carlo data DW of Eq. 18 after resummation of the renormalon contribution

compared to L2rQ2 and L4rQ4.

renŽ .mainder dW by subtracting from W M , given0 0
Ž . Ž .in Eq. 12 , the first eight terms in 14

8
Xren ren ylldW M sW M y C r ,r ,M b .Ž . Ž . Ž .Ý0 0 ll lat

lls1

16Ž .
We then obtain the following estimate for W0

8
lat yllW M ' c M b qdW M . 17Ž . Ž . Ž . Ž .Ý0 ll lat 0

lls1

We plot in Fig. 2 the quantity
DW M sW M yW M , 18Ž . Ž . Ž . Ž .0

for Ms8 in the region b s6y7. We see that thelat
behaviour L2rQ2 is still maintained. The conclusion
is that in the region considered for b the first eightlat
perturbative terms give a reliable approximation of
W , at least for Ms8.0

.2 Finite Õolume. This effect is quite difficult to

estimate without performing a direct Monte Carlo
simulation on lattices with M sufficient large to have
the IR cutoff below the Landau singularity, i.e.
Ž .ln Mr2 )br12b . For the contribution W we can0 0

estimate the effect of the finite volume. For the first
w xeight coefficients this has been done in 13 and, as

already recalled, for Ms8 the factorial growth is
still present. We can study the M dependence of the

Ž . Ž .remainder dW M in 16 and we find that in the0
considered region of b the effect of finite size islat
small, i.e. less than 5% .

5. Discussion and conclusion

One has to consider the following two indications.
. w x1 As shown in 6 , the first eight perturbative

coefficients of W seem to agree with the factorial
growth corresponding to a IR renormalon associated

… but all in all the final result for the subtraction 
was signaling something odd going on … WRONG SCALING!
Burgio Di Renzo Marchesini Onofri 1998

We  now  know  that  NSPT  CAN  ACTUALLY  DIRECTLY  INSPECT 
RENORMALONS, but one has to go to HIGHER ORDERS … (at 
the time the first 8 orders had been computed)



Solution of the puzzle and direct inspection of renormalons Bali Bauer Pineda 2014 

In 2012, Horsley et al computed the first 20 orders. 

In 2013 Bali and Pineda detected the renormalon in the HQET/pole mass framework: dimensions do 
matter! The order at which renormalons show up increases with the dimension of the operator!

Improvements (Bali Pineda) for the plaquette case (2014):
1.Twisted BCs (which kill zero modes; I have cheated a little bit about those till now…)
2.2nd order integrator for Langevin equation(s)
3.computer power (well … it was 20 years later …)
4.careful treatment of finite size effects by perturbative OPE (separation of scales!)
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with both pn and fn asymptotically dominated by the IR renormalon!
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Normalization for Wilson action is fixed by CG(↵) = 1 +
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… and one can finally fit the computed hP ipert(N) =
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IT WORKS!



RENORMALONS MS SCHEME (Pole mass) LATTICE SCHEME (Pole mass) LATTICE SCHEME (Plaquette) CONCLUSIONS

f (3,0)n f (3,1/6)
n f (8,0)n CF/CA f (8,1/6)

n CF/CA

f0 0.7696256328 0.7810(59) 0.7696256328 0.7810(69)
f1 6.075(78) 6.046(58) 6.124(87) 6.063(68)

f2/10 5.628(91) 5.644(62) 5.60(11) 5.691(78)
f3/102 5.87(11) 5.858(76) 6.00(18) 5.946(91)
f4/103 6.33(22) 6.29(17) 6.57(40) 6.26(23)
f5/104 7.73(35) 7.71(26) 7.67(66) 7.78(42)
f6/105 9.86(53) 9.80(42) 9.68(99) 9.79(69)
f7/107 1.388(81) 1.378(71) 1.35(15) 1.38(11)
f8/108 2.12(12) 2.11(12) 2.06(22) 2.10(17)
f9/109 3.54(20) 3.52(20) 3.40(37) 3.51(27)

