Resurgence in Quantum Mechanics

Norisuke Sakai

Keio University

October 30, 2017 @ KITP, Resurgence conference

Collaborators:

Toshiaki Fujimori (Keio Univ.), Syo Kamata (North Carolina Univ.),

Tatsuhiro Misumi (Akita Univ.), Muneto Nitta (Keio Univ.)

Table of Content

Bions in QM Exact Saddles in Complexified Theory Ubiquitous and Hidden Resurgence $\mathbb{C}P^1$ QM near SUSY : Exact Result Exact Multi-Bion Solutions Lefschetz Thimbles 2D $\mathbb{C}P^{N-1}$ QFT Conclusion

References:

arXiv:1705.10483[hep-th] (PTEP2017(2017)083B02), arXiv:1702.00589[hep-th] (PRD95(2017)105001), arXiv:1607.04205[hep-th] (PR94(2016)105002), arXiv:1507.00408[hep-th] (JHEP09(2015)157), arXiv:1412.0861[hep-th] (JPhys597(2015)012060), arXiv:1409.3444[hep-th] (PTEP2015(2015)033B02),

arXiv:1404.7225[hep-th] (JHEP06(2014)164)

Borel nonsummable series in QM

sine-Gordon Quantum mechanics

$$S_{\rm E} = \int d\tau \left[\frac{1}{4g^2} \left(\frac{d\theta}{d\tau} \right)^2 + \frac{m^2}{4g^2} \sin^2 \theta \right]$$

Ground state energy has Divergent Perturbation Series in g^2

$$E_{\text{pert}}(g^2) = \lim_{\beta \to \infty} \frac{-1}{\beta} \log \int D\theta(t) e^{-S_{\text{E}}} \sim -\frac{2m}{\pi} \sum_{K=0}^{\infty} K! \left(\frac{g^2}{2m}\right)^K$$

Pole on positive real axis of Borel plane : non-summable

$$BE_{\text{pert}}(g^2t) \sim -\frac{2m}{\pi} \sum_{K=0}^{\infty} \left(\frac{g^2t}{2m}\right)^K = -\frac{2m}{\pi} \frac{1}{1 - \frac{g^2}{2m}t}$$

Resurgence : Bions

Borel resummation has imaginary ambiguity for $g^2 > 0$

$$\mathbb{E}_{\text{pert}}(g^2 \pm i0) = \int_0^\infty dt e^{-t} B E_{\text{pert}}(tg^2 \pm i0)$$

$$= -\frac{2m}{\pi} \int_0^\infty dt e^{-t} \frac{\mathcal{P}}{1 - \frac{g^2}{2m}t} \mp i \frac{4m^2}{g^2} e^{-\frac{2m}{g^2}}$$

Search for Nonperturbative Saddle points Instantons as nonperturbative saddle points with $S_I = \frac{m}{g^2}$ Bion : A pair of Instanton and Anti-instanton with $S_{\text{Bion}} = \frac{2m}{g^2}$ Interaction of instanton and anti-instanton at separation τ_r

$$V(\tau_r) = -\frac{4m}{g^2}e^{-m\tau_r} + \epsilon m\tau_r$$

Large τ_r is regularized by ϵ species of Fermion (zero modes) Well-defined integral when $g^2 < 0 \rightarrow$ analytic cont.to $g^2 > 0$

(Bogomolny PLB91 431 (1980), Zinn-Justin NPB192 125 (1981)); · · ·

Norisuke Sakai (Keio Univ.)

