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               astonishing simplicity: just 5 numbers 
	
67.8±0.9	km s−1 Mpc−1   
2.728	±	0.004	K	
13.799	±0.038	bn	yrs	
 
6±.1x10-10 
	
5.4±	0.1	
	
0.69±0.006		x	critical 
	
4.6±0.006		x	10-5	
	
-.033±0.004	

Measurement Error 
1%	
.1%	
.3%	
	
1%	
	
2%	
	
2%	
	
1%	
	
12%	
	

Expansion rate: 
(Temperature) 
        (Age) 
 
Baryon-entropy ratio    
 
Dark matter-baryon ratio 
 
Dark energy density 
 
Scalar amplitude       
 
Scalar spectral index      
 (scale invariant = 0) 

 energy 
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Nature has found a way to create a huge hierarchy of scales,  
apparently more economically than in any current theory  
 
A fascinating situation, demanding new ideas 
 
One of the most minimal is to revisit quantum cosmology 
 
The simplest of all cosmological models is de Sitter; 
interesting both for today’s dark energy and for inflation  



quantum cosmology reconsidered 

w/	S.	Gielen		1510.00699,	Phys.	Rev.	Le+.	117	(2016)	021301,	
																								1612.0279,	Phys.	Rev.	D	95	(2017)	103510.		
w/	J.	Feldbrugge	J-L.	Lehners,	1703.02076,	Phys.	Rev.	D	95	(2017)	103508,	
																																																						1705.00192,	Phys.	Rev.	Le+,	119	(2017)	171301,	
																																																						1708.05104,	Phys.	Rev.	D,	in	press	(2017).	
w/A.	Di	Tucci,	J.	Feldbrugge	and		J-L.	Lehners	,	in	preparaTon	(2017)	



Quantum geometrodynamics 

 Σ1 Σ0 ≡ 1 0

 Σ0

 Σ1

fundamental object: 
Feynman propagator 

  gµν
(4)

    sum over  
4-geometries 

     initial 
3-geometry 

     final 
3-geometry 

Wheeler,	Feynman,		
De	WiW,	Teitelboim	…	



Basic object: phase space Lorentzian path integral 

Basic references:  
C. Teitelboim (now Bunster), “Causality and Gauge Invariance in Quantum Gravity and Supergravity,”  
Phys. Rev. Lett. 50, 705 (1983); see also Phys. Rev. D25, 3159 (1983); D28, 297 (1983).    
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B.S.	DeWiW,	Phys.	Rev.	160,	1967	(p	1140)	



Some basic points, e.g., causal propagator, defined by integrating 
only over  positive lapse      allows you to distinguish an expanding  
from a contracting universe. 

Wheeler, Teitelboim, … 

Initial: 0 

Final: 1 

 N



theories of initial conditions for inflation 



Revised	Vilenkin	proposal	(framed	in	terms	of	Lorentzian	path	integral):		
Phys	Rev.	D30,	509	(1984);	Phys	Rev	D50,	2581	(1994),	gr-qc/9403010	
	
Earlier	versions:	Lemaitre,	Fomin,	Tryon,	Brout-Englert-Gunzig	…	



3-geometry of  
    zero size 

A very beautiful idea: the laws of physics determine their own initial conditions  

no boundary proposal 



simplest model: Einstein gravity plus cosmological constant  

  
S = ( 1

2 R∫ − Λ)+                      (8πG ≡ 1)surface terms 

Usual claim: 

Our claim: 

   Ψ ∝ e+12π2
!Λ (1−l ( l+1)( l+2)hT

2 )

   Ψ ∝ e−12π2
!Λ (1−l ( l+1)( l+2)hT

2 )

  linearized 
perturbation 
      (g-wave) 
 
hTij

perturbations 
completely out 
of control: 
there is no meaningful 
one-point amplitude 
for a 3-geometry 
“persistence of nothing” 

Some overlap with previous work: Vilenkin (bg), Rubakov (perts), Ambjorn/Loll (bg), Sorkin (bg)… 



We evaluate the Lorentzian gravitational path integral carefully, using  
cosmological perturbation theory and P-L/Cauchy to determine relevant saddles 
 
Integrate out background (zero mode), then fluctuations, then lapse  
 
Background:  

