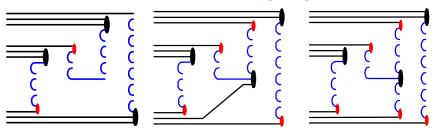

Valence Quarks and Proton Structure in Soft Hadronic Interactions in Nuclei

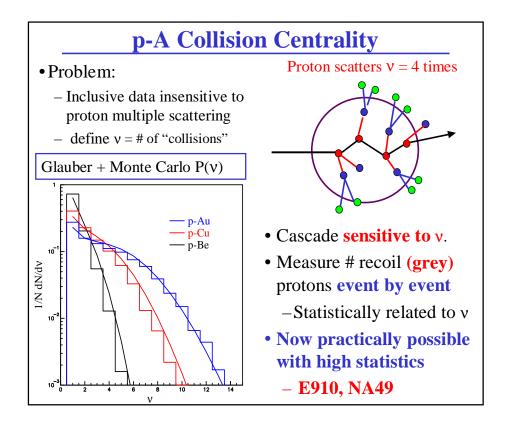
Prof. Brian A Cole Columbia University

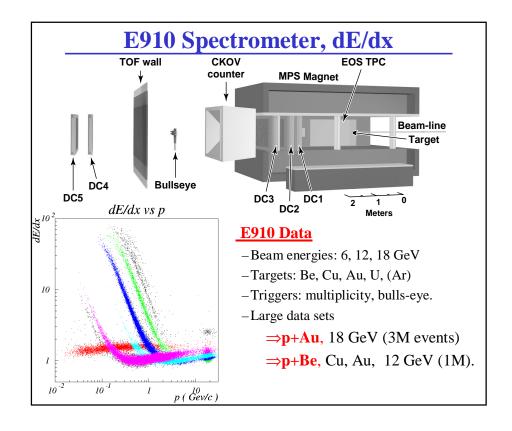
Outline


- 1. Introduction
- 2. E910, grey track analysis.
- 3. Proton fragmentation
- 4. Large-x pion production
- 5. Conclusions, comments

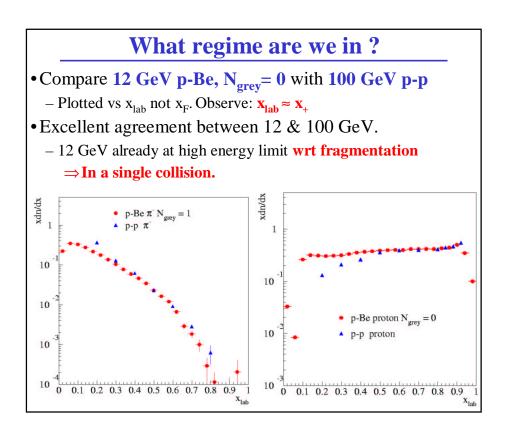
•But: "we" can't control expansion even in p-p.

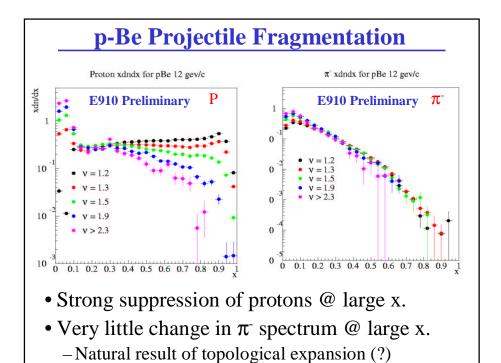
Topological Expansion for p-A (?)

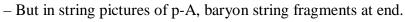

Possible Double Scattering Diagrams



- We know even less about "higher order" terms in p-A.
- But, reasonable expectation:
 - With more scatterings of proton, di-quark breaking and junction diagrams become more important/dominant.
- Comments from theorists?
- Is di-quark breaking + junction the dominant baryon stopping mechanism at high energy?

