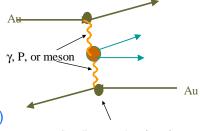
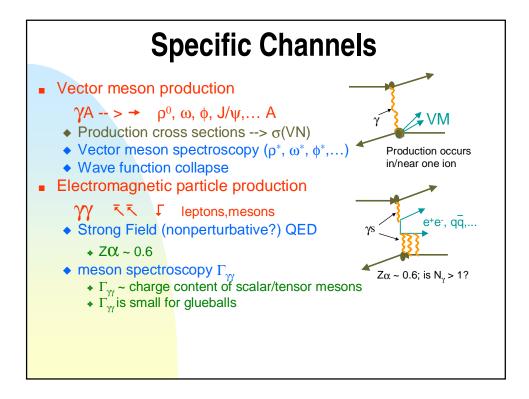
Probing the Nucleus with Ultra-Peripheral Collisions

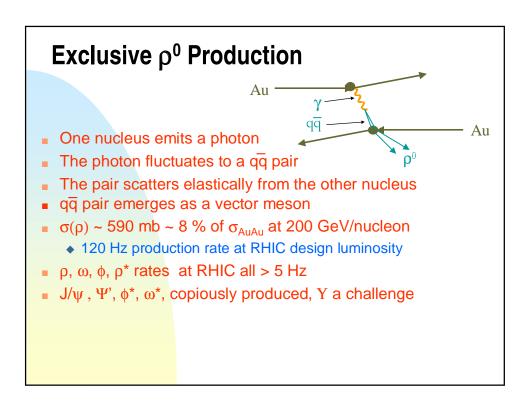
Spencer Klein, LBNL (for the STAR Collaboration)

Ultra-peripheral Collisions: What and Why Photoproduction as a nuclear probe STAR Results at 130 GeV/nucleon:

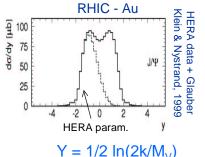
Au + Au --> Au + Au + ρ^0 ρ^0 production with nuclear excitation Direct $\pi^+\pi^-$ production & interference


A peek at 200 GeV/nucleon & beyond Conclusions

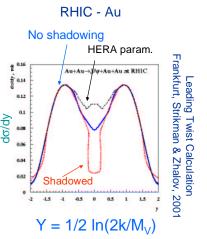

Coherent Interactions


- $b > 2R_A$
 - no hadronic interactions
 - ♦ ~ 25-50 fermi at RHIC
- lons are sources of fields
 - photons
 - → Z²
 - ◆ Pomerons or mesons (mostly f₀)
 - → A² (bulk) A^{4/3} (surface)
- Coupling ~ nuclear form factor

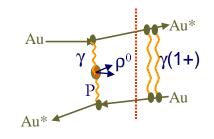
- Photon/Pomeron wavelength λ = h/p> R_A
- amplitudes add with same phase
- ◆ P₁ < h/R_A, ~30 MeV/c for heavy ions
- P_{II} < γh/R_A ~ 3 GeV/c at RHIC
- Strong couplings --> large cross sections



Elastic Scattering with Soft Pomerons


- Glauber Calculation
 - parameterized HERA data
 - Pomeron + meson exchange
 - all nucleons are the same
 - σ ~ A² (weak scatter limit)
 - All nucleons participate
 - J/ψ
 - σ ~ A ^{4/3} (strong scatter limit)
 - Surface nucleons participate
 - Interior cancels (interferes) out
 - $\sigma \sim A^{5/3} (\rho^0)$
- depends on $\sigma(Vp)$
 - sensitive to shadowing?

 $Y = 1/2 \ln(2k/M_{V})$

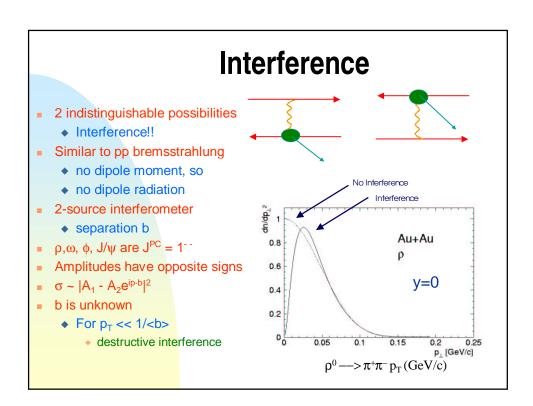


- Valid for cc or bb
- dσ/dy & σ depend on gluon distributions
- shadowing reduces mid-rapidity dσ/dy
 - Effect grows with energy
 - σ reduced ~ 50% at the LHC
- colored glass condensates may have even bigger effect