Exact Saddles of Complexified Theory

 \rightarrow Bion imaginary ambiguity cancels perturbative imaginary ambiguity

- Bion is not an Exact Solution
- To find saddle points, Complexify the Theory
- (Witten, [arXiv:1001.2933 [hep-th]]; · · ·)
- Bions as Exact Saddle Points in Complexified Theory
- Fermionic Deformation

Double-Well Potential with ϵ number of fermions (SUSY at $\epsilon=1)$ Complexify the theory

Exact Bion Solutions : Real Bion and Complex Bion

(Behtash et al, PRL116, 011601 (2016))

Cancellation of Real Bions and Complex Bions (sine-Gordon QM)

 $\begin{array}{l} \rightarrow E_{\rm ground} = E_{\rm real\ bion} + E_{\rm complex\ bion} = 0 \\ \mbox{Explicit\ evaluation\ of\ 1-loop\ determinant}} \\ \mbox{(for\ sine-Gordon,\ } \mathbb{C}P^{N-1}\ \mbox{QM}) \ \mbox{(Fujimori\ et\ al,\ PRD94,\ 105002\ (2016))} \end{array}$

Ubiquitous and Hidden Resurgence

At SUSY point ($\epsilon = 1$) : resurgence structure cannot be seen

 $E_{\text{ground}} = 0$

Hidden topological angles (Behtash et al, PRL115, 041601 (2015)) At highly symmetric points, Resurgence structure is often hidden (Kozcaz et al, [arXiv:1609.06198 [hep-th]]) Resurgence is Ubiquitous Deviation away from the symmetric point reveals Resurgence

Imaginay ambuguities of Borel resummed perturbation series Infinitely many powers of nonperturbative exponentials Resurgence of Transseries : Imaginary part of Borel resummed perturbation series on *p*-Bion background is cancelled by (p+1)-Bion semi-classical contribution

(Fujimori et al, PRD95(2017)105001)

$\mathbb{C}P^1$ QM near SUSY

(Lorentzian) $\mathbb{C}P^1$ QM with fermions

$$L = \frac{1}{g^2} \left[G \left(|\partial_t \varphi|^2 - |m\varphi|^2 + i\bar{\psi}\mathcal{D}_t\psi \right) - \epsilon \frac{\partial^2 \mu}{\partial\varphi\partial\bar{\varphi}} \,\psi\bar{\psi} \right]$$

$$G = \frac{\partial^2}{\partial \varphi \partial \bar{\varphi}} \log(1 + \varphi \bar{\varphi}), \quad \mathcal{D}_t = \partial_t + \partial_t \varphi \, \frac{\partial}{\partial \varphi} \log G$$

Moment Map : $\mu = m|\varphi|^2/(1+|\varphi|^2)$ SUSY ($\mathcal{N} = (2,0)$) when $\epsilon = 1$ States are classified by Fermion number $F \equiv G\psi\bar{\psi} = 0, 1$ Bosonic Lagangian for F = 0 sector (containing ground state)

$$L = \frac{|\partial_t \varphi|^2}{g^2 (1+|\varphi|^2)^2} - V, \quad V = \frac{1}{g^2} \frac{m^2 |\varphi|^2}{(1+|\varphi|^2)^2} - \epsilon m \frac{1-|\varphi|^2}{1+|\varphi|^2}$$

Potential with fermion deformation

Exact Ground state Energy around SUSY

Hamiltonian

$$H = -g^2 (1 + \varphi \bar{\varphi})^2 \frac{\partial}{\partial \varphi} \frac{\partial}{\partial \bar{\varphi}} + V$$

SUSY ($\epsilon = 1$) ground state $H_{\epsilon=1}\Psi_0 = 0$:

$$\Psi_0 = \langle \varphi | 0 \rangle = \exp\left(\frac{m}{2g^2} \frac{1 - \varphi \bar{\varphi}}{1 + \varphi \bar{\varphi}}\right) = \exp\left(-\frac{\mu}{g^2}\right)$$

We are interested in deformations around $\epsilon = 1$ Expansion around SUSY: rich and exact resurgence structure

$$\delta \epsilon \equiv \epsilon - 1, \quad \delta H = H - H_{\epsilon=1}$$
$$E = \delta \epsilon E^{(1)} + \delta \epsilon^2 E^{(2)} + \cdots,$$