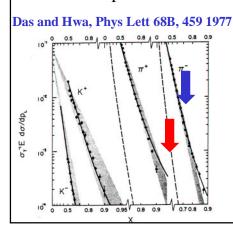

Some Questions

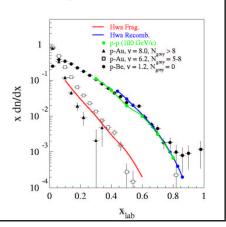

- Does the dominant role of color topology persist in hadronic interactions in nuclei ?
 - There's a source of copious soft gluons to neutralize color.
 - Can coherent gluon fields (strings) even persist in nucleus?
- What's left then?
 - Proton constituents: valence quarks + junction + sea.
- Can we re-phrase problem in terms of scattering of partons in the proton particularly valence quarks?
 - "Already in" descriptions of the Cronin effect.
 - Continuous evolution from soft \rightarrow hard.
 - What is the role of fluctuations in proton configuration?
- Problem: QCD "uncontrollable" @ soft scales.
 - Dima: α_s saturates at small Q^2 .
 - Can we define effective σ for (e.g.) quark "stripping".



Where Do Large-x π Come From ?

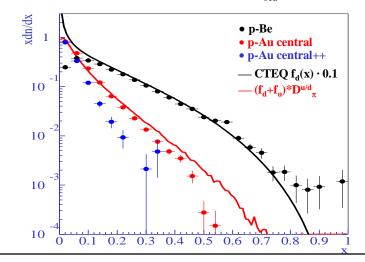
-Unnatural in resonance & "popcorn" production.

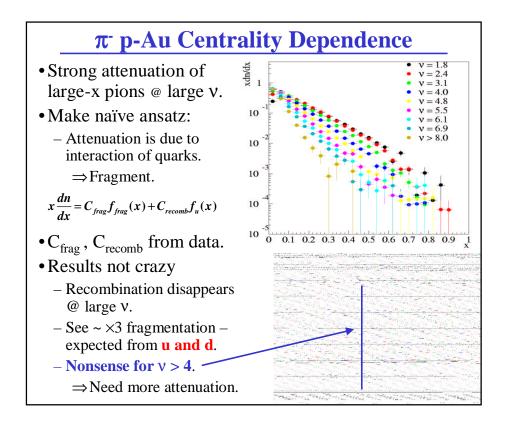

- Resonance decays?
 - G. Fischer: from high-mass tails of (e.g.) Δ (1232).
 - E910: baryon stops but pions don't.
 - "Magical" balance between increasing mass proton stopping?
- Popcorn mechanism in string decay ?
 - AKA "short strings" in DPM
 - Meson momentum?
 - \Rightarrow Valence quark momentum
 - ⇒or from some Regge exchange

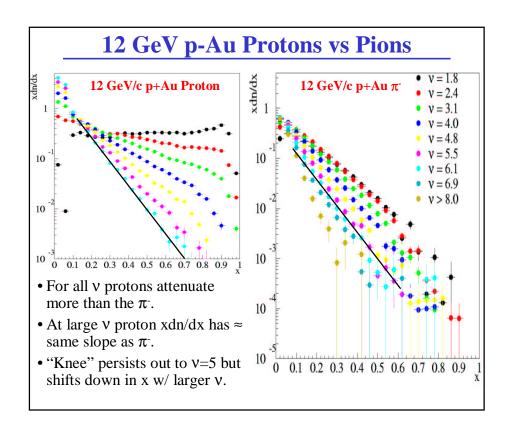


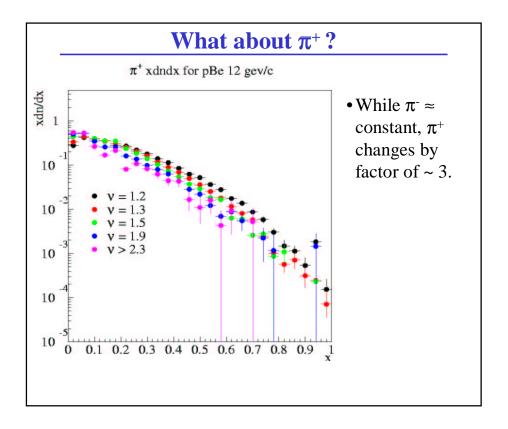
- \Rightarrow Mesons must stop along with baryon (they don't).
- Pions come directly from valence quarks in proton
 - Momentum spectrum ≈ valence quark momentum spectrum.
 - But: quarks cannot "fragment" ...

