Trans-series

\&

hydrodynamics far from equilibrium

Michal P. Heller
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany
National Centre for Nuclear Research, Poland

many works, but see
1610.02023 [hep-th] lecture notes

I707.02282 [hep-ph] review with Florkowski and Spalinski

Introduction

Motivation

experiment (2000 ++):

ultrarelativistic heavy-ion collisions at RHIC \& LHC

pheno:

microscopics:

hydrodynamic description of $\left\langle T^{\mu \nu}\right\rangle$

What is hydrodynamics and when does it work?

Textbook definition of relativistic hydrodynamics

hydrodynamics is

an EFT of the slow (?) evolution of conserved currents in collective media close to equilibrium (?)

DOFs: always local energy density ϵ and local flow velocity $u^{\mu}\left(u_{\nu} u^{\nu}=-1\right)$
EOMs: conservation eqns $\nabla_{\mu}\left\langle T^{\mu \nu}\right\rangle=0$ for $\left\langle T^{\mu \nu}\right\rangle$ expanded in gradients

$$
\pi^{\mu \nu}
$$

microscopic
input: $\quad\left(P(\epsilon)=\frac{1}{3} \epsilon\right.$ for CFTs) contribution
bulk viscosity
(vanishes for CFTs)

This talk: behaviour of the gradient expansion at large orders in the number of ∇

In practical applications one encapsulates part of this info in an EOM for $\pi^{\mu \nu}$, e.g.

$$
\begin{array}{r}
\pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu \nu}+\lambda_{1} \pi^{\langle\mu}{ }_{\alpha} \sigma^{\nu\rangle \alpha}+\lambda_{2} \pi^{\langle\mu}{ }_{\alpha} \Omega^{\nu\rangle \alpha}+\lambda_{3} \Omega^{\langle\mu}{ }_{\alpha} \Omega^{\nu\rangle \alpha} \\
\text { Baier-Romatschke-Son-Starinets-Stephanov 07/2.245। } \\
2 / I 2
\end{array}
$$

Hydrodynamics far from equilibrium

$$
\text { 0906.4426, IO I I . } 3562 \text { by Chesler \& Yaffe; I I } 03.3452 \text { with Janik \& Witaszczyk }
$$

$$
N=4 S Y M
$$

BRSSS

$$
-\eta \sigma^{\mu \nu} \longrightarrow \frac{\Delta \mathcal{P}}{\mathcal{E} / 3}=\frac{2}{\pi} w^{-1}
$$

Viscous hydrodynamics works despite huge anisotropy in the system: hydrodynamization \neq local thermalization

Hydrodynamic \& transient modes

Modes in BRSSS theory

Mode $=$ solution of linearized equations of finite-T theory without any sources
Technical issue: tensor perturbs. \longrightarrow channels (here everywhere sound channel):
Assuming momentum along x^{3} direction $e^{-i \omega x^{0}+i k x^{3}}: \delta T, \delta u^{3} \& \delta \pi^{33}$

$$
\begin{gathered}
\text { conservation } \\
+\stackrel{+}{\pi^{\mu \nu}}=-\eta \sigma^{\mu \nu}-\tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu \nu}+\lambda_{1} \pi^{\langle\mu}{ }_{\alpha} \pi^{\nu\rangle \alpha}+\lambda_{2} \pi^{\langle\mu}{ }_{\alpha} \Omega^{\nu\rangle \alpha}+\lambda_{3} \Omega^{\langle\mu}{ }_{\alpha} \Omega^{\nu\rangle \alpha}
\end{gathered}
$$

$$
\omega^{3}+(\ldots) \omega^{2}+(\ldots) \omega+(\ldots)=0
$$ two modes:

$$
\omega /_{k=0}=\frac{1}{\tau_{\pi}}
$$

$$
k
$$

$$
k=
$$

Modes in Einstein-Hilbert holography = QNMs

$$
d s^{2}=\frac{L^{2}}{u^{2}}\left\{-2 d x^{0} d u-\left(1-\pi^{4} T^{4} u^{4}\right)\left(x^{0}\right)^{2}+d \vec{x}^{2}\right\}+\delta g_{a b}(u) e^{-i \omega x^{0}+i k x^{3}}
$$

ingoing (regular) at the horizon

Hydrodynamics \& trans-series

I 503.075 I 4 with Spalinski (see also I 509.05046 by Basar \& Dunne)
I 302.0697 with Janik \& Witaszczyk