   

ds2 = −N 2dt2 + a2dΩ3
2;            S = 2π 2 dt −N −13a !a2 + N (3a − Λa3)⎡⎣ ⎤⎦0

1

∫
             N ≡ Na−1,  q ≡ a2 ⇒   S = 2π 2 dt −N −1 3

4 !q
2 + N (3− Λq)⎡⎣ ⎤⎦0

1

∫
ds2 = −N 2q−1dt2 + q dΩ3

2                            N=

redefine* quadratic in q  
(Halliwell)	

*properly defined FPI is invariant under such redefinitions (see Gielen +NT):  do not affect leading semiclassical exponent 

“no boundary” classical solution: 

;       work in gauge        const   

  qcl (t) = 1
3 ΛN 2t2 + (− 1

3 ΛN 2 + q1)t :     qcl (0) = 0,  qcl (1) = q1

 N

Classical action:   
Scl (q1; N ) = 2π 2 1

36 Λ
2N 3 + (3− 1

2 Λq1)N − 3
4 q1

2N −1⎡⎣ ⎤⎦



   
1 0

F
= dN 3π i

2!N0+

∞

∫ e
i
!

Scl (q1;N ) 4 saddles, related by 
                            and 
complex conjugation 

 N →−N

P-L theory:  
 
every saddle    defines a “Lefshetz thimble”  
(complete steepest descent contour) upon which  
integral is absolutely convergent. Generically, 
each         intersects a steepest ascent contour 
 
 
 
One can deform the defining contour        into one  
passing along a number of thimbles,  
 
 
 
 
i.e., a saddle contributes iff its steepest ascent 
  
contour intersects  
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σ
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  Jσ Kσ ' = δσσ '
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C = nσ

σ
∑ Jσ ⇔ nσ = CKσ
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intersection 
number 

relevant saddle point 

Hartle Hawking 
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Above gives the Feynman (causal) propagator: one can also integrate over 
which just gives the real part of the Feynman propagator  
 
From                                                                    it follows that                                                So the contour  
 
 
integral over            gives a solution of the WdW equation 

  C ' = (−∞,∞)

   
Ĥ 1 0

F
= −i!δ (Σ1 − Σ0 ),   

Ĥ Re[ 1 0
F

]= 0.

  C '

  C '
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       basic issues with the Euclidean path integral 

Usual Wick rotation                   renders exponent                     real                   
but it is an odd function of         so, semiclassically, the integral over 
                          diverges (in any D) 
 
Integrating over a half-line does not provide a “wavefunction of 
the universe” satisfying the homogeneous WdW equation 
 
Furthermore, in D=4,  divergences at                 and                   have  
opposite signs so that (for any          )  the half-line integral diverges 
 

 N = −iN E

 −∞ < N E < ∞

   
i
! S ≡ − 1

! SE

 N E

  N E → 0±

 N E → ±∞

  q1 > 0



Perturbations:  

   

ds2 = −N 2q−1dt2 + q(γ ij

S3 + hij
T )dxidx j ;           

S = S (0) + S (2);   S (2) = π 2 dt[N −1q2 !hTl
2 − Nl(l + 2)hTl

2 ]
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∫
χ l = q hTl ⇒ eom   − !!χ l +

1
4t2 (γ 2 −1)χ l == 0,  t → 0

Re[γ ]> 0Can show                     everywhere in  complex      -plane (ensures finite action)  
except on two branch cuts  (arise only because of infinite dimensionality) 

redefine:  

 N

  

−N+ < N < −N− ,   N− < N < N+     
N± =

3
Λ 2l(l + 2)+ q1

Λ
3 ± 2 l(l + 2)(l(l + 2)+ q1

Λ
3 )

N* = N+N− = 3
Λ q1

where  



increasing  
real   N



Rescue attempt  J.	Diaz	Dorronsoro,	J.J	Halliwell,	J.B.	Hartle,	T.	Hertog,	O.	Janssen	
“The	Real	No	Boundary	WavefuncTon	in	Lorentzian	Quantum		
		Cosmology,”	Phys.	Rev.	D	96	(2017)	043505,	arXiv	1705.05340	