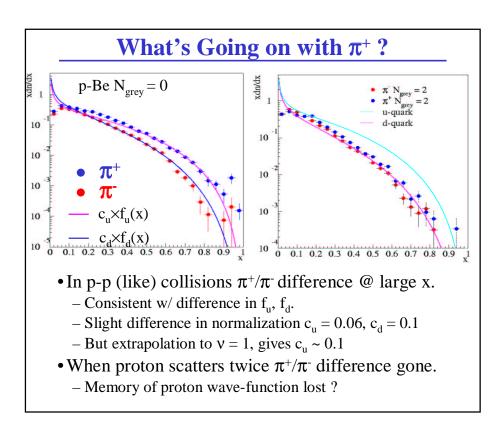
Recombination / Fragmentation


- Problem:
- If valence quarks **fragment** the pion spectrum would be too soft.
- Resolution:
- posit that valence quarks locally color neutralize (**recombine**).
- Pions carry (approximately) valence quark momentum.
- Crude comparison to E910 p-Be and p-Au π data.






Recombination \Rightarrow **Fragmentation** ?

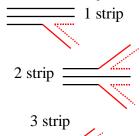

- Use CTEQ structure func. + JETSET to try to understand recombination/fragmentation.
 - "Recombination" from $\,f_{u/d}\,\,(Q^2=1\,\,GeV^2).$
 - Fragment w/ string to anti-quark from $\boldsymbol{f}_{sea}(\boldsymbol{x}).$

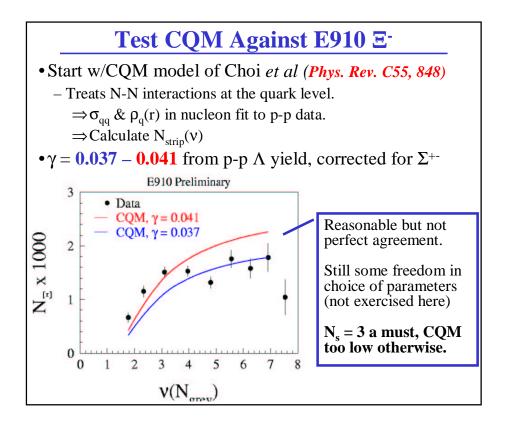
What is Going on Here?

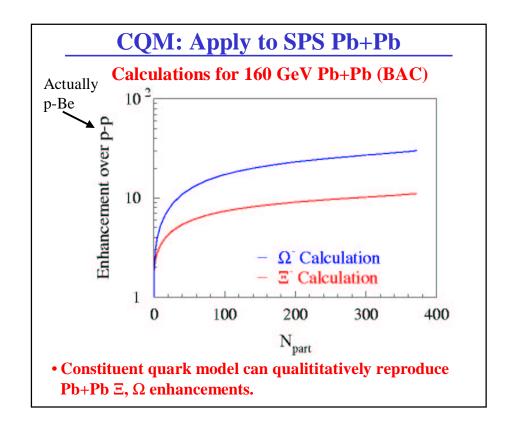
- Preferentially remove u quark in initial scatterings?
 - Part of effect may be trivial twice the probability to pick u quark vs d quark.

• Speculation:

- Could SU(6) wave-function of proton play a role? $p \uparrow = \frac{1}{\sqrt{2}} u \uparrow (ud)_{S=0} + \frac{1}{\sqrt{18}} u \uparrow (ud)_{S=1} - \frac{1}{3} u \downarrow (ud)_{S=1} - \frac{1}{3} d \uparrow (uu)_{S=1} - \frac{\sqrt{2}}{3} d \downarrow (uu)_{S=1}$
- Dominant contribution from ud spin 0 di-quark.
- Old argument (Ochs): at large x, valence quarks carrying proton helicity preferred.
 - \Rightarrow Origin of f_u , f_d difference.
- If it's easier to remove u from $u \uparrow (ud)_{s=0}$ may be a way to remove the intrinsic π^+ excess & shape difference.
- $\pi^+\pi^-$ behavior a detail of physics **but useful probe of proton interaction dynamics**.