Boost-invariant flow ${ }_{[B j o r k e n ~ 1982] ~}$

const x^{0} slice:

Boost-invariance: in $\left(\tau \equiv \sqrt{x_{0}^{2}-x_{1}^{2}}, \quad y \equiv \operatorname{arctanh} \frac{x_{1}}{x_{0}}, x_{2}, x_{3}\right)$ coords no y-dep
In a CFT: $\left\langle T_{\nu}^{\mu}\right\rangle=\operatorname{diag}\left\{-\mathcal{E}(\tau),-\mathcal{E}-\tau \dot{\mathcal{E}}, \mathcal{E}+\frac{1}{2} \tau \dot{\mathcal{E}}, \mathcal{E}+\frac{1}{2} \tau \dot{\mathcal{E}}\right\}$

$$
\text { and via scale-invariance } \frac{\Delta \mathcal{P}}{\mathcal{E} / 3} \equiv \mathcal{A} \text { is a function of } w \equiv \tau \frac{(T}{2}
$$

Gradient expansion: series in $\frac{1}{w} \cdot \underset{\substack{6 / I 2}}{1} 03.3452$ with Janik \& Witaszczyk

Large order gradient expansion: BRSSS ${ }_{1503.07514 \text { with Spalinski }}$

conservation (always the same) $\longrightarrow \frac{\tau}{w} \frac{d w}{d \tau}=\frac{2}{3}+\frac{1}{18} \mathcal{A}$

$$
\begin{aligned}
& \pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu \nu} \\
& +\lambda_{1} \pi^{\langle\mu}{ }_{\alpha} \pi^{\nu\rangle \alpha}+\lambda_{2} \pi_{\alpha}^{\langle\mu} \Omega^{\nu\rangle \alpha}+\lambda_{3} \Omega^{\langle\mu}{ }_{\alpha} \Omega^{\nu\rangle \alpha} \rightarrow C_{\tau_{\pi}} w\left(1+\frac{1}{12} \mathcal{A}\right) \mathcal{A}^{\prime}+\left(\frac{1}{3} C_{\tau_{\pi}}+\frac{1}{8} \frac{C_{\lambda_{1}}}{C_{\eta}} w\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{\eta}=0 \\
& \left(\eta \underset{\frac{1}{4 \pi} / /}{\overline{4}} C_{\eta} \mathcal{S}, \quad \tau_{\pi}=\frac{C_{\tau_{\pi}}^{\prime /}}{T}, \quad \lambda_{1}^{\frac{2-\log 2}{2 \pi}}=C_{\lambda_{1}} \frac{\eta}{T}\right) \\
& \begin{aligned}
\mathcal{A}(w) \approx \sum_{n=1}^{\infty} \frac{a_{n}}{w^{n}}= & 8 C_{\eta} \frac{1}{w}+\frac{16}{3} C_{\eta}\left(C_{\tau_{\pi}}-C_{\lambda_{1}}\right) \frac{1}{w^{2}}+\ldots
\end{aligned} \longrightarrow
\end{aligned}
$$

Hydrodynamic gradient expansion is a divergent series: $a_{n} \sim \Gamma(n+\beta)$

Hydrodynamics \& transient modes: BRSSS

I503.075I4 with Spalinski

Linearization of $C_{T_{7} w\left(1+\frac{1}{12} A\right) \mathcal{A}} \mathcal{A}^{\prime}\left(\frac{1}{3} C_{7 \pi}+\frac{1}{8} C_{\lambda_{n}} C_{n}\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{n}=0$ around $\sum_{n=1}^{\infty} \frac{a_{n}}{w^{n}}$ gives: integration const. (ini. cond.)