f10/1010 6.49(33) 6.44(34) 6.23(67) 6.44(43)
f11/1012 1.296(64) 1.286(66) 1.24(13) 1.286(74)
f12/1013 2.68(19) 2.64(18) 2.65(33) 2.65(21)
f13/1014 6.70(54) 6.68(52) 6.36(90) 6.66(57)
f14/1016 1.58(14) 1.56(14) 1.55(22) 1.57(15)
f15/1017 4.41(34) 4.37(33) 4.24(47) 4.37(35)
f16/1019 1.241(92) 1.230(91) 1.20(11) 1.231(94)
f17/1020 3.79(28) 3.75(28) 3.67(30) 3.76(28)
f18/1022 1.215(94) 1.204(94) 1.176(97) 1.205(94)
f19/1023 4.12(33) 4.08(33) 3.99(34) 4.08(33)

Renormalons in heavy quark physics and lattice: the pole mass and the gluon condensate Antonio Pineda

RENORMALONS MS SCHEME (Pole mass) LATTICE SCHEME (Pole mass) LATTICE SCHEME (Plaquette) CONCLUSIONS

c(3,0)
n c(3,1/6)

n c(8,0)
n CF/CA c(8,1/6)

n CF/CA

c0 2.117274357 0.72181(99) 2.117274357 0.72181(99)
c1 11.136(11) 6.385(10) 11.140(12) 6.387(10)

c2/10 8.610(13) 8.124(12) 8.587(14) 8.129(12)
c3/102 7.945(16) 7.670(13) 7.917(20) 7.682(15)
c4/103 8.215(34) 8.017(33) 8.197(42) 8.017(36)
c5/104 9.322(59) 9.160(59) 9.295(76) 9.139(64)
c6/106 1.153(11) 1.138(11) 1.144(13) 1.134(12)
c7/107 1.558(21) 1.541(22) 1.533(25) 1.535(22)
c8/108 2.304(43) 2.284(45) 2.254(51) 2.275(45)
c9/109 3.747(95) 3.717(97) 3.64(11) 3.703(98)

c10/1010 6.70(22) 6.65(22) 6.49(25) 6.63(22)
c11/1012 1.316(52) 1.306(53) 1.269(59) 1.303(53)
c12/1013 2.81(13) 2.79(13) 2.71(14) 2.78(13)
c13/1014 6.51(35) 6.46(35) 6.29(37) 6.45(35)
c14/1016 1.628(96) 1.613(97) 1.57(10) 1.614(97)
c15/1017 4.36(28) 4.32(28) 4.22(29) 4.33(28)
c16/1019 1.247(86) 1.235(86) 1.206(89) 1.236(86)
c17/1020 3.78(28) 3.75(28) 3.66(28) 3.75(28)
c18/1022 1.215(93) 1.204(94) 1.176(95) 1.205(94)
c19/1023 4.12(33) 4.08(33) 3.99(34) 4.08(33)

Renormalons in heavy quark physics and lattice: the pole mass and the gluon condensate Antonio Pineda



…  and  they  could  finally 
determine the gluon condensate

Model Independent Determination of the Gluon Condensate in Four Dimensional
SU(3) Gauge Theory
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We determine the nonperturbative gluon condensate of four-dimensional SU(3) gauge theory in a model-
independent way. This is achieved by carefully subtracting high-order perturbation theory results from
nonperturbative lattice QCD determinations of the average plaquette. No indications of dimension-two
condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic
ambiguity inherent to its definition. We also determine the binding energy of a Bmeson in the heavy quark
mass limit.

DOI: 10.1103/PhysRevLett.113.092001 PACS numbers: 12.38.Gc, 11.55.Hx, 12.38.Bx, 12.38.Cy

