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Quantum resurgence

Ĥψ = Eψ Ĥ : quantum Hamiltonian

Ĥ
def
= −~

2∆q + V (q) (Schrödinger operator).

We focus on spectral functions F{Ek}, and on their dependence upon

1/~
def
= x as asymptotic (large) parameter.

Some spectral functions F known / expected to be resurgent in x:

F (x) ∼
(

∑

m

fmx
−m

)

e−xτ0 semiclassical (large-x) expansion

FB(τ)
def
=

∑

m

fm

m!
(τ − τ0)

m (Borel transform) converges (= holomorphic) near τ0,

moreover can be endlessly analytically continued

(thus FB has a Riemann surface S with only isolated singularities); and

F (x) = x

∫ ∞

τ0

FB(τ) e−xτ dτ for some path on S (Laplace transform).
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Singularities of FB(τ) can:

at least be located, and have their germs expanded, thanks to underlying
classical propagation principles;

in some cases, have their germs explicitly interrelated :
(resurgence equations aka bridge equations: Écalle 1981).

Sometimes, description is rich enough to quantum-integrate Ĥψ = Eψ
(analytical solvability of a sort):

e.g., for 1D polynomial potentials V (q) - an ODE case. (V. 1999)

***
The world is not 1D.

Propagation principles ⇐ the quantum–classical correspondence.

The question is then: how much of the above can be done for

Ĥψ = Eψ, (nD Schrödinger equation)

when n > 1 genuinely - a PDE case, nonseparable, nonintegrable?
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The nD quantum resurgence puzzle

1D treatment of Schrödinger eq.: nD integral approach:
exact complex WKB method. exact saddle-point method.
For nD: inapplicable Irrelevant to the Schrödinger eq.
already in the real domain. (save for ∞D path integral).

nD singularity analysis: nD singularity analysis:
Poisson formula on manifolds. Balian–Bloch approach.
Only for the real domain (mod C∞) Attains complex singularities,
and homogeneous operators. but doesn’t reach full solution.
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Ideas from 1D

In general for a (confining) potential V (q), the partition function

Tr e−τĤ ≡
∑

k

e−τEk will only be holomorphic for Re τ > 0.

Harmonic potential V (q) = q2 (spectrum {Ek = 2k + 1}k=0,1,2,...):
∑

k

e−τEk ≡ 1

2 sinh τ
is meromorphic for all complex τ

(the identity = the basic Poisson summation formula).

Whereas for V (q) = |q|N , N > 2, the spectrum {Ek} ∝ k
2N

N+2 has
vanishing density for k → ∞, hence

∑

k

e−τEk holomorphic for Re τ > 0

has {Re τ = 0} as natural boundary (cf. Jacobi θ-functions for N = ∞).

So, switch to the operator f(Ĥ) = Ĥ
N+2

2N of spectrum {E
N+2

2N

k }:

Tr e−τf(Ĥ) =
∑

k

e−τE
N+2
2N

k .
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More precisely: in terms of a single scaled variable,

(2π~)−1

∮

p2+|q|N=E

p dq = cNE
N+2

2N /~ ≡ x,

complete Bohr–Sommerfeld quantization condition:

for some F (x) ∼ x+
b1
x

+
b2
x3

+ · · · : F (xk) = k + 1
2 .

Spectral functions of {xk}: N (x)
def
=

∑

k

θ
[

F (x) − (k+ 1
2 )

]

, Θ(τ)
def
=

∑

k

e−τxk :

N (x) ≡ F (x) +
∑

r 6=0

(−1)r

2πir
e2πirF (x) (Poisson summation formula)

= x+
log Φ(x)

2πi
+

∑

r 6=0

(−1)r

2πir
[Φ(x)]r e2πirx, Φ(x)

def
= e2πi

[

b1

x
+

b2

x3 +···
]

N (x) ≡ 1

2πi

∫ +i∞

−i∞

Θ(τ)