1.   not Lorentzian 

2.   contributions from all  
       four saddles 
 
3.  Nonperturbative contributions 
      render perturbations out of  
      control 

Response:	J.	Feldbrugge,	J-L.	Lehners	and	NT,	“No	rescue	for	the	no	boundary	proposal:		
pointers	to	the	future	of	quantum	cosmology,”	Phys.	Rev.	D	in	press,	arXiv	1708.05104	

new	proposed	contour	

 N



We have seen how non-analyticity arises in the exponent from integrating out pertns: 
cannot then apply Picard-Lefschetz theory for the remaining integral over  
However, Cauchy’s theorem still applies: we just distort the contour in advance to 
avoid any branch cut which arises from integrating out fluctuations 

 N

 N



Theorem:  
 
no contour for the lapse avoids contributions 
from the upper two saddles 
 
quantum fluctuations are out of control 
 
Interpretation: 
 
There is no meaningful one-point function for  
a 3-geometry (for 4d gravity with positive     ) Λ



Persistence of nothing 
If we consider the limit                     , then the  
small      divergence disappears and the  
Euclidean path integral over the background 
becomes well defined 
 
There is a saddle with  
 
The Euclidean action for the tensor fluctuations is 
positive definite so that the nothing-nothing “self-
energy” amplitude is real 
 
We take this to mean that “nothing” is stable 

  q1 = q0 = 0

   Ns = − 6i
Λ ;   SE = 24π 2

!Λ

 N E



quantum de Sitter 

Lorentzian in-out  amplitudes may be constructed semi-classically 
 
For classically allowed      and     , both larger than the de Sitter throat,  
there are always just two, real saddle point solutions 
 
 
 
 
 
 
 
 
 These interfere in interesting (and calculable) ways   

  q0   q1

 1in in out out 



We have been able to find the linearized mode solutions analytically for  
general N, as well as to compute the corresponding classical action 
 
We also have developed numerical techniques to include nonlinear  
backreaction based on systematically improving the complex linear solutions  
 
This provides a fascinating laboratory in which to study real-time quantum  
phenomena using semiclassical methods, for example the growth of  
perturbations in the collapsing phase, leading to the creation of black holes  
which then evaporate in the expanding phase 



                implications for inflation 

time 

physical size 

  q0

  q1



                there is a second classical solution! 

time 

  q0

  q1

physical size 

  q0



To define the “in” vacuum, a common technique is to take the limit 
 
(where                                        ) 
 
 
However, we have                                          so in quantum geometrodynamics this amounts to 
 
 
performing a small rephasing of        in the opposite sense 
 
 
Carrying this through consistently, one finds that the relevant Lorentzian saddle (to the N-integral)  
is the one in the upper-half N-plane, giving unbounded perturbations 
 
So there is a tension between quantum geometrodynamics and inflation, meaning that the  
“Bunch-Davies” vacuum is potentially susceptible to quantum gravitational effects 
 
This quantum incompleteness is closely related to the classical, geodesic incompleteness of inflation  

  η0 →−∞e− iε

e.g.	S.	Weinberg,	arXiv:	0805.3781	

  
η0 = − 1

H q0

  q0

Quantum incompleteness of inflation 

  
a = eHtP = − 1

Hη



de Sitter flat slicing with            from uhp    q0 → 0

 N



the same conclusion is obtained by taking the flat 
universe limit of the closed no-boundary universe 

 N



de Si&er in flat (infla-onary) slicing



summary
•  Picard-Lefschetz-Cauchy deformation allows us to obtain unambiguous predictions 

from the Lorentzian path integral for gravity in the semiclassical limit.  

•  The (path integral formulation) of the no boundary proposal is still an attractive idea 
but seems to be mathematically problematic. The Lorentzian semiclassical path 
integral version yields perturbations which are out of control. 

•  Inflation and the “Bunch-Davies” vacuum are subject to similar nonperturbative 
corrections, emphasizing their quantum mechanically incompleteness  

•  Quantizing the background is important! Intriguing connection between the zero 
modes (IR) and the QFT vacuum for inhomogeneous perturbations (UV)  

•  Techniques potentially of wide applicability, e.g., to black holes & holography 

•  Pointers to new, much simpler and more predictive scenarios for cosmology 



t h a n k  y o u !  


