
Semiclassical decoding

Marcos Mariño
University of Geneva



In Physics, we usually have two different approaches to a 
theory:

A non-perturbative definition: it often relies heavily on numerics 
(numerical diagonalization, lattice gauge theory), so it is not 

very illuminating for human brains. Not always available! 
(string theory)

A perturbative/semiclassical series: intuitive, analytic to a large 
extent, but often incomplete due to the existence of non-

perturbative effects



A non-perturbative function in quantum theory can be 
semiclassically decoded if it can be written as the Borel-Ecalle 

resummation of a trans-series

This seems to be the case in many examples in Quantum 
Mechanics, and in some simple low-dimensional/topological/
supersymmetric theories. It might not be true in Yang-Mills 

theory (in infinite volume). 

In resurgence, we enlarge perturbative series to trans-series, 
to try to account for the exact non-perturbative answer. 

This leads to the following working definition:



In order to see whether semiclassical decoding is at work in 
string theory, one needs first a non-perturbative definition. 

For example, in non-critical (super)string theory, non-
perturbative definitions involve nonlinear ODEs of the 

Painlevé type, which can be semiclassically decoded [Ecalle, Costin] 

In this talk I will discuss topological strings whose target is a 
toric (non-compact) Calabi-Yau (CY) threefold. They provide 

the next layer of complexity beyond non-critical 
(super)strings. They are also useful for AdS/CFT (i.e. in ABJM 

theory).

Semiclassical decoding in string theory



As is well-known, (topological) string theory is defined by a 
formal, divergent genus expansion
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The free energies           can be computed genus by genus by 
using many different techniques (enumerative geometry, 

topological vertex, mirror symmetry/BKMP conjecture…).

The most efficient technique is the BCOV holomorphic 
anomaly equation, combined with modularity [Klemm et al.], which 

gives ~100 orders of the genus expansion

Fg(�)

modulus



Question: is there a well-defined, computable function of the 
moduli    and the string coupling constant which has the 

genus expansion as an asymptotic expansion?

This is the problem of formulating (topological) string theory 
non-perturbatively.

�



A non-perturbative definition

As we learned in the previous talk, given a toric CY X, we 
can associate to it a positive, trace class operator      . Its 

spectral traces are all finite,

and its Fredholm determinant is well defined

“fermionic” 
spectral traces
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We define the non-perturbative topological string free 
energy as 

FX(N, ~) = logZX(N, ~)

N ! 1
~ ! 1

N

~ = � fixed

In the asymptotic, ’t Hooft-like limit

FX(N, ~) = logZX(N, ~) ⇠
X

g�0

Fg(�)~2�2g

we recover (conjecturally) the genus expansion of the 
topological string!

~ ⇠ g�1
s



This is the asymptotic version of the conjecture in [Grassi-

Hatsuda-M.M.]. There is an exact version of this conjecture 
which makes it possible to define the fermionic spectral 
trace for arbitrary N, and not just for positive integer N. 

(there are many high-precision tests of the above 
conjectures and no single counterexample)



We can now ask the following question [Couso-M.M.-Schiappa]:

Can we decode semiclassically the non-perturbative 
definition I have just given for the topological string?

In order to answer this question we should first study the 
Borel summability of the perturbative, genus expansion. 
This is feasible in since we can generate many terms of 

this expansion

In the following, I will focus on a concrete model, in which the 
CY is local      . P2



It turns out that the perturbative genus expansion is Borel 
summable for almost all real, positive �
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We can then do standard Borel resummation of the 
perturbative series and get numerical answers. 



For N=2 and              we obtain~ = 4⇡

F
Borel

(N = 2, ~ = 4⇡) = �9.049 862 103 051 21 . . .
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= �9.049 862 102 738 02 . . .

Our non-perturbative definition gives

This is not the same number!



We conclude that the perturbative series is Borel summable but 
its resummation does not agree with the non-perturbative 

definition

The same thing happens to the 1/N expansion of the ABJM 
matrix model [Grassi-M.M.-Zakany] and in the semiclassical 

expansion of the “quantum volume” appearing in WKB 
quantization [Codesido-M.M.-Schiappa]

This might well be the true novelty of “stringy”, doubly-
factorially divergent expansions, and is in contrast to 

standard Borel summable perturbative expansions where 
Borel resummations typically agree with the exact answer 

(e.g. the quartic oscillator in QM) 



Perturbative
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Note however that the numbers are very close, 
for many values of   

The difference is not visible to the naked eye!

�



This is in fact evidence for our conjecture, since the 
difference between               and the Borel resummation 
should be exponentially small, i.e. a non-perturbative effect.

Can we compute this NP effect explicitly? Can we decode 
our non-perturbative definition in terms of a trans-series 

of the form 

X

g�0

g2g�2
s Fg(�) + Ce�A/gs

X

g�0

gg�1
s F (1)

g (�) + · · ·
?

1-instanton correction

FX(N, ~)



As shown by [Couso et al.], there are trans-series solutions to 
this equation, with the right resurgent properties. The 

instanton action turns out to be a particular period of the 
CY, in agreement with previous proposals [Balian-Parisi-Voros, 

Drukker-M.M.-Putrov] 

The perturbative free energies of topological string theory  
can be promoted to non-holomorphic objects which satisfy 

the holomorphic anomaly equation of BCOV

We can now consider the Borel resummation of the trans-
series obtained in this way and compare it to our non-

perturbative definition. We have included the one-instanton 
correction with a natural appropriate parameter C.
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We get a remarkable agreement for a large range of values!

 This gives evidence that our non-perturbative completion 
can be “semiclassically decoded” in terms of the above 

trans-series



We have given a rigorous and concrete non-perturbative 
definition of topological string theory on toric CYs, in the 

spirit of large N dualities. 

Conclusions

We have shown that this definition can be decoded in terms 
of a natural trans-series coming from the holomorphic 

anomaly equation. In particular, it is exponentially close to the 
Borel-resummed perturbative series, as required by a bona 

fide completion. 

                    can be written as a matrix model [M.M.-Zakany]. 
Can we compute the trans-series directly in this context?      

ZX(N, ~)



What is the geometric and physical meaning of the trans-
series we have obtained? Do they correspond to non-
perturbative objects in topological string theory (e.g. 

topological D-branes)?



Thank you for your attention!


