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-
N = 2 SUSY gauge theories come in families

N = 2 vector multiplet:

Yooam
¢ A

By A = 2 supersymmetry, flat directions in potential for ¢

= families parametrized locally by a = (¢).
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-
The two derivative N' = 2 Lagrangian

@ Dependence of Lagrangian on the modulus a captured by complex
function: the prepotential Fy(a).

@ In the effective action, Fyy(a) receives instanton corrections.
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-
The Seiberg-Witten formalism

Family of QFTs maps to family of tori which encode prepotential.

Global coordinate on moduli space is u.

A(u) meromorphic one form satisfyinga = §, X\, ap = §z \.

dFy

Prepotential determined via ap = 7,
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Some examples

e Pure SU(2): a single vector multiplet
yz:(x—u)(xz—A4)7 )\N—'x_u
Ny e
@ N = 2*: an adjoint matter hypermultiplet of mass m

v =m? o(zlT) —u, = /m?p(z|T) —u

@ Ny = 4 : four fundamental matter hypermultiplets of mass m;

3 4
yZZZm,-zp(Z-i-c#i]T)—u, = thzp(z+wi’7)_u
' i=0

2-torsion points of torus
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The Nekrasov partition function

Compute instanton contributions via localization.
appropriate equivariant class

Znek(€1, €2) Z q b

instanton counting parameter

compactified n-instanton moduli space for gauge group U(2)

Recover prepotential Fop = F%0 as leading term in asymptotic
expansion.

(e1 +@)?
4 _
Znek(€1, €2) ~ eXPZF"’g(‘I)Sn(?’?)g :
ng €16
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From formal to analytic?

Znek(e1, €2) ~ exp »_ F"%(q)s" g >

elucidate "8

@ in gauge theory: LHS convergent for large a

@ in topological string theory: both sides are formal power series, in g and
(g5, 5) respectively
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-
WKB for A = 2 gauge theory via AGT

gauge theory CFT
ZNek conformal block on X, ,
€1,€2 bzzi—?,Q:b—i-l/b,

coupling constants
a

masses m;

Zner With surface operator

A. Kashani-Poor

c=1+60°
complex structure parameters of X ,
exchanged momentum h = QTZ — 6‘11—2
weights of insertions Ay, = QTZ — 6”1’—’62

conformal block with degenerate insertion
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AGT with surface operator insertion

gauge theory ‘ CFT
Zner With surface operator ‘ conformal block with degenerate insertion

W(z|7)

modulus of surface operator
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______________________________
Null vector decoupling — WKB

WU (z|7) satisfies null vector decoupling equation.

Boundary condition to project onto conformal block: monodromy in z

() = e U(z|7)
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Null vector decoupling equations for our examples
e pure SU(2)
292 2¢.2 -2 A
€10 + A" (e +e7°) + eleZZaA U(z]A) =0.
o N=2"

2
(6%822 - (Z—l —m*)p(z) + 616227”'57) U(zr) =0.

3.2
<6%612 + 42(6—1 —m})p(z+ wi) + 616247Ti(97—) U(z|T) =0.
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Semi-classical limit

Factorize effect of degenerate insertion via limit
€ — 0.

Ansatz: | |
U(z|r) = exp | —F(7) + —W(z|7) + O(e2)
€162 €1
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Semi-classical limit

Factorize effect of degenerate insertion via limit

62—)0.

Ansatz:

1 1
W(zir) = exp | ——F(7) + ~W(elr) + O(e)

Note that

) 62—>0
gs =€ —— 0.
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N
WKB ansatz: N = 2*

2
(e%@f + (%1 —m*)p(z) + 616227”'37) U(z|r) = 0.

W (z|T)=exp [ 51152 F(r)+ éW(zh’)—i—O(ez)] ,

gives rise to
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N
WKB ansatz: N = 2*

( 102 + (—2 —m*)p(z) + 616227Tia7—) U(z]T) =0.