τ
exτ dτ ⇐ Θ(τ) =

∫ ∞

0

e−τx dN (x) (Borel)
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So,
1

2πi

∫ +i∞

−i∞

Θ(τ)

τ
exτ dτ = x+

log Φ(x)

2πi
+

∑

r 6=0

(−1)r

2πir
[Φ(x)]r e2πirx

Re τ

Im

π

τ

(+1/2)(+1/2)

(−1/2)

(−1/2)

(+1/2)

(−1/2)

(+1/2)

(−1/2)

τ

−1/3

−1

1

−1/2

1/3

1/2

Im

2π

τ

Re

1

2 sinh τ
[V (q) = q2] General 1D

Θ(τ)

τ
(formally): [pole+ log] singularities
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1

2πi

∫ +i∞

−i∞

Θ(τ)

τ
exτ dτ = x+

log Φ(x)

2πi
+

∑

r 6=0

(−1)r

2πir
[Φ(x)]r e2πirx

Re τ

Im

π

τ

(+1/2)(+1/2)

(−1/2)

(−1/2)

(+1/2)

(−1/2)

(+1/2)

(−1/2)

τ

−1/3

−1

1

−1/2

1/3

1/2

Im

2π

τ

Re Re τ

−252/5 14

−42 7 −1/3

35/2 −5

14 −20/3

−5 3

−2

2

−1

2−2 −2

1/2 −1

−1 1

3 −1/2−1/2

2/3

2/5 −4

2

−2

2

5 −5 1/3

1/2

2π

Im τ

1

2 sinh τ
[V (q) = q2] General 1D

1

τ

∑

k

e−τxk [V (q) = q4] (V. 1981, 1983)
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Poisson relation on nD manifolds (compact, Riemannian)
(Chazarain 1974, Duistermaat–Guillemin 1975)

For ∆ the Laplacian operator, {xk} = the spectrum of
√
−∆,

T (t)
def
= Tr e−it

√
−∆ =

∑

k

e−itxk (t real)

is a distribution singular only at ±(lengths of real periodic geodesics)
(including 0, where the singularity is strongest).

Generalization: for P a positive elliptic ΨDO of order m > 0, {xk}
= the spectrum of f(P ) = P 1/m (of order 1),

T (t)
def
= Tr e−itf(P ) =

∑

k

e−itxk (t real)

is a distribution singular only at ±(periods of closed bicharacteristics).

The singular-part expansions are in principle computable, e.g., using
quantum Birkhoff normal forms (QBNF).
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Selberg trace formula on 2D compact hyperbolic surfaces
(Cartier–V. 1988)

(Assuming constant negative curvature ≡ −1) For ∆ the Laplacian

operator, {xk} = the spectrum of f(∆)
def
=

√

−∆ − 1/4,

Θ(τ)
def
= Tr e−τf(∆) =

∑

k

e−τxk (holomorphic for Re τ > 0)

has a meromorphic continuation for all complex τ , which is singular only
at ±(lengths of periodic geodesics), real and complex.

No branch cuts: an exceptional feature; the statement follows from a
Selberg Trace formula, which is analytically exact (a nongeneric fact, in
analogy to the exact Bohr–Sommerfeld quantization for the 1D harmonic
oscillator).
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Re τ

Im

π

τ

(+1/2)(+1/2)

(−1/2)

(−1/2)

(+1/2)

(−1/2)

(+1/2)

(−1/2)

Θ(τ)
def
= Tr e−τ

√
−∆−1/4

∑

k

e−τ(2k+1) =
1

2 sinh τ

2D Hyperbolic Laplacian 1D harmonic oscillator

Also for 2D quantum billiards: high orders of Weyl series reflect
real/complex periodic orbits (Berry–Howls 1994).
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Balian–Bloch representation of quantum mechanics
(1974)

Write Green’s function GE(q, q′; ~)
def
= 〈q|(Ĥ~ − E)−1|q′〉 in Fourier

representation wr to x = 1/~ :