Nuclear Excitation

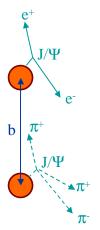
- Nuclear excitation 'tag's small b
- Multiple photon exchange
 - ◆ Mutual excitation
- Au* decay via neutron emission
 - simple, unbiased trigger
- Multiple Interactions probable
 - \bullet P(ρ^0 , b=2R) ~ 1% at RHIC
 - ◆ P(2EXC, b=2R) ~ 30%
- Non-factorizable diagrams are small for AA

$$\sigma = \int d^2b P_{2EXC}(b) P_{\rho^0}(b)$$

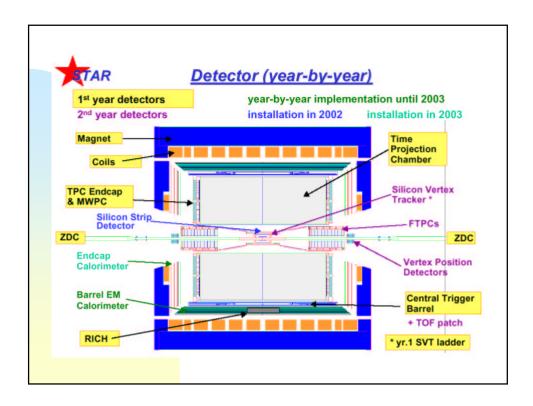


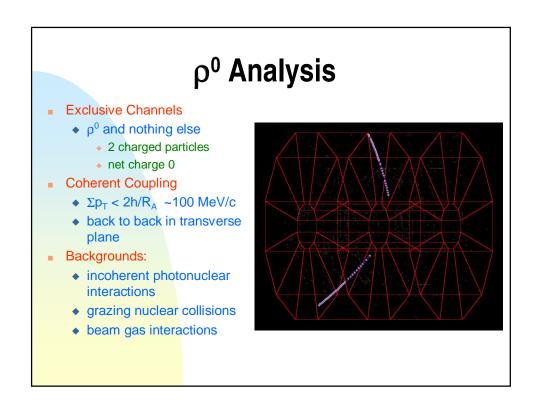
Photoproduction of Open Quarks

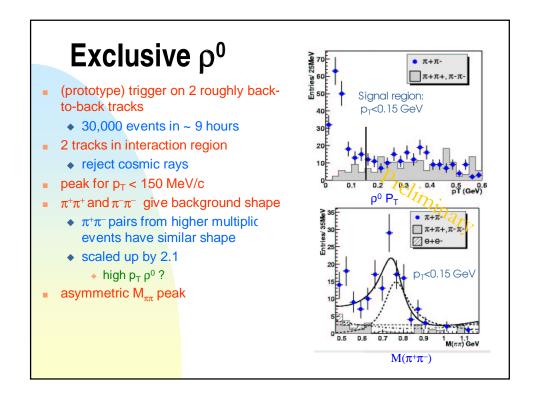
QQ-->

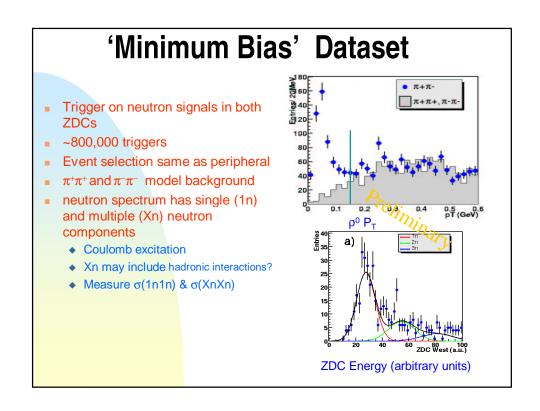

in one ion

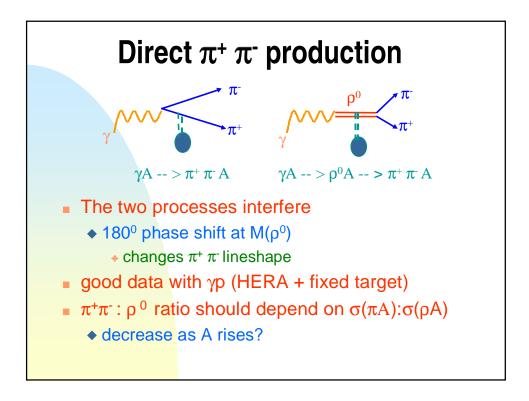
- $\sim \gamma A --> c\bar{c}X, b\bar{b}X$
- sensitive to gluon structure function.
- Higher order corrections problematic
- Ratio $\sigma(\gamma A)/\sigma(\gamma p)$ --> shadowing
 - ◆ removes most QCD uncertainties
- Experimentally feasible (?)
 - high rates
 - known isolation techniques
- Physics backgrounds are gg--> cc̄, γγ --> cc̄
 - γγ cross section is small
 - gg background appears controllable by requiring a rapidity gap

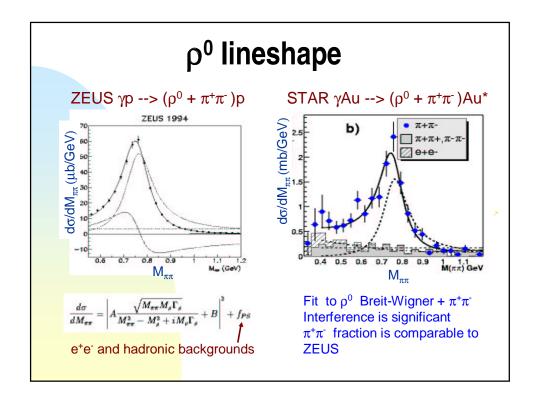

Entangled Waveforms

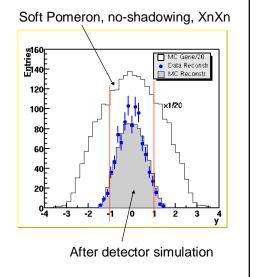

- VM are short lived
 - decay before traveling distance b
- Decay points are separated in space-time
 - no interference
 - ◆ OR
 - the wave functions retain amplitudes for all possible decays, long after the decay occurs
- Non-local wave function
 - non-factorizable: $\Psi_{\pi^+\pi^-} \neq \Psi_{\pi^+} \Psi_{\pi^-}$