$$
\delta \mathcal{A}=\sigma e^{-\frac{3}{2} \frac{1}{C_{\tau_{\pi}}} w} w^{\frac{c_{\eta}-2 C_{\lambda_{1}}}{C_{\tau_{\pi}}}}\left\{1+\sum_{j=1}^{\infty} \frac{a_{j}^{(1)}}{w^{j}}\right\}^{\alpha}
$$

In equilibrium one has $e^{-\frac{1}{c_{\pi_{\pi}}} T t}$
It is still true here, but only at a given instance: $e^{-\frac{1}{C_{\tau_{\pi}}} \int_{\tau_{i}}^{\tau} T\left(\tau^{\prime}\right) d \tau^{\prime}}$
Using $T=\frac{\Lambda}{(\Lambda \tau)^{1 / 3}}\left(1-C_{\eta} \frac{1}{(\Lambda \tau)^{2 / 3}}+\ldots\right)$ one gets $e^{-\frac{3}{2} \frac{1}{C_{T_{\pi}}} w} w^{\frac{C_{\eta}}{C_{T_{\pi}}}} \ldots$
To wrap-up, we have just seen the hydro-dressed transient mode of BRSSS at $\mathrm{k}=0$ 8/12 see also hep-th/0606I49 by Janik \& Peschanski

Transseries and resurgence

I 503.075 I 4 with Spalinski approx. analytic cont.

$$
\mathcal{A} \approx \sum_{n=1}^{\infty} \frac{a_{n}}{w^{n}} \xrightarrow[\text { Borel trafo. }]{ } B \mathcal{A}(\xi)=\sum_{n=1}^{\infty} \frac{a_{n}^{\downarrow}}{\Gamma(n+\beta)} \xi^{n} \approx \frac{b_{0}+\ldots+b_{100} \xi^{100}}{c_{0}+\ldots+c_{100} \xi^{100}}
$$

Borel (re)summation

$$
\begin{aligned}
\left(\int_{\mathcal{C}_{1}} d \xi\right. & -\int_{\mathcal{C}_{2}} d \xi w^{\beta} \xi^{\beta-1} e^{-w \xi} B \mathcal{A}(\xi) \\
& \sim e^{-\left(\frac{3}{2} \frac{1}{C_{\tau_{\pi}}}\right.} w w_{w}^{\frac{C_{\eta}-2 C_{\lambda_{1}}}{C_{\tau_{\pi}}}}
\end{aligned}
$$

Ambiguity in resummation $B \mathcal{A}(\xi)=$ reg. $+(A-\xi)^{\beta}$ reg. $+\ldots \sim$ transient mode $+\ldots$

nonlinear effects

${ }_{\infty}$
Trans-series: $\mathcal{A}(w)=\sum_{j=0} \sigma^{j} e^{-j A w} w^{j \beta} \Phi_{(j)}(w) \quad \sim$ resum. ambig. + ini. cond.
Resurgence: trans-series yields an unambiguous answer up to I real int. const. $9 / 12$

Hydrodynamics \& transient modes: holography

see also I5 I I. 06358 by Aniceto \& Spalinski as well as I708.0I 92 I by Spalinski

$$
\begin{gathered}
\mathcal{A} \approx \sum_{n=1}^{\infty} \frac{a_{n}}{w^{n}} \\
\downarrow
\end{gathered}
$$

$B \mathcal{A}(\xi)=\sum_{n=1}^{\infty} \frac{a_{n}}{n!} \xi^{n} \approx \frac{b_{0}+\ldots+b_{120} \xi^{120}}{c_{0}+\ldots+c_{120} \xi^{120}}$

$$
\begin{aligned}
\mathcal{A}(w)=\sum_{n_{ \pm}^{(1)}, n_{ \pm}^{(2)}, \ldots=0}^{\infty} & \Phi_{\left(n_{+}^{(1)}\left|n_{-}^{(1)}\right| n_{+}^{(2)}\left|n_{-}^{(2)}\right| \ldots\right)}(w) \times \\
& \times \prod_{j=1}^{\infty}\left(\sigma_{+}^{(j)}\right)^{n_{+}^{(j)}}\left(\sigma_{-}^{(j)}\right)^{n_{-}^{(j)}} \mathrm{e}^{-\left(n_{+}^{(j)} A_{+}^{(j)}+n_{-}^{(j)} A_{-}^{(j)}\right) w} w^{n_{+}^{(j)} \beta_{+}^{(j)}+n_{-}^{(j)} \beta_{-}^{(j)}}
\end{aligned}
$$