The operator product expansion (OPE) [1] is a funda-
mental tool for theoretical analyses in quantum field
theories. Its validity is only proven rigorously within
perturbation theory, to arbitrary finite orders [2]. The use
of the OPE in a nonperturbative framework was initiated by
the ITEP group [3] (see also the discussion in Ref. [4]),
which postulated that the OPE of a correlator could be
approximated by the following series:

correlatorðQÞ≃
X

d

1

Qd CdðαÞhOdi; ð1Þ

where the expectation values of local operators Od are
suppressed by inverse powers of a large external momen-
tum Q ≫ ΛQCD, according to their dimensionality d. The
Wilson coefficients CdðαÞ encode the physics at momen-
tum scales larger than Q. These are well approximated by
perturbative expansions in the strong coupling parameter α.
The large-distance physics is described by the matrix
elements hOdi that usually have to be determined
nonperturbatively.
Almost all QCD predictions of relevance to particle

physics phenomenology are based on factorizations that are
generalizations of the above generic OPE.
For correlators where O0 ¼ 1, the first term of the OPE

expansion is a perturbative series in α. In pure gluody-
namics, the first nontrivial gauge-invariant local operator
has dimension four. Its expectation value is the so-called
nonperturbative gluon condensate

hOGi ¼ − 2

β0

!
Ω
""""
βðαÞ
α

Ga
μνGa

μν

""""Ω
#

¼
!
Ω
""""½1þOðαÞ& α

π
Ga

μνGa
μν

""""Ω
#
: ð2Þ

This condensate plays a fundamental role in phenomenol-
ogy, in particular in sum rule analyses, as for many
observables it is the first nonperturbative OPE correction
to the purely perturbative result. In this Letter, we will
compute (and define) this object. For this purpose we use
the expectation value of the plaquette calculated in
Monte Carlo (MC) simulations in lattice regularization
with the standard Wilson gauge action [5]

hPiMC ¼ 1

N4

X

x∈ΛE

hPxi; ð3Þ

where ΛE is a Euclidean spacetime lattice and

Px;μν ¼ 1 −
1

6
TrðUx;μν þ U†

x;μνÞ: ð4Þ

For details on the notation see Ref. [6]. The corresponding
OPE reads

hPiMC ¼
X∞

n¼0

pnαnþ1 þ π2

36
CGðαÞa4hOGiþOða6Þ; ð5Þ

where a denotes the lattice spacing.
The perturbative series is divergent due to renormalons

[7] and other, subleading, instabilities. This makes any
determination of hOGi ambiguous, unless we define how to
truncate or how to approximate the perturbative series. A
reasonable definition that is consistent with hOGi ∼ Λ4

QCD
can only be given if the asymptotic behavior of the
perturbative series is under control. This has only been
achieved recently [6], where the perturbative expansion of
the plaquette was computed up to Oðα35Þ. The observed
asymptotic behavior was in full compliance with renorma-
lon expectations, with successive contributions starting to
diverge for orders around α27–α30, within the range of
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scale in pure gluodynamics, it is difficult to assess the
precise numerical impact of including sea quarks onto our
estimates

hOGi≃ 0.077 GeV4; δhOGi≃ 0.087 GeV4; ð13Þ

which we obtain using r0 ≃ 0.5 fm [28]. While the
systematics of applying Eqs. (11)–(12) to full QCD are
unknown, our main observations should still extend to this
case. We remark that our prediction of the gluon condensate
of Eq. (13) is significantly bigger than values obtained in
one- and two-loop sum rule analyses, ranging from
0.01 GeV4 [3,29] up to 0.02 GeV4 [30,31]. However, these
numbers were not extracted in the asymptotic regime,
which for a d ¼ 4 renormalon we expect to set in at orders
n≳ 7 for the MS scheme. Moreover, we remark that in
schemes without a hard ultraviolet cutoff, such as dimen-
sional regularization, the extraction of hOGi can become
obscured by the possibility of ultraviolet renormalons.
Independent of these considerations, all these values are
smaller than the intrinsic prescription dependence
of Eq. (12).
Our analysis confirms the validity of the OPE beyond

perturbation theory for the case of the plaquette. Our a4

scaling clearly disfavors suggestions about the existence of
dimension-two condensates beyond the standard OPE
framework [16,32–35]. In fact, we can also explain why
an a2 contribution to the plaquette was found in Ref. [16].
In the log-log plot of Fig. 4, we subtract sums Sn, truncated
at different fixed orders αnþ1, from hPiMC. The scaling
continuously turns from ∼a0 at Oðα0Þ to ∼a4 around
Oðα30Þ. Note that truncating at an α-independent fixed
order is inconsistent, explaining why we never exactly
obtain an a4 slope. For n ∼ 9, we reproduce the a2 scaling
reported in Ref. [16] for a fixed order truncation at n ¼ 7.
In view of Fig. 4, we conclude that the observation of this
scaling power was accidental.

