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Quantum resurgence

H v = EvY H quantum Hamiltonian
g —R*A, +V(q) (Schrodinger operator).

We focus on spectral functions F{F}}, and on their dependence upon
def .
1/h = x as asymptotic (large) parameter.

Some spectral functions F' known / expected to be resurgent in x:

(Z fmg;_m) e 70 semiclassical (large-r) expansion

def Z (1 —19)™ (Borel transform) converges (= holomorphic) near 7,

moreover can be endlessly analytically continued
(thus Fp has a Riemann surface S with only isolated singularities); and

F(z)==x / Fg(r)e ™7 dr for some path on S (Laplace transform).

0
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Singularities of Fi(7) can:
at least be located, and have their germs expanded, thanks to underlying
classical propagation principles;

in some cases, have their germs explicitly interrelated:
(resurgence equations aka bridge equations: Ecalle 1981).

Sometimes, description is rich enough to quantum-integrate H Vv = E
(analytical solvability of a sort):
e.g., for 1D polynomial potentials V(q) - an ODE case. (V. 1999)

XKk

The world is not 1D.

Propagation principles <= the quantum-—classical correspondence.

The question is then: how much of the above can be done for
Hiy = Ev, (nD Schrédinger equation)

when n > 1 genuinely - a PDE case, nonseparable, nonintegrable?
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The nD quantum resurgence puzzle

1D treatment of Schrodinger eq.: nD integral approach:
exact complex WKB method. exact saddle-point method.
For nD: inapplicable Irrelevant to the Schrodinger eq.
already in the real domain. (save for coD path integral).

Hi=F g

nD Schrédinger eqn
n > 1 genuinely

nD singularity analysis: nD singularity analysis:
Poisson formula on manifolds. Balian—Bloch approach.
Only for the real domain (mod C'°) Attains complex singularities,
and homogeneous operators. but doesn’t reach full solution.
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Ideas from 1D

In general for a (confining) potential V(q), the partition function
Tre "H = Z e TE will only be holomorphic for Re 7 > 0.

k
Harmonic potential V(q) = ¢* (spectrum {Ey = 2k + 1}r—0.12..):
1
Ze_TE’f = — is meromorphic for all complex T
- 2sinh 7

(the identity = the basic Poisson summation formula).
2N

Whereas for V(q) = |q|, N > 2, the spectrum {E;} o k¥+2 has
vanishing density for £ — oo, hence

Z e Lk holomorphic for Re 7 > 0

k
has {Re 7 = 0} as natural boundary (cf. Jacobi f-functions for N = o).
~ ~ 2 N+2
So, switch to the operator f(H) = H=~ of spectrum {E.Y }
N42

Tt e /) = Y e B
k
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More precisely: in terms of a single scaled variable,

N

(27Th)_1]{ ; Epdq:cNE 2%2/)115:1:,
p2+|q|N =

complete Bohr—Sommerfeld quantization condition:

by b
forsomeF(x)~x+—1—|——23—|—---: F(xy) =k+ 3.
r ox

Spectral functions of {xx }: N (x) L S 0[F(z) — (k+3)], ©(7) L > e Tk

k k
N(x) = F(x) + Z St 2mirk(w) (Poisson summation formula)
o 2mir
log ®(x) (—1)" o def omiltiybz ]
_ ) r 2wirx i) 16! T —+ -5

T o +TZO iy LU l) =6

Lt e -
N(z) = — eTdr <« 0O(r) = e " dN(z) (Borel)

211 ) o T 0
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So, L /+io<> o) e "dr =z + log 2(x) + Z (=1 [ (x)]" 2™

2m J oo T 271 27ir
T
Im T Im 1

(-1/2) — 1
(+1/2) —11_1/2
(_1/2) —e 1
(12) 1 | S

Ret Ret
(-1/2) —.,
(+1/2) —e 1/2
(-1/2) — 1

1 O(T . ..
St [V(q) = ¢°] General 1D (7) (formally): [pole + log| singularities
sinh 7 T
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1 “+100 @ 1 (I)
1 (1) or gy — 4 1082(2)
2T ) o T 21
Im T Im T
(-1/2) — 13
(+1/2) 12
(-1/2) —1
(+1/2) TI ., 2m
Rert Ret
(-1/2) — 1
(+1/2) — 1
(-1/2) —t-13
1 1
. W(a) =2 G 11D =N e [V(g) = q* (V. 1981, 1983
P V(q) = ¢°] enera TZ Vig) =4q"] ( )

k
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Poisson relation on nD manifolds (compact, Riemannian)
(Chazarain 1974, Duistermaat—Guillemin 1975)

For A the Laplacian operator, {z;} = the spectrum of v/—A,

T(t) = Tre V=2 = Ze—ltwk (t real)

is a distribution singular only at +(lengths of real periodic geodesics)
(including 0, where the singularity is strongest).

Generalization: for P a positive elliptic WDO of order m > 0, {z}
— the spectrum of f(P) = P'/™ (of order 1),

T(t) = Tre () = Ze—ltwk (t real)

is a distribution singular only at 4(periods of closed bicharacteristics).

The singular-part expansions are in principle computable, e.g., using
quantum Birkhoff normal forms (QBNF).
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Selberg trace formula on 2D compact hyperbolic surfaces
(Cartier—V. 1988)

(Assuming constant negative curvature = —1)  For A the Laplacian
operator, {xy} = the spectrum of f(A def VA —1/4,

O(1) = C Tre /(A = Z e Tk (holomorphic for Re 7 > 0)

has a meromorphic continuation for all complex T, which is singular only
at +(lengths of periodic geodesics), real and complex.