Infinitely many transient QNMs \longrightarrow infinitely many parameters in the transseries

Hydrodynamics far from equilibrium

I 503.075 I 4 with Spalinski
see also I704.08699 by Romatschke

Hydrodynamics far from equilibrium = attractors

I 503.075 I 4 with Spalinski

BRSSS:
$C_{\tau_{\pi}} w\left(1+\frac{1}{12} \widehat{\mathcal{A}) \mathcal{A}^{\prime}}+\left(\frac{1}{3} C_{\tau_{\pi}}+\frac{1}{8} \frac{C_{\lambda_{1}}}{C_{\eta}} w\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{\eta}=0\right.$ \approx attractor solution

Recently Romatschke in I704.08699 found such attractors in kinetic theory \& holography

Summary

many works, but see
| 610.02023 [hep-th] lecture notes
I 707.02282 [hep-ph] review with Florkowski and Spalinski

Transient modes at $k=0$ vs. singularities of Borel transform of hydro

Appealing analogy with quantum mechanics:
non-equilibrium physics
gradient expansion in $\frac{1}{w}$ transient QNMs $e^{-i \frac{3}{2} \Omega_{ \pm} w}(\ldots)$

QM with $V=-\frac{1}{2} x^{2}(1-\sqrt{g} x)^{2}$ perturbative series in g instanton $e^{-1 /(3 g)}(\ldots)$

Support

Lesson from cosmology

```
I 603.05344 with Buchel & Noronha
```

$$
\begin{aligned}
& \begin{array}{r}
\frac{d \text { Entropy }}{d t}=V \times\left(\sum_{n=0}^{\infty} c_{n} \xi^{n}\right)^{2}+\ldots \text { with } \xi=\frac{H}{T} \text { for a hCT in }-d t^{2}+e^{2 H t} d \vec{x}^{2} \\
T \sim e^{-H t} \longrightarrow e^{-i \Omega_{ \pm} \int_{t_{i}}^{t} T\left(t^{\prime}\right) d t^{\prime}} \sim e^{-i \Omega_{ \pm} \cdot\left(-\frac{T(t)}{H}\right)}
\end{array} \\
& \sum_{n=0}^{300} \frac{c_{n}}{n!} \xi^{n} \approx \frac{\sum_{m=0}^{150} d_{m} \xi^{m}}{\sum_{l=0}^{150} e_{l} \xi^{l}} \\
& \text { - singularities of Borel trafo }
\end{aligned}
$$

Hydrodynamic gradient expansion knowns about all transient QNMs

Extra I

Modes in RTA kinetic theory ${ }_{\text {I512.02641 by Romatschke }}$

Sound channel at $\mathrm{k} \tau_{r e l}=0.1,1.0 \& 4.531 \quad 1707.02282$ with Florkowski \& Spalinski

Very different from holography: one hydro mode and one branch-cut at $k \neq 0$
$\downarrow k \rightarrow 0$
single pole at $\omega=-i \frac{1}{\tau_{r e l}}$

QNM in kinetic theory?

1609.04803 with Kurkela \& Spalinski work in progress with Svensson

$$
\begin{aligned}
\xi_{s i n g}=\frac{3}{2 \gamma}
\end{aligned} \underbrace{\text { assuming sing. } \sim\left(\xi-\frac{3}{2 \gamma}\right)^{\beta}} \rightarrow \delta \mathcal{A} \sim \exp \left(-\frac{3}{2 \gamma}\right) w^{-1.43}(\ldots)
$$

Extra 3