The methods used in this Letter can be applied to
other observables. As an example, we analyze the binding
energy Λ̄ ¼ EMCðαÞ − δmðαÞ [36–38] of heavy quark
effective theory. The perturbative expansion of aδmðαÞ ¼P

ncnα
nþ1 was obtained in Refs. [39,40] up to Oðα20Þ,

and its intrinsic ambiguity δΛ̄ ¼ ffiffiffiffiffi
n0

p
cn0α

n0þ1 ¼
0.748ð42ÞΛMS ¼ 0.450ð44Þr−10 was obtained in
Refs. [40,41]. MC data for the ground-state energy EMC
of a static-light meson with the Wilson gauge action can be
found in Refs. [42–44]. While for the gluon condensate we
expected an a4 scaling (see Fig. 3), for aEMCðαÞ − aδmðαÞ
we expect a scaling linear in a. Comforting enough, this is
what we find, up to aOðaÞ discretization corrections; see
Fig. 5. Subtracting the partial sum truncated at orders
n0ðαÞ ¼ 6 from the β ∈ ½5.9; 6.4& data, we obtain Λ̄ ¼
1.55ð8Þr−10 from such a linear plus quadratic fit, where we
only give the statistical uncertainty. The errors of the
perturbative coefficients are all tiny, which allows us to
transform the expansion aδmðαÞ into MS-like schemes and
to compute Λ̄ accordingly. We define the schemes MS2
and MS3 by truncating αMSða−1Þ ¼ αð1þ d1αþ d2α2 þ
' ' 'Þ exactly at Oðα3Þ and Oðα4Þ, respectively. The dj are
known for j ≤ 3 [40,41]. We typically find nMSi

0 ðαMSi
Þ ¼

2; 3 and obtain Λ̄ ∼ 2.17ð8Þr−10 and Λ̄ ∼ 1.89ð8Þr−10 , respec-
tively; see Fig. 5. We conclude that the changes due to these
resummations are indeed of the size δΛ̄ ∼ 0.5r−10 , adding
confidence that our definition of the ambiguity is neither a
gross overestimate nor an underestimate. For the plaquette,
where we expect nMS

0 ∼ 7, we cannot carry out a similar
analysis, due to the extremely high precision that is
required to resolve the differences between SPðαÞ and
hPiMCðαÞ, which largely cancel in Eq. (7).
In conclusion, for the first time ever, perturbative

expansions at orders where the asymptotic regime is
reached have been subtracted from nonperturbative MC
data of the static-light meson mass and of the plaquette,
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FIG. 4 (color online). Differences hPiMCðαÞ − SnðαÞ between
MC data and sums truncated at orders αnþ1 (S−1 ¼ 0) vs aðαÞ=r0.
The lines ∝ aj are drawn to guide the eye.
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… extra extra stuff … 



We now start with the Wilson action SG = � �

2Nc

X

P

Tr
⇣
UP + U †

P

⌘

We now deal with a theory formulated in terms of group variables and Langevin equation reads

@

@t
U
xµ

(t; ⌘) = (�ir
xµ

S
G

[U ]� i⌘
xµ

(t))U
xµ

(t; ⌘)

where the Lie derivative is in place

r
xµ

= T ara

xµ

= T ara

U

xµ

ra

V

f(V ) = lim
↵!0

1

↵
(f

⇣
ei↵T

a

V
⌘
� f(V ))

lim
t!1

hO[U(t; ⌘)]i⌘ =
1

Z

Z
DU e�SG[U ] O[U ]

This is again a stochastic differential equation with (gaussian) noise averages satisfying

U
µx

= eAµ(x)

In order to proceed we now need a (numerical) integration scheme to simulate, e.g. Euler