First Order in SUSY Breaking

$$E^{(1)} = \frac{\langle 0|\delta H|0\rangle}{\langle 0|0\rangle} = g^2 - m \coth\frac{m}{g^2} = g^2 - m - \sum_{p=1}^{\infty} 2me^{-\frac{2pm}{g^2}}$$

Convergent power series in nonperturbative exponential e^{-2m/g^2}

$$E^{(i)} = \sum_{p=0}^{\infty} E_p^{(i)}, \quad E_p^{(i)} \propto e^{-\frac{2mp}{g^2}}$$

1st order in SUSY breaking

$$E_0^{(1)} = -m + g^2, \quad E_p^{(1)} = -2me^{-\frac{2mp}{g^2}}, \ (p \ge 1)$$

Perturbation series is terminated at finite orders

Nonperturbative exponential does not accompany perturbation series on that background.

No resurgence structure is seen.

Norisuke Sakai (Keio Univ.)

Second Order in SUSY Breaking

With first order correction $\delta\Psi$ to wave function, we obtain

$$E^{(2)} = -\frac{\langle \delta \Psi | H_{\epsilon=1} | \delta \Psi \rangle}{\langle 0 | 0 \rangle}$$

$$=g^2 - \frac{m \coth \frac{m}{g^2}}{2 \sinh^3 \frac{m}{g^2}} \left[E_i \left(-\frac{2m}{g^2} \right) + \bar{E}_i \left(\frac{2m}{g^2} \right) - 2\gamma - 2 \log \frac{2m}{g^2} \right]$$

Exponential integral functions are defined as (x > 0)

$$E_i(-x) = -\int_x^\infty dt e^{-t} \frac{1}{t}, \quad \bar{E}_i(x) = -\int_{-x}^\infty dt e^{-t} \frac{\mathcal{P}}{t}$$

Real and Symmetric under $m/g^2 \rightarrow -m/g^2$

Divergent Perturbation Series

Convergent series of Nonperturbative Exponentials

$$\frac{m \coth m/g^2}{2 \sinh^3 m/g^2} = 4m \sum_{k=1}^{\infty} k^2 e^{-\frac{2mk}{g^2}}$$

Divergent asymptotic series of perturbation

$$E_i\left(-\frac{2m}{g^2}\right) \sim e^{-\frac{2m}{g^2}} \sum_{n=1}^{\infty} (n-1)! \left(\frac{-g^2}{2m}\right)^n$$

Borel summable divergent series

$$\bar{E}_i\left(\frac{2m}{g^2}\right) \sim -e^{-\frac{2m}{g^2}} \sum_{n=1}^{\infty} (n-1)! \left(\frac{g^2}{2m}\right)^n$$

Borel nonsummable divergent series

Norisuke Sakai (Keio Univ.)

Resurgence in Quantum Mechanics

Borel Resummation

Divergent perturb.series in $g^2 \rightarrow \text{Borel resummation gives}$

$$E^{(2)} = \sum_{p=0}^{\infty} E_p^{(2)}$$

$$E_0^{(2)} = g^2 + 2m \int_0^\infty dt e^{-t} \frac{1}{t - \frac{2m}{g^2 \pm i0}}$$

$$E_p^{(2)} = \left[2m \int_0^\infty dt \, e^{-t} \left(\frac{(p+1)^2}{t - \frac{2m}{g^2 \pm i0}} + \frac{(p-1)^2}{t + \frac{2m}{g^2}} \right) + 4mp^2 \left(\gamma + \log \frac{2m}{g^2} \pm \frac{\pi i}{2} \right) \right] e^{-\frac{2mp}{g^2}}, \quad (p \ge 1)$$

Perturbation on *p*-Bion background has Borel nonsummable series, giving maginary ambiguity which is cancelled by leading semi-classical contribution of (p + 1)-Bion.

Resurgence to all orders of nonperturbative exponentials

Norisuke Sakai (Keio Univ.)

