Hadronic Spectral Functions in Lattice QCD at T=0 & T≠0

- 1. Hadronic spectral functions
- 2. Principles of the Maximum Entropy Method
- 3. Example with mock data
- 4. Lattice QCD results
 - light mesons (π, ρ) at T=0
 - light baryons (N, N*) at T=0
 - heavy meson (J/ψ) at T≠0
- 5. Summary and future

Other applications, transport coefficients ...

MELQCD Collaboration

M. Asakawa, (Kyoto Univ.)
T. Hatsuda (Univ. of Tokyo)
Y. Nakahara (Hitachi)
K. Sasaki (Univ. of Tokyo)
S. Sasaki (Univ. of Tokyo)

- Asakawa, Nakahara & T. H.,
 Phys. Rev. D60 (99) 091503.

 Prog. Part. Nucl. Phys. 46 (01) 459.
 [hep-at/0011040]
 - Sasaki, Sasaki, Asakawa & T.H., in progress.

```
1. Hadronic spectral functions

• Matsubara correlation

• Retarded correlation

D(\tau) = \int \left\langle \mathsf{T}_{\tau} \mathcal{J}^{\dagger}(\tau, \vec{x}) \mathcal{J}(0) \right\rangle d^{3}x \qquad D^{R}(t) = i \int \left\langle \mathsf{R} \mathcal{J}^{\dagger}(t, \vec{x}) \mathcal{J}(0) \right\rangle d^{3}x

• Spectral representation

D(\tau > 0) = \int_{-\infty}^{\infty} \frac{e^{-\omega \tau}}{1 \mp e^{-\omega t}} A(\omega) d\omega \qquad \bar{D}^{R}(\omega) = \int_{-\infty}^{\infty} \frac{A(\omega')}{\omega' - \omega - i \varepsilon} d\omega' - (\text{subt.})
• Spectral function

A(\omega) = \frac{1}{\pi} \operatorname{Im} D^{R}(\omega)
= (2\pi)^{3} \sum_{R,m} \frac{e^{-E_{R}/T}}{Z} (n|\mathcal{J}^{\dagger}|m) (m|\mathcal{J}|n)
\times (1 \mp e^{-(E_{R} - E_{R})/T}) \delta(\omega - (E_{R} - E_{R})) \delta^{3}(\dot{P}_{R} - \dot{P}_{R})
A(\omega \ge 0) = \mp A(-\omega) \ge 0 \qquad A_{POCD}(\omega \ge 1 \text{ GeV. 7}) \propto \omega^{2 \operatorname{dim} U - 4} \cdot \left(1 + c_{1} \frac{\alpha_{s}}{\pi} + \cdots\right)
```


Advantages of MEM

- (i) No a priori parametrizations of spectral functions
- (ii) Unique solution is obtained
- (iii) Statistical significance of the solution can be studied

Shonon-Jaynes Entropy

• Combinatorial construction (Monkey argument) Friedan (72); Gull & Daniell (79); Jaynes (36); Skilling (38)

Product of Poisson distribution → SJ entropy

$$P_{\lambda}(n) = \prod_{i=1}^{N} \frac{\lambda_{i} \binom{n_{i}}{n_{i}!} e^{-\lambda_{i}}}{n_{i}!}$$

$$\rightarrow \exp \left[\alpha \sum_{i=1}^{N} \left(\frac{A_{i} - m_{i} - A_{i} \ln \left(\frac{A_{i}}{m_{i}} \right)}{m_{i}} \right) \right]$$

$$n! \sim \exp \left[n \log (n - n) \right]$$

Axiomatic construction

Axom I: Locality

Axiom II: Coordinate invariance

Axiom III: System independence

Axiom IV: Scaling

Shanon (1948); Jaynes (1957),,

Skilling ('88);

Asakawa, T.H., & Nakahara, ('01)

- Our previous data suggest
 more than ~30 points are needed in \(\tau \) direction at the highest T.
- The highest T : set to $\sim 2.5T_c$
 - In order to have large enough L_{σ} , anisotropic lattice has been employed

with
$$\xi = a_{\sigma}/a_{\tau} = 4$$

$$a_{\sigma} \updownarrow$$

1. Lattice size $32^{3} \times 32 \quad (T \simeq 2.5 \, T_{c}) \\ 40 \quad (T \simeq 2 \, T_{c}) \\ 72 \quad (T \simeq 1.1 \, T_{c}) \\ 96 \quad (T < T_{c}) \\ 2. \quad \beta = 7.0, \quad \xi_{0} = 3.5 \\ 3. \quad \xi = a_{\sigma} \, / \, a_{\tau} = 4 \\ a_{\tau} = 9.75 \times 10^{-3} \, \, \text{fm}$

 $L_{\sigma}=1.25~{
m fm}$

5. Summary and future

- ▶ What we have learned from the <u>ill-posed problem</u>, $D(\tau) \rightarrow A(\omega)$?
 - MEM works pretty well in lattice QCD
 - 1. O(10) data points \rightarrow most probable and unique solution $A(\omega)$
 - 2. error analysis \rightarrow "plausibility" of $A(\omega)$
 - 3. better data (smaller a, better statistics, larger L) \rightarrow better results
 - **4.** O(a) error can be studied by using $K_{lat}(\tau, \omega)$
 - · Advantages over standard pole-fit

	MEM	pole-fit
ground states	good	good
excited states	reasonable	unstable
q-q continuum	correct height detection of π /a	no way
finite T	straightforward	no way

Spectral Functions on the Lattice in the Future

• T = 0 system

under way 1. nucleon resonances, glueballs etc

- 2. hadron mixings (ρ - ω , Λ - Σ^0 etc)
- 3. full QCD and hadronic widths ($\rho \rightarrow 2\pi$, $\sigma \rightarrow 2\pi$ etc)
- 4. parton distribution functions
- T≠0 system

under way 1. $\rho \omega \phi \Leftrightarrow chiral restoration$

under way 2. J/Ψ , $\Psi' \Leftrightarrow deconfinement$

3. collective modes at $T \sim T_C$, $T > T_C$

4. transport coefficients of hot plasma

5. collective modes in N_c=2 color superconductor