U
xµ

(n+ 1; ⌘) = e�F

xµ

[U,⌘] U
xµ

(n; ⌘) F
xµ

[U, ⌘] = ✏r
xµ

S
G

[U ] +
p
✏ ⌘

xµ

F
xµ

[U, ⌘] =
✏�

4N
c

X

U

P

�U

xµ

⇣
U
P

� U†
P

⌘
� 1

N
c

Tr
⇣
U
P

� U †
P

⌘�
+

p
✏ ⌘

xµ

h⌘i,k(z) ⌘l,m(w)i⌘ =


�il �km � 1

Nc
�ik �lm

�
�zw

Stochastic Quantization for LGT Batrouni et al (Cornell group) PRD 32 (1985)   



Now we look for a solution in the form of a perturbative expansion

U
xµ

(t; ⌘) ! 1 +
X

k=1

��k/2U (k)
xµ

(t; ⌘)

then we plug it into the (numerical scheme!) Langevin equation and get a hierarchy of equations!

U (1)0 = U (1) � F (1)

U (2)0 = U (2) � F (2) +
1

2
F (1) 2 � F (1)U (1)

U (3)0 = U (3) � F (3) +
1

2
(F (2)F (1) + F (1)F (2))� 1

3!
F (1) 3 � (F (2) � 1

2
F (1) 2)U (1) � F (1)U (2)

. . .

In practice: we do not look closely at the (underlying) Stochastic Perturbation Theory because the 
computer is going to (numerically) take care of it and all that you are interested in are the 
observables, for which

lim
t!1

hOk(t)i⌘ = lim
T!1

1/T
TX

j=1

Ok(jn)

Beware! Lattice PT is (always!) a decompactification of lattice formulation, so that ultimately 
one should be able to make contact with the continuum Langevin equation, i.e.

@

@t

A

a
µ(⌘, x; t) = D

ab
⌫ F

b
⌫µ(⌘, x; t) + ⌘

a
µ(x; t) Where has this gone?

hO[
X

k

gk�(k)
⌘ (t)]i⌘ =

X

k

gkhOk(t)i⌘

NSPT (directly in the LGT case)  Di Renzo, Marchesini, Onofri 94 



We did not loose anything, since we can always think of all this in the algebra

A
xµ

(t; ⌘) !
X

k=1

��k/2A(k)
xµ

(t; ⌘)

A = log(U) = log

 
1 +

X

k>0

�� k
2 U (k)

!

=
1p
�
U (1) +

1

�

✓
U (2) � 1

2
U (1) 2

◆
+

✓
1

�

◆ 3
2
✓
U (3) � 1

2

⇣
U (1)U (2) + U (2)U (1)

⌘
+

1

3
U (1) 3

◆
+ . . .

=
1p
�
A(1) +

1

�
A(2) +

✓
1

�

◆ 3
2

A(3) + . . . A(k) † = �A(k) TrA(k) = 0 8k

and the (expanded) Langevin equation now reads

A(1)0 = A(1) � F (1)

A(2)0 = A(2) � F (2) � 1

2

h
F (1), A(1)

i

A(3)0 = A(3) � F (3) � 1

2

h
F (1), A(2)

i
� 1

2

h
F (2), A(1)

i
+

1

12

h
F (1),

h
F (1), A(1)

ii
+

1

12

h
A(1),

h
F (1), A(1)

ii

... which I wanted to specify because it is an effective way of preparing for the fact that this 
is not the end of the story! Problems are going to pop out which we have to take care of ...



 Stochastic Gauge Fixing 



Let’s go back to the continuum
@

@t

A

a
µ(⌘, x; t) = D

ab
⌫ F

b
⌫µ(⌘, x; t) + ⌘

a
µ(x; t)

whose expanded version has a (momentum space) solution

A(n)a
µ (k; t) = T ab

µ⌫

Z t

0
ds e�k2(t�s)f (n)b

⌫ (k, s) + Lab
µ⌫

Z t

0
ds f (n)b

⌫ (k, s)

in which vertices pop in (as they should ...)

f (n)a
⌫ (k; t) = gI(3)(n�1)a

µ (k; t) + g2I(4)(n�2)a
µ (k; t)f (0)a

⌫ (k; t) = ⌘⌫(k; t)
a

Remember the scalar case ... �(k, t) =

Z t

0
d⌧ exp�(k2 +m2

)(t� ⌧)


⌘(k, ⌧)� �

3!