Resurgence in Quantum Mechanics

Multi-Bion Solutions in Complexified Theory Complexification : $\varphi \equiv \varphi_R^{\mathbb{C}} + i\varphi_I^{\mathbb{C}}$ and $\tilde{\varphi} \equiv \varphi_R^{\mathbb{C}} - i\varphi_I^{\mathbb{C}}$ (independent)

$$S_E = \int_0^\beta d\tau \left[\frac{\partial_\tau \varphi \partial_\tau \tilde{\varphi}}{g^2 (1 + \varphi \tilde{\varphi})^2} + V(\varphi \tilde{\varphi}) \right]$$

Saddle point solutions in finite interval : $\varphi(\tau + \beta) = \varphi(\tau)$ elliptic function *cs* with periods 2K(k) and 4iK'(k), moduli (τ_c, ϕ_c)

$$\varphi = e^{i\phi_c} \frac{f(\tau - \tau_c)}{\sin \alpha}, \quad \tilde{\varphi} = e^{-i\phi_c} \frac{f(\tau - \tau_c)}{\sin \alpha}, \quad f(\tau) = \operatorname{cs}(\Omega\tau, k)$$

Period $\beta=(2pK+4iqK')/\Omega$: solution labeled by $\sigma=(p,q)$ Asymptotic forms for large β

$$S \approx pS_{\text{bion}} + 2\pi i\epsilon l, \quad S_{\text{bion}} = \frac{2m}{g^2} + 2\epsilon \log \frac{\omega + m}{\omega - m}$$

Multi-Bion in complex space

Position of n-th instanton and antiinstaton

$$\tau_n^{\pm} = \tau_c + \frac{n-1}{\omega p} (\omega\beta - 2\pi iq) \pm \frac{1}{2\omega} \log \frac{4\omega^2}{\omega^2 - m^2}$$

Multi-bion solution $\Sigma(\tau) = (1 - \varphi \tilde{\varphi})/(1 + \varphi \tilde{\varphi})$ for (p,q) = (3,1)

Norisuke Sakai (Keio Univ.

Multi-bion solution: $\theta = -2 \arctan |\varphi|$ for (p,q) = (2,0) (left) and for (p,q) = (2,1) (right) $\Sigma(\tau) = (1 - \varphi \tilde{\varphi})/(1 + \varphi \tilde{\varphi})$ for (p,q) = (3,1)

One-Loop Determinant for Massive Modes

Integrating over Fluctuations around *p*-Bion Saddle points One-Loop Determinant for non-zero modes $det''\Delta \approx$ product of determinant of constituent (anti-)instantons Quasi-moduli : relative position τ_r and relative phase ϕ_r

$$\frac{Z_p}{Z_0} = \frac{1}{p} \int \prod_{i=1}^{2p} \left[d\tau_i \wedge d\phi_i \, \frac{2m^2}{\pi g^2} \exp\left(-\frac{m}{g^2} - V_i\right) \right]$$

$$V_i = m\epsilon_i(\tau_i - \tau_{i-1}) - \frac{4m}{g^2}e^{-m(\tau_i - \tau_{i-1})}\cos(\phi_i - \phi_{i-1})$$

Lagrange multiplier σ to impose the periodicity

$$2\pi\delta\left(\sum_{i}\tau_{i}-\beta\right)=m\int d\sigma\exp\left[im\sigma\left(\sum_{i}\tau_{i}-\beta\right)\right]$$

Quasi-Moduli integral

Deform τ_r, ϕ_r in complex plane Determine integration paths (thimbles) and their weight (by intersection of dual thimbles with the original path) Integral for each Quasi-Moduli (Prototype)

$$I = \int_{\mathcal{C}} dy \, \exp\left[-V(y)\right], \quad V(y) \equiv ae^{-y} + by, \quad \operatorname{Re} b > 0$$

Instanton-instanton : a > 0, Instanton-Antiinstanton : a < 0Gradient flow equation

$$\frac{\partial y}{\partial t} = \overline{\frac{\partial V}{\partial y}} = -\bar{a}e^{-\bar{y}} + \bar{b}$$

 $\partial y/\partial t = 0$: Saddle point y_s Thimble y(t) (steepest descent contour): $\lim_{t\to -\infty} y(t) = y_s$ Dual Thimble y(t) (steepest ascent direction): $\lim_{t\to +\infty} y(t) = y_s$

Norisuke Sakai (Keio Univ.)