GE(q, q′; ~) =
x2

2πi

∫ +∞

−∞
ΩE(q, q′; s) eixs ds,

then the Schrödinger equation amounts to an integral equation for ΩE ,

ΩE(q, q′; s) =
A(q, q′)

s− SE(q, q′)
+

1

2πi

∫ +∞

−∞
ds′

∫

dnq′′
ΩE(q, q′′; s′) ∆A(q′′, q′)

s− s′ − SE(q′′, q′)

which locates the s-plane singularities of ΩE(q, q′; s) at the actions SE(q, q′)
of real and complex classical trajectories of energy E from q to q′.

Hence for Im TrGE (giving the spectral density), Im TrΩE(s) is singular
at the actions SE,γ of real and complex classical trajectories γ of
energy E that are periodic.
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The Gutzwiller trace formula (1971)

It is a real -periodic-orbit expansion for the integrated density of states

of the operator Ĥ, or “spectral staircase” N (E; ~)
def
=

∑

k

θ(E −Ek(~)) :

N (E; ~) ∼
∑

{γ}

(

∑

m

Aγ,m(E)~m
)

eiSE,γ/~ ({γ} = real periodic orbits).

But: all summations diverge, making “∼” is most ill-defined.

Resurgent remedy: cures the pathologies of the formula (formally),
and inversely the cured formula suggests a resurgent structure in nD
quantum mechanics. Problem: it’s still conjectural (formal reasonings).

Based on: Balian–Bloch transform of N (E; ~) (i.e., wr to x = 1/~),

N (E; ~) ≡ 1

2πi

∫ +i∞

−i∞

ΘE(τ)

τ
exτ dτ, ΘE(τ)

def
=

∑

k

e−τxk(E),

as N (E; ~) ≡ ∑

k

θ(x− xk(E)), {xk(E)} def
= (1/~)-spectrum at fixed E,

i.e., a generalized eigenvalue problem, not just a function f(Ĥ) as above.
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So,
1

2πi

∫ +i∞

−i∞

ΘE(τ)

τ
exτ dτ ∼

∑

{γ}

(

∑

m

Aγ,m(E)~m
)

eiSE,γ/~

where {γ} = the real classical periodic orbits of energy E; SE,γ = their
actions (including 0 where the expansion is more singular, O(~−n)). This

• says: ΘE(τ)
def
=

∑

k e−τxk(E) is singular on {Re τ = 0} at {τ = iSE,γ};
• encodes a singular decomposition for ΘE(τ) on that imaginary τ -axis
(the expansion coefficients Aγ,m(E) are in principle reachable).
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Conjecture (V. 1986): (if {SE,γ} is a discrete set) ΘE(τ) =
∑

k

e−τxk(E)

continues analytically in τ with singularities at {τ = iSE,γ} where now
{γ} = real and complex classical periodic orbits of energy E.

Open questions: prove (conditionally: V (q) complex-analytic, . . .?)
that ΘE(τ) is a resurgent function; find resurgence equations, and a
richer resurgence algebra. Expect genuine branch cuts in general: the
topologies of the Riemann surfaces then have to be found (as done in
1D), so the periodic orbits won’t just naively add as in trace formulae.

Gutzwiller T.F. ⇒ More general ΘE(τ) ⇐ Hyperbolic ∆ (2D)
(our conjecture)
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Concrete examples of generalized spectra {xk(E)}
(scaled-energy spectroscopy, or (1/~)-spectroscopy)

1) the H-atom in a uniform B-field reduces to the 3D Hamiltonian
Ĥ(x, g) = −~

2∆ − r−1 + g2r2/8 ≡ x2Ĥ(1, x6g2); hence {xk(E)} ≡ the
g−1/3-spectrum at fixed (Eg−2/3, x).

2) in a quantum kicked top, effects of real and complex periodic orbits.

1) Wintgen 1987 2) Kuś–Haake–Delande 1993
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