Z
dpdqds

(2⇡)2n
�(p, ⌧)�(q, ⌧)�(s, ⌧) �(k � p� q � s)

�

gI(3)aµ (k; t) =
igfabc

2(2⇡)n

Z
dpdq �(k + p+ q)Ab

⌫(�p; t)Ac
�(�q; t) v(3)µ⌫�(k, p, q)

v(3)µ⌫�(k, p, q) = �µ⌫(k � p)� + cyclic permutations

BUT ALL THIS IS GOING TO BE ONLY FORMAL ... WE WILL NOT OBTAIN LONG TIME CONVERGENCE BECAUSE OF 
THE LOSS OF DAMPING IN THE LONGITUDINAL (NON-gauge-invariant) SECTOR

Stochastic Gauge Fixing D. Zwanziger, Nucl.Phys. B 192 (1981) 259  



SOLUTION: add an extra piece
Ȧ

a
µ(x; t) = � �S[A]

�A

a
µ(x; t)

�D

ab
µ V b[A, t] + ⌘

a
µ(x; t)

Any functional evolves like @F [A]

@t

=

Z
dx

�F [A]

�A

a
µ(x; t)

@A

a
µ(x; t)

@t

but GAUGE INVARIANT ones are such that D

ab
µ

�F [A]

�A

b
µ(x)

= 0

and thus physics is unaffected! (integration by parts ...) ... while if we make a convenient 
choice for the extra term we have new damping factors in place!

�Dab
µ V b =

1

↵
Dab

µ @⌫A
b
⌫ Aa(n)

µ (k; t) = Tµ⌫

Z t

0
ds e�k2(t�s)fa(n)

⌫ (k, s) + Lµ⌫

Z t

0
ds e�

k2

↵ (t�s)fa(n)
⌫ (k, s)

On the lattice we interleave a gauge fixing step to the Langevin evolution

U 0
xµ

= e�F

xµ

[U,⌘] U
xµ

(n)

U
xµ

(n+ 1) = ewx

[U 0] U 0
xµ

e�w

x+µ̂

[U 0]

which has by the way an obvious interpretation

U
xµ

(n+ 1) = e�F

xµ

[UG

, G⌘G

†] UG

xµ

(n)

Figure 1. The effect of stochastic gauge fixing.

One then defines a renormalized coupling g2 through [2]

k

g2
=

@�

@⌘

����
⌘=⌫=0

, (4.2)

where k is a normalization factor ensuring that we end up with an expansion

g2 = g2
0

(1 +m
1

g2
0

+m
2

g4
0

+ . . . ). (4.3)

For a general choice of the parameter ⌫, we obtain

@�

@⌘

����
⌘=0

= k

✓
1

g2
� ⌫v

◆
. (4.4)

The reader is referred to [2] for the precise definitions involved, but a couple of comments are in
order here. First of all, v is indipendent of ⌫ and thus the definition of a new coupling (of a whole
family of couplings, actually) simply amounts to the measurement of yet another quantity, in any
background (typically in the one defined by ⌫ = 0). The original motivation of [2] was that of
trading little extra work with a further test of universality of the Schrödinger functional. On the
other side, this freedom in choosing a value for ⌫ in a 1-parameter family can be viewed as a handle
to minimize cutoff effects (this is the spirit of e.g. [14]). In the following we will report results for
the standard definition of the SF coupling (⌫ = 0). Since one can indeed be interested in playing
around with different definitions of the coupling resulting from different value of ⌫, it is important
to discuss what statistics we have to aim at for a NSPT computation of the relevant v obervable.
Since the latter is known to be small (results for different lattice sizes were computed to two loop
in [15]) and quite noisy in non-perturbative measurements, this is expected to be a non-trivial task.
We devote appendix B to briefly discuss our results on this subject.
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 Fermionic loops in NSPT 