Stokes Phenomena

If the dual thimble intersects with the original contour \rightarrow integration contour can be deformed to the thimble

Stokes phenomenon The original integration contour C intersects with \mathcal{K}_1 (\mathcal{K}_0) for $\theta > 0$ ($\theta < 0$) and hence C is deformed to \mathcal{J}_1 (\mathcal{J}_0)

Nonperturbative Exponentials \rightarrow Exact Results

$$E = E_0 - \lim_{\beta \to \infty} \frac{1}{\beta} \log \left(1 + \sum_{p=1}^{\infty} Z_p / Z_0 \right)$$

$$E_p^{(1)} = -\lim_{\epsilon \to 1} \lim_{\beta \to \infty} \frac{1}{\beta} \frac{\partial}{\partial \epsilon} \frac{Z_p}{Z_0} = -2me^{\frac{-2pm}{g^2}}$$

$$E_p^{(2)} = -\frac{1}{2} \lim_{\epsilon \to 1} \lim_{\beta \to \infty} \frac{1}{\beta} \left[\partial_\epsilon^2 \frac{Z_p}{Z_0} - \sum_{i=1}^{p-1} \partial_\epsilon \frac{Z_{p-i}}{Z_0} \partial_\epsilon \frac{Z_i}{Z_0} \right]$$
$$= 4mp^2 \left(\gamma + \log \frac{2m}{g^2} \pm \frac{\pi i}{2} \right) e^{\frac{-2pm}{g^2}}$$

 \rightarrow Borel nonsummable perturbative series on (p-1)-Bion backgr. Borel summable part is obtained by invariance $m/g \rightarrow -m/g$ Trans-series is obtained completely from multi-Bion contributions

Towards Asymptotically-Free QFT IR Renormalon in 2D $\mathbb{C}P^{N-1}$ QFT Bion in 2D $\mathbb{C}P^{N-1}$ QFT on $R \times S^1$ with size LBions in $\mathbb{C}P^{N-1}$ QM gives Bions in $L \to 0$ limit Exact Bion solution in QM is still an Exact solution of QFT. A new feature : Kaluza-Klein modes of fluctuations We found 1-loop determinant of KK modes to give renormalized running coupling

$$g_{2d}^2(L) = \frac{4\pi}{N\log(\frac{1}{\Lambda^2 L^2})}$$

Bion Pole on Borel plane moves with L

$$\int \frac{e^{-t}}{\frac{4\pi}{Ng_{2d}^2(L)} - t} \sim e^{-\frac{4\pi}{Ng_{2d}^2(L)}} = \Lambda^2 L^2$$

Conclusions

- $1.\ \mathsf{QM}$: useful arena to explore resurgence.
- 2. Resurgence structure is ubiquitous, hidden at SUSY point.
- 3. Exact result of ground state energy of near SUSY $\mathbb{C}P^1$ QM
 - Infinite powers of nonperturbative exponentials
 - Associated divergent perturbation series with logarithms
- 4. Infinite tower of exact multi-bion solutions are found
- 5. Semi-classical contributions of multi-bions give nonperturbative contributions exactly
- 6. Full exact results are recovered from multi-bion amplitudes thanks to resurgence
- 7. Lefschetz thimble analysis is vital for quasi-moduli integrals
- 8. Generalizations obtained : sine-Gordon QM, $\mathbb{C}P^{N-1}$ QM, etc.
- 9. Extension to 2d $\mathbb{C}P^{N-1}$ sigma model is under way.

Understanding IR as well as UV renormalon ?