Constituent Quark Model


- Try to understand E910 Λ , Ξ results (BAC, Yang):
- Context: Van Hove quark fragmentation model.
 - Quarks stripped from baryon by scattering
 - Flavor determined by sea/pair produced quarks
- \bullet Assume probability γ to pick up strange quark.
 - Evaluate probability to get strangeness S baryon vs N_{strip}.

S N _{strip}	0	1	2	3
1	(1- γ)	γ	0	0
2	$(1-\gamma)^2$	2γ(1- γ)	γ^2	0
3	$(1-\gamma)^3$	$3 \gamma (1-\gamma)^2$	$3\gamma^2(1-\gamma)$	γ^3

- -Obtain expected growth in S = 1.
- Expect: N_{strip} mostly = 1 in p-p, > 1 in p-A.
 - \Rightarrow Enhanced Ξ production in p-A.

Summary

- Strong circumstantial evidence for role of valence quark in dynamics of stopping, large-x π production.
 - Rapid stopping of baryon.
 - While π 's (for ν < 4) remain unaffected.
 - **Except:** mystery with π^+ .
 - ⇒Apparent rapid loss of memory of proton structure.
 - Initially pion x distributions strongly suggestive of $f_{n/d}(x)$.
- For large v, all signature of initial projectile gone.
 - No remnant of valence quark momentum distribution.
 - Proton and pion x distributions become similar.
- Strange baryon production sensitive to valence quark stripping \Rightarrow increased production of Λ , Ξ , (Ω) .
 - As seen in E910 data.
 - High probability for full stripping required.

Comments (1)

- String models currently "ignore" nucleon structure
 - e.g. In quark diquark string excitation in Fritiof, DPM, & descendents, diquark starts @ x=1, quark @ $x \sim 0$.
 - ⇒Color exchange modifies quark momentum according to *ad hoc* prescription for string excitation.
 - − No knowledge of nucleon sea − flavor content & x dist.
- But this prescription seems highly unnatural.
 - − @ high energies nucleon state frozen during collision.
 - ⇒Fluctuations in nucleon configuration should be present.
 - ⇒Shouldn't we "see" content of nucleon sea?
- In saturation (colored glass) model we treat the gluon content (e.g.) of nucleon as "real".
- Is there a continuous evolution from soft→hard in context of saturation?

Comments (2)

- Is it (it is) time to re-examine our understanding of soft hadronic interactions?
 - Most of current schemes were developed 20-30 yrs ago.
 - The understanding of QCD & nucleon structure has improved dramatically since then.
- Plea to theorists: help!!!
- We ignore this physics at our peril
 - We don't understand the consequences of "stopping"
 - ⇒e.g. do we produce the same baryon density matter at RHIC and SPS ???
 - We don't understand why physics seems to be so smooth with / independent of energy.
 - ⇒e.g. multiplicity
 - We can't "explain" Peter's demonstration of universality.
 - . .

Comments (3)

- E910 data pushes limits of "high energy"
 - Scaling between 12 GeV & higher energies is remarkable.
- But, there should be some energy dependence in nuclear interactions.
 - e.g. due to differences in "lab" lifetimes of proton config's
 - And due to coherence of soft interactions.
- Hope to be able to observe effects within E910 data
 - e.g. by comparing 12 and 18 GeV/c data
 - ⇒ Factor of 1.5 in "lab" lifetimes/formation times.
 - Systematics, systematics, systematics ...
- Need to continue pursuing/supporting p-A experiments
 - Heavy ion collisions too complicated to unravel these issues.
 - E907 @ FNAL, NA49 @ SPS, ? @ GSI, ? @ JHF, ? @ RHIC