Let’s add fermions (Wilson fermions, in this case) in the Langevin equation

S(W )
F

=
X

xy

 ̄
x

M
xy

[U ] 
y

=
X

x

(m+ 4)  ̄
x

 
x

� 1

2

X

xµ

�
 ̄
x+µ̂

(1 + �
µ

)U †
xµ

 
x

+  ̄
x

(1� �
µ

)U
xµ

 
x+µ̂

�

From the point of view of the functional integral measure  e�SG detM = e�Seff = e�(SG�Tr lnM)

and in turns ra

xµ

S
G

7! ra

xµ

S
eff

= ra

xµ

S
G

�ra

xµ

Tr lnM = ra

xµ

S
G

� Tr ((ra

xµ

M)M�1)

In                                    we now writeU
xµ

(n+ 1; ⌘) = e�F

xµ

[U,⌘] U
xµ

(n; ⌘)

F = T a(✏�a +
p
✏⌘a) �a =

h
ra

xµ

S
G

� Re
⇣
⇠
k

†(ra

xµ

M)
kl

(M�1)
ln

⇠
n

⌘i

where              or (this is what we always do)h⇠i⇠ji⇠ = �ij

�a =
h
ra

xµ

S
G

� Re
⇣
⇠
l

†(ra

xµ

M)
ln

 
n

⌘i
M

kl

 
l

= ⇠
k

But we have not put our expansion in the coupling in place! Once we do it, we find much less 
problems than expected from the non-perturbative simulations point of view!

From  a  numerical  point  of  view  this  boils  down  to  the  (technically  challenging)  problem  of 
inverting the Dirac operator efficiently. This is a heavy task, making unquenched simulations much 
more demanding in terms of computer time.

FERMIONIC LOOPS in NSPT Di Renzo, Scorzato 2001

Batrouni et al (Cornell group) PRD 32 (1985)  



In  NSPT  we  have  to  deal  with  only  one  inverse  (known  once  and  for  all:  the  Feynman  free 
propagator) plus a tower of recursive relations

M�1(1) = �M (0)�1
M (1)M (0)�1

M�1(2) = �M (0)�1
M (2)M (0)�1

�M (0)�1
M (1)M�1(1)

M�1(3) = �M (0)�1
M (3)M (0)�1

�M (0)�1
M (2)M�1(1) �M (0)�1

M (1)M�1(2)

i.e.

M�1(n) = �M (0)�1
n�1X

j=0

M (n�j)M (j)�1

This has a direct counterpart in the solution of the linear system we have to face, which is also 
translated into a perturbative version (beware! the noise source is 0-th order)

 (j) ⌘ M�1(j)⇠

 (0) = M (0)�1
⇠

 (1) = �M (0)�1
M (1) (0)

 (2) = �M (0)�1
h
M (2) (0) +M (1) (1)

i

 (3) = �M (0)�1
h
M (3) (0) +M (2) (1) +M (1) (2)

i

i.e.

 (n) = �M (0)�1
n�1X

j=0

M (n�j) (j)

which is particularly nice, since it can be solved by going back and forth from momentum to 
coordinate representation!

M = M (0) +
X

k>0

��k/2M (k) M�1 = M (0)�1
+

X

k>0

��k/2M�1(k)

with        the (tree-level, field independent) 
Feynman propagator

M (0)�1



- A canonical application: renormalization constants



Renormalization constants used to be the realm of LPT … 

… but these days this is NOT the case. A non-perturbative determination (where possible) is now the 
preferred choice (RI-MOM Rome group, SF ALPHA 90s). Still,

Renormalization is strictly speaking proved in PT
There are different systematics involved in PT and non-PT

… and at some point PT is supposed to converge (this is a UV problem …)

The RI-MOM schemes (Rome group 1994) are a good framework (in the massless limit). Being the 
scheme Regulator Independent, the coefficients of the logs are known! … and the finite parts are 
the easy part in NSPT …

Let’s see how it works for quark bilinear (currents)

ZO�(µ,↵)Z
�1
q (µ,↵)O�(p)|p2=µ2 = 1 Zq(µ,↵) = �i

1

12

Tr(/pS�1(p))

p2
|p2=µ2

G�(p) =

Z
dx hp|  (x)� (x) |pi ��(p) = S�1(p)G�(p)S

�1(p) O�(p) = Tr
⇣
P̂O���(p)