4
W (z|T)= exp[qezF(T)+$W(z|‘r)+0(ez)],
gives rise to
W) = S + (St - 1) o) = rip S a0, F ()
€1 e% 6% 4 6% 4 '
Ansatz: Z}" T)er, W(Zr) = ZWn(zlr)e’l’
n=0
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______________________________
Solving for WKB series

— 62+m2@ = (27ri)2q8q]-"0,
~Wy = 2WW, = (27i)*q0,Fi,

1
W =W =2V = 20(0) = (2mi)q0, .

n+1
W =Y WWhii = (2mi)’q0,Fua for n>2,
i=0

with boundary conditions

fw(g:izma, fw,.'zo for i>0.
A A
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Modularity (massless case)

- (',2 = (2mi)*q9,F9 = W, z-independent
Solve via boundary condition:

?{ Wo = Wéj’{ 1 =+2mia = Wy=2mia = q0,Fy=—d
A A

A. Kashani-Poor N = 2 and WKB KITP workshop 2017 20/51



Modularity arises

ﬁ(—ﬂ%mé—%ma):@mV¢%5£1

, 1 1§, 0(2) — p(2)
= (271'1)2(1(9,1]:2 = _Z \A p(Z) = Wé = ZﬁT .

f o"(2) € ClEs, s, Ee
4 1

ring of quasi-modular forms

with p¢, p? homogeneous of weight n,

P3u(9) P2 () € ClE2, Es, Ee][p]
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First several orders for YW/ and F,

2
LT TEy 4+ 3p
0, F, = —i—E A R N
p/
=0 r_ __ &
O3 W 64m2a?’
0 F — lw(Eg —Ey) W — _i(2E§ — 25E4)m* + 672 Eyp + 22507
T T 460822 0 A N1673a )
7(5E3 + 21E,E4 — 26Es)
0, Fe = — 2
Tre =t 11059204 ’
5. Fe — iﬂ(35E§ + 329E5E, — 1402E2 + 1038E,E¢)
T8 29727129645 '
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|
From 0, F, to F,

/dT . C[E», Ey, Ee| -» C|En, Es, Eq]

Algebraic constraints on coefficients via Ramanujan relations

E? —E4 E>E, — Eg E)Eq — E2
E, = 2 Ey=—""_2 Fg=—> "4,
And yet
F E, o 5E3 + 13E,4 _ 175E3 + 1092E,E4 + 3323E,
Y7682 70T T 368640a% 1 TP 74317824046
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Too many trees

Quasi-modularity of F;, hard to see from
— (')2 +mPp = (27ri)2q8q]-"0 ,
~Wy = 2WW, = (27i)*q0,Fi,
1
W =W DWW = o) = (2mi 0, T

n+1
_W;/_ZW; i = (2mi)2q0,Fur for n>2.
i=0
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Quantum geometry

Does Seiberg-Witten framework lift to F;,?

Le., can we introduce A(e) such that

azé)\(q), ap

OF (€1)
Oa

I
56—
>
>
[}
-

where

ap =

A. Kashani-Poor

N = 2 and WKB
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-
e-deformed Seiberg-Witten differential

Natural candidate for A

1 1 1 1 a1
I - SWEnR + (- ;) o) = @riP a0, ()
1

= Mep) =W (z]7) = \/ngo — (270)2q0, F — ey W' — €3 v

Note that W appears on the RHS: definition of \ as formal power series in
€1.

A. Kashani-Poor
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Relate F, to ap(e;) via Riemann bilinear identity

Define
U =2mio. F.

a, €1 dependence of U fixed by

f)\(q) = 2mia .
A
We show for N = 2*

om0 _ 19U
Or  4mida’
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Proof of quasi-modularity

This provides a proof of the quasi-modularity of F, via

6'7::—2?{ \/ga 2mio. F — e W' — zpdz
8@ B+ 4

J/

manifestly quas1-modular
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Non-convergence of ¢; expansion

1
108 Zyop = — > urg €.
n

6162 r,s

sum of quasi-modular forms, hence absolutely convergent

If sum over €y, € is convergent, can invert order of summation.

But for |¢;], |e2] < dp,
S =212, g polynomials

such that coefficients of €;, €5 increase with n without bound

= lim §, =0.

n—oo
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Beyond formal power series

Can we make sense of F beyond a formal expansion in €;?
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Case study: pure SU(2) (Mathieu equation)

[6285 — (cosq —u)|¥(g) =0.

g-plane x-plane

[1- @-)
[1,0)
[1- ®-)

% T
A\

upper half plane lower half plane

of first sheet of first sheet

B\
\ A
\

[-1,1] [1,-1]
\
\

lower half plane u}her half plane
of second sheet of sésond sheet

5
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______________________________
Floquet theory

[6285 — (cosqg —u)|¥(q) =0.

Differential equation with periodic potential —  Floquet theory

Two independent solutions

Yi(q) = eiyiqﬂ)T(i(CI)

periodic in g

Characteristic exponents v+ : vy + v_ = 0 determine monodromy.

= Identify %V with dexqer
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-
Exact WKB: Strategy

@ Determine monodromy matrix M of differential equation via study of
Borel resummed WKB solutions

M = eaexact + e_aexact

@ Invert dpygee (U, €) to obtain ueyae(a, €).