- Example of the paradox
 Einstein-Podolsky-Rosen




(transverse view)







dN/dy for $\rho^0(XnXn)$

- ρ dσ/dy are different with and without breakup
- XnXn data matches simulation
- Extrapolate to insensitive region

Cross Section Comparison

	STAR	Theory	_y Bal
Exclusive ρ^0	~ 125-500 mb	350 mb	ltz, k ystrai
ρ ⁰ with XnXn	~ 30 + 1/2 mb	27 mb	Clein nd (2
ρ^0 with 1n1n	~ 2 +/-0.7 mb	3.25 mb	& 2002

- Normalized to 7.2 b hadronic cross section
- Systematic uncertainties: luminosity, overlapping events, vertex & tracking simulations, single neutron selection, etc.
- Exclusive ρ⁰ bootstrapped from XnXn
- Good agreement
 - ◆ factorization works

AuAu -> Au*Au*+p

ρ⁰ spectra - 25% of

the min-bias data

- 200 GeV/nucleon
 - higher σs
- higher luminosity
- 'Production' triggers
- Minimum Bias data:
 - ◆ 10X statistics
- Topology Data
 - ◆ 50X statistics
- **Physics**
 - precision ρ⁰ σ and p_T spectra
 - σ(e⁺e⁻) and theory comparison
 - 4-prong events (ρ*(1450/1700)???)

- RHIC is a high luminosity γγ and γA collider
- Coherent events have distinctive kinematics
- Photonuclear Interactions probe the nucleus
 - $\sigma(AA --> AAV)$ is sensitive to $\sigma(VA)$
 - probes gluon density (shadowing)
- STAR has observed three peripheral collisions processes
 - \bullet Au + Au -- > Au + Au + ρ^0
 - $Au + Au > Au^* + Au^* + \rho^0$
 - The $ρ^0$:direct $π^+π^-$ is similar to gA nteractions
- The ρ⁰ cross sections agree with theoretical expectations