No branch cuts: an exceptional feature; the statement follows from a
Selberg Trace formula, which is analytically exact (a nongeneric fact, in
analogy to the exact Bohr—Sommerfeld quantization for the 1D harmonic
oscillator).
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ImTt

(-1/2)

i- Im T
(+1/2)
ikl
(-1/2)
(+1/2) Rert
— ¥ e : Tt
=bBnr -in -Zm 0 Fe T
(-1/2)

j' (+1/2)
il

(-1/2)

o(7) def . - T/—A-1/4 Ze_T(2k+1)

2 Smh T
2D Hyperbolic Laplacian 1D harmonic oscillator

Also for 2D quantum billiards: high orders of Weyl series reflect
real /complex periodic orbits (Berry—Howls 1994).
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Balian—Bloch representation of quantum mechanics
(1974)

Write Green’s function Gg(q,q’;h) = L (q|(Hr, — E)~Y¢') in Fourier
representation wr to x = 1/h :

:C2 +oo , _
Gr(q,qh) = / Qg(q,q;s)e™ ds,

2mri 0o

then the Schrodinger equation amounts to an integral equation for g,

A(g, e Qp(g,q";s") AA(d",q)
Q , d d’n, /!
5(q,q;s) = S—SE (4. Qm/ S/ s — 5 — (@, )

which locates the s-plane singularities of Qg (q, ¢'; s) at the actions Sg(q, q")
of real and complex classical trajectories of energy E from ¢ to ¢'.

Hence for Im Tr Gg (giving the spectral density), Im Tr Qg(s) is singular
at the actions Sg ., of real and complex classical trajectories v of
energy E that are periodic.
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The Gutzwiller trace formula (1971)

It is a real-periodic-orbit expansion for the integrated density of states
of the operator H, or “spectral staircase” N (E;h) L Y 0(FE — Ex(h)) :
k

N(E;h) ~ Z(Z A%m(E)ﬁm) eiSB.~/h ({7} = real periodic orbits).
v} ™
But: all summations diverge, making “~” is most ill-defined.

Resurgent remedy: cures the pathologies of the formula (formally),
and inversely the cured formula suggests a resurgent structure in nD
quantum mechanics. Problem: it’s still conjectural (formal reasonings).

Based on: Balian—Bloch transform of N'(FE;h) (i.e., wr to x = 1/h),

1 —|—1C>O o
N(E;h) = — / Ob(T) or 4r @p(r) > e,

271 : T
— 100 k

as N(E;h) = Ek; O(x—zr(F)), {xi(F)} ot (1/h)-spectrum at fixed F,

i.e., a generalized eigenvalue problem, not just a function f (IEI ) as above.
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1 ee @E(T) xT m\ ,iSE ~/h
So, o , . e’" dr ~ {Z;(Z A, (E)R ) e'P B
Y m
where {v} = the real classical periodic orbits of energy F; Sg ., = their

actions (including 0 where the expansion is more singular, O(A~")). This
e says: Op(T) L S e T%k(E) i gingular on {Re 7 = 0} at {7 =iSg ., };

e encodes a singular decomposition for ©g(7) on that imaginary 7-axis
(the expansion coefficients A, ,,,(E) are in principle reachable).

b Im T

-
=

3i5‘£.?

/|

Re T

T
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Conjecture (V. 1986): (if {Sg -} is a discrete set) Op(7) = > e~ 7x(E)
k

continues analytically in 7 with singularities at {7 = iSg ,} where now
{7} = real and complex classical periodic orbits of energy F.

Open questions: prove (conditionally: V' (gq) complex-analytic, ...7)
that Op(7) is a resurgent function; find resurgence equations, and a
richer resurgence algebra. Expect genuine branch cuts in general: the
topologies of the Riemann surfaces then have to be found (as done in
1D), so the periodic orbits won’t just naively add as in trace formulae.

b Im T FImT b ImoT

—_— —_— —_——
g = e

itfyh

155, 18

0 Re T " 0 Re T -E]‘r -‘?:n —E]'],' 1] Re T
—
[t

e

—

- -
'

Gutzwiller T.F. = More genéral Op(T) < Hyperboiic A (2D)
(our conjecture)
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Concrete examples of generalized spectra {z;(F)}
(scaled-energy spectroscopy, or (1/h)-spectroscopy)

1) the H-atom in a uniform B-field reduces to the 3D Hamiltonian
H(z,g) = —2A —r~ 1+ ¢%r2/8 = 22H(1,25¢?); hence {z,(F)} = the
g~ 1/3-spectrum at fixed (Eg—2/3, x).

2) in a quantum kicked top, effects of real and complex periodic orbits.

FIG. 1. Fourier transformed trace T {w;jo = 1, M = 100) of the Floquet operator of the kicked
top for various values of the control parameter k : (a) below k: = 12,73 with a ghost peak ath® 1 g k=12
w = 0.51 and three peaks corresponding to real periodic orbite; (b} alightly above k. where the | T e
highest peak corresponds to an unresolved doublet due to two real periodic orbits; (c) suffici entlyl ok
far above k, where the doublet is resolved. ET
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FIG. l Squared, normalized Fourier tramsforms of the
quantum spectra in the m =2 subspaces for «=~~0.2. The [
lowest 300 lovels in each subspace bave boen included in the 0.0 bl e =—ty
trasaformation. 3 2 4 '

1) Wintgen 1987 2) Kus—Haake—Delande 1993
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