@ Obtain F,y, via

Uexact = NOAFexact
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Borel transform

@ Borel transform

i~ 0 n—1
o)=Y ket o Pp(y) =) ek y_ E
k=0 k=1 (n 1)'

@ Inverse Borel transform

Usl) = Sell(e) = o+ / e pp(y) dy.

Lo

ray in direction 6
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Stokes lines

o If integral in direction 6 exists,  Sp[¢)] ~ ¥ (e) .
o If integral is singular along ¢ = 0, but exists along 04 = 0 *- ¢,
So, [¥] ~ p(e) ~ So_[Y],

hence Sy, [¢/] and Sy_ [+/] differ by exponentially suppressed
contributions in .

Rays in the direction of such 6y;,, subdivide the y-plane into Stokes
sectors.
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Stokes regions

In case of ¢ dependence:  (g,€) —  Oing(q)
Keeping 6 fixed but varying ¢ divides g-plane into Stokes regions.

u=-2+2i, 6=0

%8
N
/‘{

The Stokes lines emanate from turning points ¢;, i.e. zeros of the potential
V =cosq —u.
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N
The WKB solution

4 1
w(q,e)zexp(/ Sdq), S=€S—1+So+651+----

Sj_t1 = =+./cosq—u,

1 1 sing
St = ——dlogS_/dg=-~——T—
0 24708 1/dq 4cosqg—u’

¢+ _ icos2q+8ucosq—9
1 - )

64(cos g — u)>/2
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-
The WKB solution in Floquet form

1 1
Sodd = §(S+ - S_) 5 Seven — E(S+ + S_) ;

1d log Sodd

= Seven = _2 dq

1 q
=  P+(q,€) = mexp (i/ Sodd(q; €) dCI> :

Normalization determined by lower bound of integration.
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Basis of WKB solutions depends on Stokes region

Resumming the two formal WKB solutions in region I, analytically
continuing to region II

£

Resumming the two formal WKB solutions in region II
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N
Connection matrices

Bases in two different Stokes regions are connected via so-called connection
matrices.

Connection matrices are simple, e.g.

1 i
Sdom:<0 1>a

when WKB solutions are normalized at the turning point from which the
Stokes line being crossed emanates:

1
= Uslg )= o (+ /

turning point of potential

q
Sodad(q;€) dCI> :

A. Kashani-Poor
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Changing normalization

1 q
1/&(61, 6) = Wexp (i /qi Sodd(q, 6) dCI> .

turning point of potential

Changing normalization between two turning points ¢; and g, via Voros
multiplier:

Borel region of resummation

) @ 1
9 - (exp [i / sodd]) @)
q] Ky

normalized at g;

sector of resummation
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Moving in the g-plane

u=-2+2i, 6=0

V /L‘_/
o @ [0

A,
YA

~T

NG
(025 Y ram -

)(1)

—1 —1 (6]1
q1)_

N2—-38 )3 N1-25(1)50) ( (
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Monodromy

By periodicity of differential equation,
(¢ +27T)EL3) _ (QI)S-)
( (g1 +2m)® (+2m) = (g1 @

(1) NooaS2L NS
= 0y ] (@) =N2ssSi) N2 0

—

/
—
o
==
N———
—
)
+
\®)
3
S~—

monodromy matrix
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Evaluation of monodromy matrix: sector dependence

M = (2 cosh & & exé(a(1+2n)+2al))>
€

et
/ \
/ \

6 -4 2 0 2 4 8

(n,%)

sector

2,6="

2z
.
=

\
/

u=-2, 60 u=-2, 6=3.01659

Sector dependence compensated by jumping behavior of Voros
multipliers

CyClC Cil‘CliIlg double Stokes line
€c ) — eaé 1 + eaéo (0, )
+ +
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Determining @ ¢, (i, €)

Need to solve

eaexeact +e_aex6act _ (e% + e—% + e:pé(a(l+2n)+2an)>
(n,%)

Transseries ansatz

o0
a = aexact —|— € E cmne—é(Zm Aexact+2n aD(aexact,G)) )

m,n=1
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Determining F

F= iza2 log A + LG% exp <— 2a + 2aD(a/(\/§A))) +
s 2w €1
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Conclusions

o Exact WKB takes us someways towards controlling the semi-classical
expansion, but computations with transseries require better control.

o WKB offers systematic approach to quantum geometry, in the NS limit.

@ Fun to be had along the way (e.g. with quasi-modularity).
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