⌘

We know what to expect

A key ingredient is the quark 2-points function (beware! we will work with Wilson fermions…)

Z(µ,↵0) = 1 +

X

n>0

dn(l)↵
n
0 dn(l) =

nX

i=0

d(i)n li l ⌘ log(µa)2

a�
2

(p̂, m̂cr,�
�1) = i/̂p+ m̂W (p̂)� ⌃̂(p̂, m̂cr,�

�1)

⌃̂(p̂, m̂cr,�
�1) = ⌃̂c(p̂, m̂cr,�

�1) + ⌃̂�(p̂, m̂cr,�
�1) + ⌃̂

other

(p̂, m̂cr,�
�1)

1

4

X

µ

�µTrspin(�µ⌃̂) = ⌃̂�

✓
��1 ⌘ 2⇡↵0

3

◆



What one really computes is 
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Fig. 6 One-loop ÔS(p̂,pL, µ̄) (see Eq. (30)) measured on a 324 (empty black) and a 164 (filled red) lattice, without (left) and with (right) finite
size corrections

Fig. 7 One-loop ÔS(p̂,pL, µ̄) (see Eq. (30)) measured on a 324

(black) and a 164 (red) lattice, with finite size corrections and the fit-
ted form (blue crosses) plotted on top of data. The blue full circle at
(pa)2 = 0 is the result of our fit, which can be compared to the analyt-
ical value (green full circle) (Color figure online)

diamonds fail to fall on a smooth curve, and the same holds
for empty black and filled red squares (these are supposed
to be families in the jargon we introduced). On the right, we
display the same data corrected for finite size effects: the
corrections have been fitted according to our simplest recipe
(in the spirit of Eq. (27)). Empty black and filled red dia-

monds and empty black and filled red squares now do fall
on smooth curves. The effectiveness of the fit is displayed
in Fig. 7, where in particular one can see how well we de-
termine the final result we are interested in, i.e. z

(0)
S1 , in the

notation of Eq. (16) (we recall that this is the counterpart of
c
(0)
1 of Eq. (28)).

Notice that finite size effects are more manifest in Fig. 6
than in Fig. 5. The latter refers to a quantity for which there
is no log involved (the one-loop field anomalous dimension
vanishes in Landau gauge). In [3] it was observed that when-
ever logs are in place, finite size effects can be quite large.
This is a rationale in support of the strong assumption con-
tained in Eq. (27), which states that we look for one single
parameter (!ÔΓ (pL)) to correct for finite size effects in
ÔΓ (p̂,pL, µ̄). In the definition of the latter a subtraction of
leading logs is in place. One can infer that on a finite lattice
logarithmic divergences are actually regulated in the IR (see
the discussion of [3] in terms of tamed logs). As a matter of
fact, the finite size corrections that we get for finite renor-
malization constants (i.e. those of the vector and axial cur-
rents) are small, and results are within errors quite consistent
with those obtained by taking into account only 324 data.

6 Results: three-loop expansion of ZS , ZP , ZV , ZA

In Table 2 we report the coefficients of the three-loop ex-
pansion of ZS , ZP , ZV and ZA.10 The expansion parameter

10Comparing to the preliminary results in [7] the reader will recognize
a typo for ZP at second loop.

ZO
�

(µ = p,��1)|
finite part

= lim
a!0
L!1

b⌃�(p̂, pL, µ̄)

Ô�(p̂, pL)
|
log subtr

where the limits are encoded in expansions, e.g.

b⌃�(p̂, pL, µ̄)|log subtr

= c(0)1 + c(0)2

X

⌫

p̂2⌫ + c(0)3

P
⌫ p̂

4
⌫P

⌫ p̂
2
⌫

+ c(1)1 p2µ̄ +�b⌃�(pL) +O(a4)

b⌃�(p̂, pL, µ̄) ⌘ b⌃�(p̂,1, µ̄) +�b⌃�(p̂, pL, µ̄) �b⌃�(p̂, pL, µ̄) ⇠ �b⌃�(pL)

and finite size effects come from

Three-loop computations of RI-MOM renormalization constants (*)      Parma group 2007, 2013, 2014 
(*) for different glue action


